• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adapted Metrics and Webster Curvature in Finslerian 2-Dimensional Geometry

    2016-06-09 03:34:38MirceaCRASMAREANU

    Mircea CRASMAREANU

    1 Introduction

    The present note introduces the Webster scalar curvature discussed by Chern and Hamilton in[5]into the framework of 2-dimensional Finsler geometry.More precisely,we compute the Webster curvature for the sphere bundle T1S of a Finsler surface(S,F(x,y))by using the structural equations of this bundle.Specifically,the condition of adapted metric of[5]is suitable for only one 1-form(namely ω3)of the natural co-frame of T1S endowed with the Sasaki type metric gSasakiinduced by F.This condition,called vertical adapted,reduces the discussion to the Riemannian surfaces by the vanishing of the main scalar I and yields the constant Gaussian curvature K=2.It follows that the Webster curvature is12and a natural Cartan structure(in terms of[8,p.148])is given by the horizontal 1-forms.Let us remark that an interplay between Cartan structures and the generalized Finsler structures is studied in[13–14].

    We apply this computation to prove a structure result,that is,T1S with gSasakiis homothetic with a generalized Berger sphere.More precisely,we obtain that under the vertical adapted condition,the vector field e3,dual of ω3with respect to gSasaki,is a Killing vector field for this metric and then it makes(gSasaki,ω3)a Sasakian structure on T1S.Another important result is that in our setting ω3is a pseudo-Hermitian form corresponding to a CR structure on T1S.Although this pseudo-Hermitian structure is non-Einstein,we obtain that its Webster scalar curvature is again12.

    In order to extend the class of metrics,we generalize the concept of adapted metrics;in fact,we modify the original condition of Chern-Hamilton from the scalar 2 to a general ρ∈R in order to cover all possibilities;this approach was used in[6].Also our study is enlarged to all 1-forms providing the natural co-frame of T1S.

    2 Webster Scalar Curvature:The Chern-Hamilton Formalism

    Fix(M3,g)to be a 3-dimensional Riemannian manifold and consider{ω1,ω2,ω3}as an orthonormal basis of 1-forms on M;then M is oriented with the volume form ω1∧ ω2∧ ω3.Then there exists a unique skew-symmetric matrix of 1-forms

    such that the structural equations

    hold on M.Making one step further,we derive the existence of the functions{Kij;1≤i,j≤3}such that Kij=Kjiand

    Recall that the subject of[5]consists in adapted metrics for a contact 1-form ω,i.e.,Riemannian metrics satisfying

    If g is adapted to ω3,then the Webster scalar curvature W of the triple(M,g,ω3)is defined as

    and is computed in[5]for the unit sphere S3,the unit tangent bundle of a compact orientable surface of genus g?1(for g=0 it results in W=1)and the Heisenberg group Nil3.In fact,W(S3)=1 and W(Nil3)=0.For another formalism on Webster curvature,see[3,p.212]and our formula(5.4)below.

    A last main notion of this note is that of Cartan structure according to definition 1.1 of[8,p.148]:A pair of 1-forms ω1,ω2with

    3 Finsler 2-Dimensional Geometry and Adapted Metrics

    Let S be a 2-dimensional manifold and π :TS → S its tangent bundle.Let x=(xi)=(x1,x2)be the local coordinates on S and(x,y)=(xi,yi)=(x1,x2,y1,y2)the induced local coordinates on TS.Denote by O the null-section of π.

    Recall that a Finsler fundamental function on S is a map F:TS→R+with the following properties:

    (F1)F is smooth on the slit tangent bundle TSO and continuous on O;

    (F2)F is positive homogeneous of degree 1:F(x,λy)= λF(x,y)for every λ >0;

    (F3)the matrixis invertible and its associated quadratic form is positive definite.

    The tensor field(gij(x,y))is called the Finsler metric.

    Due to the homogeneity condition,all important objects of Finsler geometry actually live on the sphere bundle p:T1S={(x,y)∈TS;F(x,y)=1}→S(see[2,p.9]).Here T1S is 3-dimensional and an adapted co-frame consists in three 1-forms denoted by ω1,ω2,ω3.More precisely,after[2,p.93],we have

    where g=det(gij),being the canonical nonlinear connection of the Finsler geometry(S,F)(see[2,p.34]).The vector fieldsspan the vertical distribution whilespan the horizontal distribution.The Finsler metric yields the Sasaki type metric on T1S(see[2,p.93]):

    making{ω1,ω2,ω3}an orthonormal co-frame.If{e1,e2,e3}is the dual frame,then e1and e2are horizontal while e3is vertical.

    After[2,p.82],the structural equations of(S,F)are

    where I,J,K are smooth functions defined as follows(see[2,p.82]):

    (i)I is the Cartan(or main)(pseudo-)scalar.Its vanishing characterizes Riemannian surfaces,i.e.,g=g(x)which means thaton TS is exactly the Sasaki lift of the Riemannian metric g.It also follows thatbeing the Christoffel symbols of g.

    (ii)J is the Landsberg(pseudo-)scalar.Its vanishing characterizes Landsberg surfaces.

    (iii)K is the Gaussian curvature.Its vanishing characterizes flat(in the Finslerian sense)surfaces.Note that ω3is a contact form for non- flat Finslerian surfaces since ω3∧ dω3=ω3∧(Kω1∧ω2?Jω1∧ω3)=Kω1∧ω2∧ω3.Then e3can be called the Reeb vector field of(S,F).

    Remark that Bianchi equations yield some relations between these functions(see[2,p.97]):

    where the subscript i denotes the derivation in the direction of ei,i.e.,df=f1ω1+f2ω2+f3ω3.It follows that I=0 implies J=0 and also K2=0.

    In order to enlarge the class of suitable metrics,we consider the following notion which appears(with a factor 2 in RHS)in[11].

    definition 3.1 Fix a 1-form ω on a general(M3,g)and the real number ρ.The Riemannian metric g on M is called ρ-adapted to ω if dω = ρ ? ω.

    We conclude from(3.3)the following proposition.

    Proposition 3.1 The metric gSasakianis

    (i)1-adapted to the ω1if and only if S is a Riemannian surface;

    (ii)1-adapted to ω2;

    (iii)K-adapted to ω3in the Landsberg case.

    It follows that the lift of the round metric of S2to T1S2=RP3=SO(3)is 1-adapted all ω’s.

    4 Webster Curvature in Finslerian Geometry of Surfaces

    Comparing(2.3)with(3.3),it results that gSasakican be an adapted metric only for ω3,in which case we say that it is vertical adapted due to the character of the Reeb vector field e3;correspondingly the 1-forms ω1,ω2will be called horizontal.We are ready for the main result of this note.

    Theorem 4.1 The Riemannian metric gSasakiof T1S is vertical adapted if and only if S is a Riemannian surface with K=2.Then,the horizontal pair(ω1,ω2)is a Cartan structure and the Webster curvature is

    Proof Since ωiis a gSasaki-orthonormal co-frame,we have ?ω3= ω1∧ ω2,and locking at(3.33),we get that gSasakiis vertical adapted if and only if J=0,K=2.From the second Bianchi relation(3.4),we deduce that I=0,which yields the first part of the conclusion.

    Now,the structural equations have the expression

    and then we get the relations(2.5)with ω1∧dω1= ω2∧dω2= ω1∧ω2∧ω3=being the volume form of the metric gSasaki.It also follows that

    It results in

    which gives the matrix of K’s:

    all other being zero.Using the definition(2.4),it results in the Webster curvature(4.1).

    Remark 4.1(i)Comparing our result with the second example of[5,p.285]gives that Kiigiven by(4.5)coincides with relations(22)of the cited paper for?=12=W.

    (ii)If S is compact embedded in R3(being also oriented),then a classical sphere theorem(from 1897)of Hadamard states that S must be diffeomorphic with a sphere.The following Theorem 4.2 clarifies this claim.

    (iii)In[7],the 1-form η =Iω3is introduced under the name Cartan-type form of(S,F)and it is proved that η ∧ dη is the Chern-Simons form of(S,F).In our setting,this Chern-Simons form is zero.

    (iv)A Cartan structure is a particular case of taut contact circle according to the definition 1.1 of[8,p.148]and then any linear combination λ1ω1+λ2ω2with(λ1,λ2)∈ S1? R2defines the same volume form,and in our case that is the form of gSasaki.

    As an application of the previous theorem,we have the following structural result.

    Theorem 4.2 If the Riemannian metric gSasakiof T1S is vertical adapted,then the manifold(T1S,gSasaki)is Sasakian and homothetic with a generalized Berger sphere.

    Proof According to the classification of[9,p.124],W=12implies that if(T1S,gSasaki,ω3)is a Sasakian manifold,then it is homothetic with a generalized Berger sphere.Hence we must prove that the vertical adapted condition implies the Sasakian condition for gSasaki.But from[3,p.87],we know that in dimension 3 this is equivalent to the cu K-contact condition and then we prove that the vertical adapted condition implies that e3is a Killing vector field for gSasaki.

    According to[4,p.28],we have the general Lie brackets:

    which yields the Levi-Civita connection of gSasaki:

    Let X=Xieiand Y=Yieibe two arbitrary vector fields on T1S,we get

    It follows that the Lie derivatives of the metric are

    The vertical adapted condition gives then

    and we have the final conclusion.

    Remark 4.2(i)The relations in first line of(4.7)yield that under the vertical adapted condition all vector fields eiare geodesic:?eiei=0.Also,we can determine the generalized Berger sphere structure of(T1S2,gSasaki)according to the computations of[12].More precisely,we consider SU(2)=S3with the natural left-invariant and orthonormal frame(X1,X2,X3)of[12,p.7],and gSasakiis the metric making orthonormal the frame:as in[12,p.81].

    (ii)Let us remark that our contact structure on T1S is different from that of[3,p.175]for which the K-contact condition is characterized via the well-known Tashiro theorem([3,p.178])in terms of constant curvature+1 for the base manifold(S,g(x)).Let us also note that the Finslerian version of the Tashiro theorem was proved in[1].

    (iii)Our Theorem 4.2 is a particular case of Lemma A.1 of Alan Weinstein from the Appendix of[5]that ?1= ω1, ?2= ω2implies e3is a Killing vector field.Also,from the complex structural equations(39)of[5,p.290],it follows that Ω = ω1+iω2is a closed differential 1-form:dΩ=0.

    5 An Associated Pseudo-Hermitian Structure on T1S

    From the third equation of(4.8),it results that the vertical adapted condition implies

    and recall,after[3,p.87],that the Sasakian condition reads

    in terms of the structural tensor field φ of(1,1)-type.It gives the expression of φ:

    Let D=kerω3be the structural distribution associated to ω3.A second formula for the Webster scalar formula is[3,p.213]:

    where τ is the scalar curvature of the metric g and Ric(e3)is the Ricci curvature in the direction of e3.Note also that in the same way as[3,p.214],we have where K(D)is the sectional curvature of the 2-plane D and from Theorem 7.1 of[3,p.112]on the 3-dimensional K-contact case it results that Ric(e3)=2.Using the Levi-Civita connection(4.7),we obtain K(D)= ?1,so then τ=2 and from(4.14)we arrive again at W=

    Remark also that J=φ|Dis a complex structure satisfying the integrability conditions:

    for all X,Y∈D=span{e1,e2}.Using the terminology of[10],ω3is a pseudo-Hermitian structure on the CR manifold(T1S,D,J).Its associated Webster metric:

    being

    is not positive definite and hence the pseudo-Hermitian structure is not strictly pseudoconvex.Since the Levi-Civita connection of gω3satisfies

    it results that

    and then,as in the previous section,we get that e3is a Killing vector field for gω3,which means that e3is a transversal symmetry(see[10,p.446])for the given pseudo-Hermitian structure.

    Using the formulae of[10,p.448]we get a component of the Webster-Ricci tensor of gω3:

    and then the Webster scalar curvature of gω3is

    Since we have RicW?= ?iscalWdω3,it results that this pseudo-Hermitian structure is not Einstein.

    AcknowledgementThe author is extremely indebted to an anonymous referee who helped to substantially improve the presentation and the contents of this paper.

    [1]Anastasiei,M.,A framed f-structure on tangent manifold of a Finsler space,An.Univ.Bucure?sti Math.Inform.,49(2),2000,3–9.

    [2]Bao,D.,Chern,S.-S.and Shen,Z.,An introduction to Riemann-Finsler geometry,Graduate Texts in Mathematics,200,Springer-Verlag,New York,2000.

    [3]Blair,D.E.,Riemannian geometry of contact and symplectic manifolds,2nd edition,Progress in Mathematics,203,Birkh¨auser Boston,Inc.,Boston,MA,2010.

    [4]Bryant,R.L.,Finsler structures on the 2-sphere satisfying K=1,in “Finsler Geometry” (Seattle,WA,1995),27–41,Contemp.Math.,196,Amer.Math.Soc.,Providence,RI,1996.

    [5]Chern,S.-S.and Hamilton,R.S.,On Riemannian Metrics Adapted to Three-Dimensional Contact Manifolds,with an Appendix,by Alan Weinstein,Lecture Notes in Math.,1111,Workshop Bonn,1984,279–308,Springer-Verlag,Berlin,1985.

    [6]Crasmareanu,M.,Adapted metrics and Webster curvature on three classes of 3-dimensional geometries,International Electronic Journal of Geometry,7(2),2014,50–59.

    [7]Feng,H.and Li,M.,Adiabatic limit and connections in Finsler geometry,Comm.Anal.Geom.,21(3),2013,607–624.arXiv:1207.1552

    [8]Geiges,H.and Gonzalo,J.,Contact geometry and complex surfaces,Invent.Math.,121(1),1995,147–209.

    [9]Guilfoyle,B.S.,The local moduli of Sasakian 3-manifolds,Int.J.Math.Math.Sci.,32(2),2002,117–127.[10]Leitner,F.,On transversally symmetric pseudo-Einstein and Fefferman-Einstein spaces,Math.Z.,256(2),2007,443–459.

    [11]Nicolaescu,L.I.,Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds,Comm.Anal.Geom.,6(2),1998,331–392.

    [12]Petersen,P.,Riemannian Geometry,2nd edition,Graduate Texts in Mathematics,171,Springer-Verlag,New York,2006.

    [13]Sabau,S.V.,Shibuya,K.and Shimada,H.,Moving frames on generalized Finsler structures,J.Korean Math.Soc.,49(6),2012,1229–1257.

    [14]Sabau,S.V.,Shibuya,K.and Pitis,Gh.,Generalized Finsler structures on closed 3-manifolds,Tohoku Math.J.(2),66(3),2014,321–353.

    √禁漫天堂资源中文www| 亚洲欧美激情在线| 亚洲国产精品合色在线| 曰老女人黄片| cao死你这个sao货| 日韩精品青青久久久久久| 国产激情欧美一区二区| av电影中文网址| 精品久久久精品久久久| 亚洲熟女毛片儿| 亚洲全国av大片| 国产在线观看jvid| 美女高潮到喷水免费观看| 亚洲av第一区精品v没综合| av超薄肉色丝袜交足视频| 国产成人影院久久av| 18禁裸乳无遮挡免费网站照片 | 99国产极品粉嫩在线观看| 亚洲国产看品久久| 久久久久久久午夜电影| 免费女性裸体啪啪无遮挡网站| 天天添夜夜摸| 国产精品 国内视频| 后天国语完整版免费观看| 啪啪无遮挡十八禁网站| 久9热在线精品视频| 国产极品粉嫩免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成伊人成综合网2020| 性欧美人与动物交配| 日本三级黄在线观看| 精品国产乱子伦一区二区三区| 国产精品亚洲美女久久久| 夜夜看夜夜爽夜夜摸| 国产高清视频在线播放一区| 亚洲片人在线观看| 久久中文字幕一级| 久久香蕉激情| 国产av一区在线观看免费| 精品久久久久久久人妻蜜臀av | 手机成人av网站| 国产亚洲精品久久久久久毛片| 欧美日本亚洲视频在线播放| 亚洲精品美女久久久久99蜜臀| 精品国产乱码久久久久久男人| 一区二区三区精品91| 女人精品久久久久毛片| 91精品国产国语对白视频| 美女国产高潮福利片在线看| 国产欧美日韩一区二区三区在线| 亚洲成人国产一区在线观看| 99国产精品一区二区蜜桃av| 狂野欧美激情性xxxx| 怎么达到女性高潮| 曰老女人黄片| 99re在线观看精品视频| 国产欧美日韩精品亚洲av| 欧美在线一区亚洲| 中出人妻视频一区二区| xxx96com| 亚洲专区国产一区二区| 婷婷六月久久综合丁香| 亚洲欧美一区二区三区黑人| 后天国语完整版免费观看| 人妻久久中文字幕网| 真人做人爱边吃奶动态| 婷婷精品国产亚洲av在线| 中文字幕人妻丝袜一区二区| 亚洲国产精品成人综合色| 精品欧美国产一区二区三| 老司机午夜福利在线观看视频| 啦啦啦观看免费观看视频高清 | 成人亚洲精品一区在线观看| 波多野结衣一区麻豆| 国产亚洲欧美精品永久| 一级毛片高清免费大全| 老熟妇乱子伦视频在线观看| 99久久久亚洲精品蜜臀av| 免费av毛片视频| 国产精品精品国产色婷婷| 99riav亚洲国产免费| 久久精品国产99精品国产亚洲性色 | 黄色a级毛片大全视频| 99精品在免费线老司机午夜| 午夜免费成人在线视频| 叶爱在线成人免费视频播放| 一个人免费在线观看的高清视频| 国产三级在线视频| 日韩 欧美 亚洲 中文字幕| 成人18禁在线播放| 国产单亲对白刺激| 高清在线国产一区| 在线国产一区二区在线| 黑人巨大精品欧美一区二区mp4| 伊人久久大香线蕉亚洲五| 久热这里只有精品99| 色综合站精品国产| 1024视频免费在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲成国产人片在线观看| 精品午夜福利视频在线观看一区| 精品午夜福利视频在线观看一区| 91麻豆av在线| www.熟女人妻精品国产| 日韩欧美国产在线观看| 欧美最黄视频在线播放免费| 国产成人免费无遮挡视频| 精品国产亚洲在线| 精品国产一区二区三区四区第35| а√天堂www在线а√下载| 非洲黑人性xxxx精品又粗又长| 国产高清videossex| 在线十欧美十亚洲十日本专区| 午夜视频精品福利| 日韩成人在线观看一区二区三区| 国产精品免费一区二区三区在线| 亚洲九九香蕉| 一区在线观看完整版| 色av中文字幕| 91九色精品人成在线观看| 不卡一级毛片| 在线永久观看黄色视频| 欧美日韩乱码在线| 欧美日韩一级在线毛片| 在线播放国产精品三级| 久久精品亚洲熟妇少妇任你| 成人国产一区最新在线观看| 黄色女人牲交| 99国产精品一区二区蜜桃av| 两人在一起打扑克的视频| 黄色毛片三级朝国网站| 一级黄色大片毛片| 久久亚洲精品不卡| 日韩欧美免费精品| x7x7x7水蜜桃| 人妻丰满熟妇av一区二区三区| 又紧又爽又黄一区二区| 美女免费视频网站| 成人亚洲精品一区在线观看| 一个人免费在线观看的高清视频| 国产精品自产拍在线观看55亚洲| 琪琪午夜伦伦电影理论片6080| 久久中文看片网| 亚洲视频免费观看视频| av欧美777| 美女高潮喷水抽搐中文字幕| 天堂动漫精品| 琪琪午夜伦伦电影理论片6080| 成在线人永久免费视频| 亚洲人成77777在线视频| 高清黄色对白视频在线免费看| 麻豆av在线久日| 后天国语完整版免费观看| 日本撒尿小便嘘嘘汇集6| 在线播放国产精品三级| 咕卡用的链子| 久久精品91蜜桃| 国产精品久久久人人做人人爽| 国产伦人伦偷精品视频| 久99久视频精品免费| 一级毛片女人18水好多| 久久久久久免费高清国产稀缺| 在线观看免费视频网站a站| 国产亚洲精品久久久久5区| 老司机午夜十八禁免费视频| 一区二区三区国产精品乱码| 日本免费一区二区三区高清不卡 | 欧美色视频一区免费| 精品熟女少妇八av免费久了| 国产精品一区二区免费欧美| 一级毛片精品| 中文字幕色久视频| 亚洲第一青青草原| 老汉色av国产亚洲站长工具| 国产精品,欧美在线| 香蕉久久夜色| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费午夜福利视频| 免费不卡黄色视频| 女警被强在线播放| 首页视频小说图片口味搜索| 男男h啪啪无遮挡| 天天一区二区日本电影三级 | 国产1区2区3区精品| 精品国产国语对白av| 亚洲av片天天在线观看| 手机成人av网站| 久久国产精品影院| 国产精品99久久99久久久不卡| 精品电影一区二区在线| 久久国产精品男人的天堂亚洲| 国产精品日韩av在线免费观看 | 日韩高清综合在线| 大型av网站在线播放| 母亲3免费完整高清在线观看| 18禁裸乳无遮挡免费网站照片 | 中文字幕久久专区| 熟妇人妻久久中文字幕3abv| 久久精品91蜜桃| 巨乳人妻的诱惑在线观看| 日本欧美视频一区| 国产午夜福利久久久久久| 亚洲中文日韩欧美视频| 欧美丝袜亚洲另类 | 亚洲九九香蕉| 一个人观看的视频www高清免费观看 | 一个人免费在线观看的高清视频| 国产精品久久久久久人妻精品电影| 午夜精品在线福利| 亚洲欧美日韩高清在线视频| 在线观看66精品国产| 亚洲男人天堂网一区| 夜夜夜夜夜久久久久| 中文亚洲av片在线观看爽| 亚洲人成77777在线视频| 欧美国产日韩亚洲一区| 日韩欧美国产一区二区入口| 久久精品成人免费网站| 热re99久久国产66热| 日本 av在线| 日韩av在线大香蕉| 非洲黑人性xxxx精品又粗又长| 看片在线看免费视频| 18禁观看日本| 亚洲av日韩精品久久久久久密| aaaaa片日本免费| 国产成+人综合+亚洲专区| 91成人精品电影| 免费看美女性在线毛片视频| 热99re8久久精品国产| 亚洲欧美日韩高清在线视频| 亚洲精品av麻豆狂野| 亚洲人成电影观看| 国产精品自产拍在线观看55亚洲| 91av网站免费观看| 电影成人av| 久久香蕉激情| 日本撒尿小便嘘嘘汇集6| 人妻久久中文字幕网| 国产成人精品久久二区二区免费| 亚洲av五月六月丁香网| 老汉色∧v一级毛片| 日韩精品青青久久久久久| 精品高清国产在线一区| 午夜福利成人在线免费观看| 伦理电影免费视频| 亚洲av成人一区二区三| 亚洲专区中文字幕在线| 国产av精品麻豆| 国产精品亚洲av一区麻豆| 欧美乱色亚洲激情| 一区福利在线观看| 久久精品成人免费网站| 高潮久久久久久久久久久不卡| 国产99久久九九免费精品| 99国产极品粉嫩在线观看| 香蕉丝袜av| 99久久综合精品五月天人人| 激情在线观看视频在线高清| 久热这里只有精品99| 久久精品成人免费网站| 久久青草综合色| 亚洲全国av大片| 欧美日韩亚洲综合一区二区三区_| 欧美黄色淫秽网站| 亚洲色图av天堂| 日韩欧美三级三区| 国产欧美日韩综合在线一区二区| 一级毛片精品| 亚洲自拍偷在线| 国产成人精品无人区| 伦理电影免费视频| 日本免费一区二区三区高清不卡 | 国产精品美女特级片免费视频播放器 | 香蕉国产在线看| 久久久久久久久中文| 国产成人系列免费观看| 夜夜爽天天搞| 国产精品一区二区免费欧美| 国产视频一区二区在线看| 在线天堂中文资源库| 别揉我奶头~嗯~啊~动态视频| 成人精品一区二区免费| 国产欧美日韩一区二区三区在线| 大陆偷拍与自拍| 久久久久久亚洲精品国产蜜桃av| 波多野结衣巨乳人妻| 亚洲欧美日韩无卡精品| av视频在线观看入口| 国产日韩一区二区三区精品不卡| 999精品在线视频| 叶爱在线成人免费视频播放| 亚洲第一欧美日韩一区二区三区| 国产精品免费视频内射| 亚洲精品美女久久久久99蜜臀| 国产精品秋霞免费鲁丝片| 色婷婷久久久亚洲欧美| 97人妻精品一区二区三区麻豆 | 国产精品久久久久久亚洲av鲁大| 日日干狠狠操夜夜爽| 国产av一区在线观看免费| 12—13女人毛片做爰片一| 欧美日韩亚洲综合一区二区三区_| x7x7x7水蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 男女午夜视频在线观看| 国产精品久久久久久人妻精品电影| 91九色精品人成在线观看| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看| 波多野结衣巨乳人妻| 国产真人三级小视频在线观看| 亚洲国产欧美一区二区综合| 久久热在线av| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 操美女的视频在线观看| 国产精品免费视频内射| 国产一区二区三区综合在线观看| 性欧美人与动物交配| 亚洲欧美日韩另类电影网站| 亚洲精品美女久久久久99蜜臀| 两人在一起打扑克的视频| 国产亚洲精品久久久久久毛片| 亚洲精品国产精品久久久不卡| 桃色一区二区三区在线观看| 老司机在亚洲福利影院| 老汉色av国产亚洲站长工具| 久久久精品国产亚洲av高清涩受| 精品福利观看| 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 欧美精品亚洲一区二区| 久久久水蜜桃国产精品网| 无人区码免费观看不卡| 亚洲国产精品合色在线| 亚洲av五月六月丁香网| 天堂动漫精品| xxx96com| 久久中文看片网| 正在播放国产对白刺激| 精品人妻在线不人妻| 色av中文字幕| 国产成人系列免费观看| 性欧美人与动物交配| 国产野战对白在线观看| x7x7x7水蜜桃| 神马国产精品三级电影在线观看 | 19禁男女啪啪无遮挡网站| 亚洲情色 制服丝袜| 久久中文看片网| 国产精品一区二区在线不卡| 日韩欧美一区视频在线观看| 成人三级做爰电影| 国产真人三级小视频在线观看| 精品久久蜜臀av无| 天天躁狠狠躁夜夜躁狠狠躁| 97超级碰碰碰精品色视频在线观看| www.自偷自拍.com| 美女 人体艺术 gogo| 自线自在国产av| 欧美日韩一级在线毛片| 午夜福利高清视频| 国产极品粉嫩免费观看在线| 18禁观看日本| 国产成人一区二区三区免费视频网站| 成人国产一区最新在线观看| 久久久精品国产亚洲av高清涩受| 日韩欧美国产一区二区入口| 很黄的视频免费| 亚洲av成人不卡在线观看播放网| x7x7x7水蜜桃| 亚洲少妇的诱惑av| 亚洲免费av在线视频| 婷婷精品国产亚洲av在线| aaaaa片日本免费| 国产男靠女视频免费网站| 日本撒尿小便嘘嘘汇集6| 人人妻人人澡欧美一区二区 | 亚洲激情在线av| 中文字幕最新亚洲高清| 在线免费观看的www视频| 久久久久久久久免费视频了| 91精品三级在线观看| 怎么达到女性高潮| 国产一区二区在线av高清观看| 丁香六月欧美| 91成年电影在线观看| 亚洲av片天天在线观看| 俄罗斯特黄特色一大片| 亚洲va日本ⅴa欧美va伊人久久| 免费女性裸体啪啪无遮挡网站| 欧美国产精品va在线观看不卡| 高清黄色对白视频在线免费看| 曰老女人黄片| 老鸭窝网址在线观看| 国产乱人伦免费视频| 国产精品久久视频播放| 亚洲成人免费电影在线观看| 国产av又大| 色哟哟哟哟哟哟| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲全国av大片| 日本vs欧美在线观看视频| 亚洲成人精品中文字幕电影| 大码成人一级视频| 日韩精品免费视频一区二区三区| 亚洲国产精品久久男人天堂| 欧美老熟妇乱子伦牲交| xxx96com| 国产黄a三级三级三级人| 成人精品一区二区免费| 叶爱在线成人免费视频播放| 天天一区二区日本电影三级 | 久久久久久人人人人人| 精品无人区乱码1区二区| 亚洲精品一区av在线观看| 性欧美人与动物交配| 国产不卡一卡二| 国产片内射在线| 欧美黄色片欧美黄色片| 窝窝影院91人妻| 露出奶头的视频| 国产精品亚洲美女久久久| 国产成人精品无人区| 又紧又爽又黄一区二区| 精品欧美国产一区二区三| 精品电影一区二区在线| 国产亚洲欧美98| 精品国产一区二区三区四区第35| www.熟女人妻精品国产| 深夜精品福利| 免费一级毛片在线播放高清视频 | 在线十欧美十亚洲十日本专区| 亚洲黑人精品在线| 麻豆成人av在线观看| 午夜福利视频1000在线观看 | 久久久久国产一级毛片高清牌| 日韩精品免费视频一区二区三区| 多毛熟女@视频| 免费在线观看完整版高清| 国产99白浆流出| 男女下面插进去视频免费观看| 欧美精品亚洲一区二区| 好男人在线观看高清免费视频 | 国产精品自产拍在线观看55亚洲| 国产精品国产高清国产av| 又大又爽又粗| 男人舔女人的私密视频| 婷婷丁香在线五月| 国产精品免费一区二区三区在线| 精品久久久久久久人妻蜜臀av | 一级毛片高清免费大全| 亚洲精品中文字幕一二三四区| 一二三四在线观看免费中文在| 男人的好看免费观看在线视频 | 亚洲国产高清在线一区二区三 | 婷婷丁香在线五月| 亚洲第一青青草原| 国产成人精品久久二区二区免费| 久久久久久久精品吃奶| 精品国产超薄肉色丝袜足j| 人人妻人人澡人人看| 亚洲国产精品sss在线观看| 成人18禁在线播放| 女生性感内裤真人,穿戴方法视频| 午夜福利影视在线免费观看| 欧美成人一区二区免费高清观看 | 亚洲av美国av| 看黄色毛片网站| 日日干狠狠操夜夜爽| 欧美成人午夜精品| 久久这里只有精品19| 国产在线观看jvid| 9色porny在线观看| 极品教师在线免费播放| 国产精品98久久久久久宅男小说| 久久香蕉激情| 97人妻精品一区二区三区麻豆 | 亚洲av成人一区二区三| 一级片免费观看大全| 国产成人欧美| 国产单亲对白刺激| 午夜免费观看网址| 亚洲午夜理论影院| 国产精品久久视频播放| 伊人久久大香线蕉亚洲五| 成熟少妇高潮喷水视频| 男女床上黄色一级片免费看| 国产精品亚洲美女久久久| 1024视频免费在线观看| www.自偷自拍.com| 日韩欧美在线二视频| 欧美日本中文国产一区发布| 天天一区二区日本电影三级 | 伊人久久大香线蕉亚洲五| 大码成人一级视频| 男女床上黄色一级片免费看| 欧美乱色亚洲激情| 青草久久国产| 日韩成人在线观看一区二区三区| 久久午夜综合久久蜜桃| 久久久精品欧美日韩精品| 国产精品一区二区精品视频观看| 99香蕉大伊视频| 亚洲国产精品sss在线观看| 欧美大码av| 国产精品日韩av在线免费观看 | 亚洲五月婷婷丁香| av中文乱码字幕在线| 久久伊人香网站| 国产三级黄色录像| 在线十欧美十亚洲十日本专区| 久久久久国内视频| 国产精品影院久久| 丰满人妻熟妇乱又伦精品不卡| 99在线人妻在线中文字幕| 亚洲专区字幕在线| 午夜福利在线观看吧| 97碰自拍视频| 在线播放国产精品三级| 嫩草影院精品99| 一二三四在线观看免费中文在| bbb黄色大片| 国产主播在线观看一区二区| 精品久久久久久久人妻蜜臀av | av电影中文网址| 视频在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 黄色丝袜av网址大全| 亚洲av日韩精品久久久久久密| 97人妻天天添夜夜摸| bbb黄色大片| 婷婷六月久久综合丁香| 国产成人精品久久二区二区免费| 中国美女看黄片| 自线自在国产av| 国产精品永久免费网站| 国产精品爽爽va在线观看网站 | 大型黄色视频在线免费观看| 午夜久久久在线观看| 国产黄a三级三级三级人| 亚洲午夜精品一区,二区,三区| 中文字幕人妻熟女乱码| 一区二区日韩欧美中文字幕| 在线国产一区二区在线| 日韩高清综合在线| 久久久国产欧美日韩av| 9色porny在线观看| а√天堂www在线а√下载| 国产99白浆流出| 婷婷丁香在线五月| 国产一区二区激情短视频| 国产精品99久久99久久久不卡| 久久久精品国产亚洲av高清涩受| 亚洲激情在线av| 成人永久免费在线观看视频| 亚洲成av人片免费观看| 国产真人三级小视频在线观看| 亚洲色图综合在线观看| 免费搜索国产男女视频| 国产精品久久久久久亚洲av鲁大| 欧美大码av| 免费女性裸体啪啪无遮挡网站| 丝袜在线中文字幕| 法律面前人人平等表现在哪些方面| 成人亚洲精品一区在线观看| 国产亚洲精品久久久久久毛片| 国产精品亚洲av一区麻豆| 长腿黑丝高跟| 欧美日韩精品网址| 99久久精品国产亚洲精品| 91麻豆精品激情在线观看国产| 欧美日本视频| 亚洲色图 男人天堂 中文字幕| av在线播放免费不卡| 看黄色毛片网站| 久久久久九九精品影院| 国产在线观看jvid| 国产成人免费无遮挡视频| 亚洲精品久久国产高清桃花| 精品久久久久久,| 啦啦啦韩国在线观看视频| 最近最新免费中文字幕在线| 亚洲精品一区av在线观看| 欧美一级a爱片免费观看看 | 国产伦人伦偷精品视频| 一区二区三区高清视频在线| 免费久久久久久久精品成人欧美视频| or卡值多少钱| 欧美日韩黄片免| 国产成人啪精品午夜网站| 久久久精品欧美日韩精品| 精品一区二区三区视频在线观看免费| 国产亚洲欧美精品永久| 免费高清在线观看日韩| 久久久久久免费高清国产稀缺| 校园春色视频在线观看| 日韩视频一区二区在线观看| 欧美日韩黄片免| 日韩欧美在线二视频| 久久人妻福利社区极品人妻图片| 每晚都被弄得嗷嗷叫到高潮| 午夜成年电影在线免费观看| 久久中文字幕一级| 纯流量卡能插随身wifi吗| 国产片内射在线| 18禁美女被吸乳视频| 韩国精品一区二区三区| 亚洲在线自拍视频| 一级片免费观看大全| 久久久国产欧美日韩av| 日日摸夜夜添夜夜添小说| 99riav亚洲国产免费| 亚洲国产看品久久|