• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brake Subharmonic Solutions of Subquadratic Hamiltonian Systems?

    2016-06-09 03:34:34ChongLI

    Chong LI

    1 Introduction and the Main Results

    Consider the Hamiltonian systems

    whereis the standard symplectic matrix,Inis the unit matrix of order n,H∈C2(R×R2n,R)and?H(t,z)is the gradient of H(t,z)with respect to the space variable z.We denote the standard norm and inner product in R2nby|·|and(·,·),respectively.

    Suppose that H(t,z)=and H∈C2(R×R2n,R)satisfies the following conditions:

    (H4)There exist constants a1,a2>0 and α∈(0,1)such that

    (H6)is a symmetrical continuous matrix,semi-positively definite for all t∈R;

    Recall that a T-periodic solution(z,T)of(1.1)is called a brake solution if z(t+T)=z(t)and z(t)=Nz(?t),and the later is equivalent toin which T is called the brake period of z.Up to the author’s knowledge,H.Seifert firstly studied brake orbits in the second-order autonomous Hamiltonian systems in[27]of 1948.Since then,many studies have been carried out for brake orbits of the first-order and second-order Hamiltonian systems.For the minimal periodic problem,multiple existence results about brake orbits for the Hamiltonian systems and more details about brake orbits,one can refer to the papers(see[1,3–6,11–13,20,22,25,29])and the references therein.S.Bolotin proved first in[5](also see[6])of 1978 the existence of brake orbits in the general setting.K.Hayashi in[13],H.Gluck and W.Ziller in[11],and V.Benci in[3]in 1983–1984 proved the existence of brake orbits of second-order Hamiltonian systems under certain conditions.In 1987,P.Rabinowitz in[25]proved the existence of brake orbits of the first-order Hamiltonian systems.In 1989,V.Benci and F.Giannoni gave a different proof of the existence of one brake orbit in[4].In 1989,A.Szulkin in[29]proved the existence of brake orbits of the first-order Hamiltonian systems under the√2-pinched condition.E.van Groesen in[12]of 1988 and A.Ambrosetti,V.Benci,Y.Long in[1]of 1993 also proved the multiplicity result about brake orbits for the second order Hamiltonian systems under different pinching conditions.Without pinching conditions,in[22]Y.Long,D.Zhang and C.Zhu proved that there exist at least two geometrically distinct brake orbits in every bounded convex symmetric domain in Rnfor n≥2.Recently,C.Liu and D.Zhang in[20]proved that there exist at least+1 geometrically distinct brake orbits in every bounded convex symmetric domain in Rnfor n≥2,and there exist at least n geometrically distinct brake orbits on the nondegenerate domain.D.Zhang studied the minimal period problem for brake orbits of nonlinear autonomous reversible Hamiltonian systems in[30].

    For the non-autonomous Hamiltonian systems,and the periodic boundary(brake solution)problems,since the Hamiltonian function H is T-periodic in the time variable t,if the system(1.1)has a T-periodic solution(z1,T),one hopes to find the jT-periodic solution(zj,jT)for integer j≥1,for example,(z1,jT)itself is a jT-periodic solution.The subharmonic solution problem asks when the solutions z1and zjare geometrically distinct.More precisely,in the case of brake solutions,z1and zjare distinct iffor any integer k.Below we remind that the L0-indices of the two solutions z1and(kT)?z1for any k∈Z in the interval?0,?are the same.

    Theorem 1.1 Suppose that H ∈ C2(R×R2n,R)satisfies(H1)–(H7),and then for each integerthere is a jT-periodic nonconstant brake solution zjof(1.1)such that zjand zkjare distinct for k ≥ 5 andFurthermore,{zkp|p∈ N}is a pairwise distinct brake solution sequence of(1.1)for k≥5 and 1≤

    Especially,ifTherefore,one can state the following theorem.

    Theorem 1.2 Suppose that H ∈ C2(R×R2n,R)with(t)≡ 0 satisfies(H1)–(H5),and then for each integer j≥1,there is a jT-periodic nonconstant brake solution zjof(1.1).Furthermore,given any integers j≥1 and k≥5,zjand zkjare distinct brake solutions of(1.1),and in particularly,{zkp|p∈N}is a pairwise distinct brake solution sequence of(1.1).

    The first result on subharmonic periodic solutions for the Hamiltonian systems˙z(t)=J?H(t,z(t)),where z∈ R2nand H(t,z)is T-periodic in t,was obtained by P.Rabinowitz in his pioneer work[26].Since then,many new contributions have appeared(see,for example,[8–9,19,21,28]and the references therein).Especially,in[9],I.Ekeland and H.Hofer proved that under a strict convex condition and a superquadratic condition,the Hamiltonian system ˙z(t)=J?H(t,z(t))possesses a subharmonic solution zkfor each integer k≥1 and all of these solutions are pairwise geometrically distinct.In[19],C.Liu obtained a result of subharmonic solutions for the non-convex case by using the Maslov-type index iteration theory.In[14],the author of this paper and C.Liu obtained a result of brake subharmonic solutions for the superquadratic condition by using the L-Maslov type index iteration theory.For the subquadratic Hamiltonian systems,P.Rabinowitz[26]proved the existence of subharmonic solutions for the Hamiltonian system(1.1)under conditions(H4)–(H5)for the special case α =0.In[28],E.A.B.Silva obtained the existence of subharmonic solutions for the Hamiltonian system(1.1)under conditions(H4)–(H5),by establishing a new version of a saddle point theorem for strongly in definite functionals which satisfy a generalization of the well-known(PS)condition.In this paper,we mainly use the L-Maslov type index iteration theory to study the brake subharmonic solutions under the subquadratic conditions.

    The main ingredient in proving Theorems 1.1–1.2 is to transform the brake solution problem into the L0-boundary problem:

    where L0={0}⊕Rn∈ Λ(n).Λ(n)is the set of all linear Lagrangian subspaces in(R2n,ω0),where the standard symplectic form is defined byA Lagrangian subspace L of R2nis an n dimensional subspace satisfying ω0|L=0.Then we use the Galerkin approximation methods to get a critical point of the action functional which is also a solution of(3.1)with a suitable L0-index estimate(see Theorem 3.1 below).

    The L-Maslov type index theory for any L∈Λ(n)was studied in[17]by the algebraic methods.In[22],Y.Long,D.Zhang and C.Zhu established two indices μ1(γ)and μ2(γ)for the fundamental solution γ of a linear Hamiltonian system by the methods of functional analysis which are special cases of the L-Maslov type index iL(γ)for Lagrangian subspaces L0={0}⊕Rnand L1=Rn⊕{0}up to a constant n.In order to prove Theorem 1.1,we need to consider the problem(3.1).The iteration theory of the L0-Maslov type index theory was developed in[18]and[20],which helps us to distinguish solutions zjfrom zkjin Theorems 1.1–1.2.

    This paper is divided into 3 sections.In Section 2,we give an introduction to the Maslovtype index theory for symplectic paths with Lagrangian boundary conditions and an iteration theory for the L0-Maslov type index theory.In Section 3,we give the proofs of Theorems 1.1–1.2.

    2 Preliminaries

    In this section,we briefly recall the Maslov-type index theory for symplectic paths with Lagrangian boundary conditions and an iteration theory for the L0-Maslov type index theory.All the details can be found in[16–18,20].

    We denote the 2n-dimensional symplectic group Sp(2n)by where L(R2n)is the set of all real 2n×2n matrices,and MTis the transpose of matrix M.Denote by Ls(R2n)the subset of L(R2n)consisting of symmetric matrices.And denote the symplectic path space by

    We write a symplectic path γ∈P(2n)in the following form:

    where S(t),T(t),V(t)and U(t)are n×n matrices.The n vectors that come from the column of the matrixare linearly independent and they span a Lagrangian subspace of(R2n,ω0).Particularly,at t=0,this Lagrangian subspace is L0={0}⊕Rn.

    definition 2.1(see[17])We define the L0-nullity of any symplectic path γ∈P(2n)by

    with the n×n matrix function V(t)defined in(2.1).

    For L0={0}⊕Rn,We define the following subspaces of Sp(2n)by

    whereandWe denote two subsets of P(2n)by

    We note that rankso the complex matrixis invertible.We define a complex matrix function by

    It is easy to see that the matrix Q(t)is a unitary matrix for any t∈[0,1].We define

    For a pathwe first adjoin it with a simple symplectic path starting from J=?M+,that is,we define a symplectic path by

    Then we choose a symplectic path β(t)in Sp(2n)starting from γ(1)and ending at M+or M?according to γ(1)respectively.We now define a joint path by

    By the definition,we see that the symplectic path γ starts from ?M+and ends at either M+or M?.As above,we define

    forWe can choose a continuous function Δ(t)in[0,1]such that

    By the above arguments,we see that the number∈Z and it does not depend on the choice of the function

    definition 2.2(see[17])For a symplectic pathwe define the L0-index of γ

    definition 2.3(see[17])For a symplectic pathwe define the L0-index of γandis sufficiently close to γ}.

    We know thatwhich means that for any linear subspace L∈Λ(n),there is an orthogonal symplectic matrix P=the unitary matrix,such that PL0=L.P is uniquely determined by L up to an orthogonal matrix C∈O(n).It means that for any other choice P?satisfying the above conditions,there exists a matrix C∈O(n)such thatWe define the conjugated symplectic path γc∈ P(2n)of γ by γc(t)=P?1γ(t)P.

    definition 2.4(see[17])We define the L-nullity of any symplectic path γ∈P(2n)by

    where the n × n matrix function Vc(t)is defined in(2.1)with the symplectic path γ replaced by

    definition 2.5(see[17])For a symplectic path γ ∈ P(2n),we define the L-index of γ by iL(γ)=iL0(γc).

    In the case of linear Hamiltonian systems,

    where B ∈ C(R,Ls(R2n)).Its fundamental solution γ = γBis a symplectic path starting from the identity matrix I2n,i.e.,γ=γB∈P(2n).We denote

    Theorem 2.1 (see[17])Suppose that γ ∈P(2n)is a fundamental solution of(2.2)with B(t)>0.There holds iL(γ)≥ 0.

    Suppose that the continuous symplectic path γ :[0,2]→ Sp(2n)is the fundamental solution of(2.2)with B(t)satisfying B(t+2)=B(t)and B(1+t)N=NB(1?t).This implies that B(t)N=NB(?t).By the unique existence theorem of the differential equations,we get

    We define the iteration path of γ|[0,1]by

    and in general,for k∈N,we define

    Recall that(iω(γ),νω(γ))is the ω-index pair of the symplectic path γ introduced in[21],andis defined in[20].

    Theorem 2.2(see[20])Suppose thatFor odd k we have

    and for even k,we have

    where

    Theorem 2.3(see[20])There hold

    where L1=Rn⊕{0}∈Λ(n).

    In the following section,we need the following two iteration inequalities.

    Theorem 2.4(see[18])For any γ∈P(2n)and k∈N,there hold

    Remark 2.1 From(3.21)of[20]and Proposition B of[22],we have that

    3 Proof of Theorems 1.1–1.2

    In reference[14],we have proved the following Lemma 3.1.

    Lemma 3.1 Suppose that the Hamiltonian function H satisfies(H1)–(H2)and(H7).If?z,?is a solution of the problem(1.2),then(,T)is a T-periodic solution of the Hamiltonian system(1.1)satisfying the brake conditionwhereis defined by

    By this observation,we consider the following Hamiltonian system:where j∈N.The following result is the first part of Theorem 1.1.

    Theorem 3.1 Suppose that H(t,z) ∈ C2(R × R2n,R)satisfies(H4)–(H6),and then(3.1)possesses at least one nontrivial solution zjwhose L0-index pair(iL0(zj),νL0(zj))satisfies

    So we get a nonconstant brake solution(?zj,jT)with a brake period jT of the Hamiltonian system(1.1)by Lemma 3.1.

    In order to prove Theorem 3.1,we need the following arguments.For simplicity,we supposebe the Hilbert space with the inner product

    In the following,we use?·,·?and?·?to denote the inner product and the norm in X,respectively.It is well known that for any z∈X,one has z∈Lr([0,j],R2n)for any r∈[1,+∞),and there exists a constant cr>0 such that?z?Lr≤cr?z?.

    We define the linear operators A andon X by extending the bilinear form

    Thenis a compact self-adjoint operator(see[21])and A is a self-adjoint operator,i.e.,

    We take the spaces

    andWe haveWe also know that

    Equalities(3.2)and(3.3)can be proved by definition and direct computation.Let Pm:X→Xmbe the corresponding orthogonal projection for m ∈N.Then Γ={Pm;m ∈N}is a Galerkin approximation scheme with respect to A(see[16]).

    For any Lagrangian subspace L∈Λ(n),suppose P∈Sp(2n)∩O(2n)such that L=PL0.Then we define XL=PX and=PXm.Let Pm:XL→Then as above,={Pm;m∈N}is a Galerkin approximation scheme with respect to A.For d>0,we denote by(Q),?=+,0,?,the eigenspaces corresponding to the eigenvalues λ of the linear operator Q:XL→ XLbelonging to[d,+∞),(?d,d)and(?∞,?d],respectively.And denote by M?(Q),?=+,0,?,the eigenspaces corresponding to the eigenvalues λ of Q belonging to(0,+∞),{0}and(?∞,0),respectively.For any adjoint operator Q,we denote Q?=(Q|ImQ)?1,and we also denote PmQPm=(PmQPm)|XmL.The following result is the well-known Galerkin approximation formula,which is proved in[16].

    Theorem 3.2 For any B(t)∈ C([0,1],Ls(R2n))with its L-index pair(iL(B),νL(B))and any constant 00 such that for m≥m0,we have

    define a function ? on X by

    Suppose that W is a real Banach space,g∈C1(W,R).g is said to satisfy the(PS)condition,if for any sequence{xq}?W satisfying that g(xq)is bounded and g?(xq)→0 as q→∞,there exists a convergent subsequence{xqj}of{xq}(see[24]).Let ?m= ?|Xmbe the restriction of ? on Xm.When H satisfies(H4)and(H5),by Proposition A in[2],we have the following two lemmas.

    Lemma 3.2 For all m∈N,?msatisfies the(PS)condition on Xm.

    Lemma 3.3 ? satisfies the(PS)?condition on X with respect to{zm},i.e.,for any sequence{zm}?X satisfying that zm∈ Xm,?m(zm)is bounded and thatas m→+∞,where(Xm)?is the dual space of Xm,there exists a convergent subsequence{zmj}of{zm}in X.

    In order to proveTheorem 3.1,we need the following definition and the saddle-point theorem.

    definition 3.1(see[10])Let E be a C2-Riemannian manifold and D be a closed subset of E.A family φ(α)of subsets of E is said to be a homological family of dimensional q with boundary D if for some nontrivial class,α ∈ Hq(E,D).The family φ(α)is defined by

    where i?is the homomorphism induced by the immersion i:G→E.

    Theorem 3.3(see[10])For the above E,D and α,let φ(α)be a homological family of dimension q with boundary D.Suppose that f∈C2(E,R)satisfies the(PS)condition.define

    Suppose thatFredholm on

    Then there exists an x∈Kc(f)such that the Morse index m?(x)and the nullity m0(x)of the functional f at x satisfy

    It is clear that a critical point of ? is a solution of(3.1).For a critical point z=z(t),let B(t)=H??(t,z(t)),and define the linearized systems at z(t)by

    Then the L0-index pair of z is defined by(iL0(z),νL0(z))=(iL0(B),νL0(B)).

    Now we give the proof of Theorem 3.1.

    Proof of Theorem 3.1 We carry out the proof in 2 steps.

    Step 1 The critical points of ?m.

    Set Sm=⊕X0.Then dim Sm=mn+dim X0=mn+dim ker A=mn+n,dim=mn.

    In the following,we prove that ?m(z)satisfies:

    (I)?m(z)≥β>0,?z∈ Ym=∩?Bρ(0),

    (II)?m(z)≤ 0< β,?z∈ ?Qm,where Qm={re|r∈ [0,r1]}⊕(Br2(0)∩Sm),e∈X+m∩?B1(0),r1>ρ,r2>0.

    First we prove(I).By(H4),we have?H(t,z)≤ d1|z|1+α+d2|z|+d3,where d1,d2,d3>0.Take z∈Ym,and then

    Hence by(3.2)and(3.4),

    Since 1≤j<,choose a large enough ρ >0 independent of m such that for z ∈ Ym,?m(z)≥β>0.Hence(I)holds.

    Now we prove(II).Let e∈∩?B1and z=z?+z0∈Sm.By(3.2)and(3.3),

    where w=z?+re and?w?=?z??+r,Then we can obtain

    It follows from(H5)thatbounded from below onhas an upper bound.Choose r1and r2independent of m such that ?m(z+re)≤ 0< β on?Qm.Hence(II)holds.

    Because Qmis the deformation retract of Xm,then Hq(Qm,?Qm)Hq(Xm,?Qm),where q=dim Sm+1=mn+n+1=dim Qm,and?Qmis the boundary of Qmin Sm⊕{Re}.But Hq(Qm,?Qm)Hq?1(Sq?1)R.Denote by i:Qm→ Xmthe inclusion map.Let α =[Qm]∈ Hq(Qm,D)be a generator.Then i?α is nontrivial in Hq(Xm,?Qm),and φ(i?α)defined by definition 3.1 is a homological family of dimension q with boundary D:=?Qmand Qm∈ φ(i?α).?Qmand Ymare homologically linked(see[7]).By Lemma 3.2,?msatisfies the(PS)condition.defineWe have

    Since Xmis finite dimensionalis Fredholm.By Theorem 3.3,?mhas a critical pointwith critical value cm,and the Morse index m?()and nullity m0)of zsatisfy

    Since{cm}is bounded,passing to a subsequence,supposeBy the(PS)?condition of Lemma 3.3,passing to a subsequence,there exists a zj∈X such that

    Step 2Since

    there exists an r3>0 such that

    Then for m large enough,there holds

    Thus by(3.8),

    Similarly,we have

    By Theorem 3.2 and(3.6),(3.9)–(3.10),for large m we have

    We also have

    Combining(3.11)and(3.12),we have

    The proof of Theorem 3.1 is complete.

    It is the time to give the proof of Theorem 1.1.

    Proof of Theorem 1.1 For 1≤k<,by Theorem 3.1,we obtain that there is a nontrivial solution(zk,k)of the Hamiltonian systems(3.1)and its L0-index pair satisfies

    Then by Lemma 3.1,(,2k)is a nonconstant brake solution of(1.1).

    For k∈2N?1,we suppose that,2)and(,2k)are not distinct.By(3.13),Theorems 2.3–2.4,we have

    where L1=Rn⊕{0}∈Λ(n).By(H3),(H6)and Theorem 2.1,we have iL1(z1,1)≥0.We also know that νL1(z1,1)≥ 0 and iL0(z1,1)+ νL0(z1,1)≥ 1.Then(3.14)is

    By 0 ≤ iL0(z1,1)≤ 1,from(3.15)we haveIt is contradictory to k≥5.Similarly,we have that for each k∈2N?1,k≥5 and kjare distinct brake solutions of(1.1).Furthermore,are pairwise distinct brake solutions of(1.1),where k ∈ 2N?1,k≥ 5 and 1

    For k∈2N,as above,we suppose thatare not distinct.By(3.13),Theorems 2.3–2.4,we have

    Similarly,we also know that iL1(z1,1)≥ 0,νL1(z1,1)≥ 0,iL0(z1,1)+νL0(z1,1)≥ 1.By Remark 2.1,we haveThen(3.16)is

    By 0≤iL0(z1,1)≤1,from(3.17)we haveIt contradicts k≥5.Similarly we have that for each k∈2N,k≥6 andandare distinct brake solutions of(1.1).Furthermore,are pairwise distinct brake solutions of(1.1),where k∈2N,k≥6 andwith p∈ N.

    In all,for any integer 1≤j

    We note that Theorem 1.2 is a direct consequence of Theorem 1.1.

    AcknowledgementsThe author sincerely thanks Professor Chungen Liu for his much precious help and valuable suggestions.The author is also most grateful to the referees for their careful reading and valuable suggestions.

    [1]Ambrosetti,A.,Benci,V.and Long,Y.,A note on the existence of multiple brake orbits,Nonlinear Anal.TMA,21,1993,643–649.

    [2]Bahri,A.and Berestycki,H.,Forced vibrations of superquadratic Hamiltonian systems,Acta Math.,152,1984,143–197.

    [3]Benci,V.,Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems,Ann.I.H.P.Analyse Nonl.,1,1984,401–412.

    [4]Benci,V.and Giannoni,F.,A new proof of the existence of a brake orbit,in“Advanced Topics in the Theory of Dynamical Systems”,Notes Rep.Math.Sci.Eng.,6,1989,37–49.

    [5]Bolotin,S.,Libration motions of natural dynamical systems(in Russian),Vestnik Moskov Univ.Ser.I.Mat.Mekh.,6,1978,72–77.

    [6]Bolotin,S.and Kozlov,V.V.,Librations with many degrees of freedom(in Russian),J.Appl.Math.Mech.,42,1978,245–250.

    [7]Chang,K.,In finite Dimensional Morse Theory and Multiple Solution Problems,Birkh¨auser Verlag,Basel,Boston,Berlin,1993.

    [8]Ekeland,I.,Convexity Method in Hamiltonian Mechanics,Springer-Verlag,Berlin,1990.

    [9]Ekeland,I.and Hofer,H.,Subharmonics of convex Hamiltonian systems,Comm.Pure Appl.Math.,40,1987,1–37.

    [10]Ghoussoub,N.,Location,multiplicity and Morse indices of minimax critical points,J.Reine Angew Math.,417,1991,27–76.

    [11]Gluck,H.and Ziller,W.,Existence of periodic solutions of conservtive systems,Seminar on Minimal Submanifolds,Princeton University Press 1983,65–98.

    [12]Groesen,E.W.C.van,Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy,J.Math.Anal.Appl.,132,1988,1–12.

    [13]Hayashi,K.,Periodic solution of classical Hamiltonian systems,Tokyo J.Math.,6,1983,473–486.

    [14]Li,C.and Liu,C.,Brake subharmonic solutions of first order Hamiltonian systems,Science in China Ser.A,53(10),2010,2719–2732.

    [15]Li,C.and Liu,C.,Nontrivial solutions of superquadratic Hamiltonian systems with Lagrangian boundary conditions and the L-index theory,Chin.Ann.Math.Ser.B,29(6),2008,597–610.

    [16]Liu,C.,Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions,Pacific J.Math.,232(1),2007,233–255.

    [17]Liu,C.,Maslov-type index theory for symplectic paths with Lagrangian boundary conditions,Adv.Non.Stu.,7,2007,131–161.

    [18]Liu,C.,Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems,Discrete Contin.Dyn.Syst.,27,2010,337–355.

    [19]Liu,C.,Subharmonic solutions of Hamiltonian systems,Nonlinear Anal.TMA,42,2000,185–198.

    [20]Liu,C.and Zhang,D.,Iteration theory of L-index and multiplicity of brake orbits,J.Diff.Eq.,257,2014,1194–1245.

    [21]Long,Y.,Index Theory for Symplectic Paths with Applications,Birkh¨auser Verlag,Basel,Boston,Berlin,2002.

    [22]Long,Y.,Zhang,D.and Zhu,C.,Multiple brake orbits in bounded convex symmetric domains,Adv.in Math.,203,2006,568–635.

    [23]McDuff,D.and Salamon,D.,Introduction to Symplectic Topology,Clarendon Press,Oxford,1998.

    [24]Rabinowitz,P.H.,Minimax methods in critical point theory with applications to differential equations,CBMS Regional Conf.Ser.in Math.,65,AMS,RI,1986.

    [25]Rabinowitz,P.H.,On the existence of periodic solutions for a class of symmetric Hamiltonian systems,Nonlinear Anal.TMA,11,1987,599–611.

    [26]Rabinowitz,P.H.,On subharmonic solutions of Hamiltonian systems,Comm.Pure Appl.Math.,33,1980,609–633.

    [27]Seifert,H.,Periodische Bewegungen mechanischer systeme,Math.Z.,51,1948,197–216.

    [28]Silva,E.A.B.,Subharmonic solutions for subquadratic Hamiltonian systems,J.Diff.Eq.,115,1995,120–145.

    [29]Szulkin,A.,An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems,Math.Ann.,283,1989,241–255.

    [30]Zhang,D.,Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems,Discrete Contin.Dyn.Syst.,35(5),2015,2227–2272.

    99在线视频只有这里精品首页| 欧美日韩瑟瑟在线播放| 正在播放国产对白刺激| 真人一进一出gif抽搐免费| 日日干狠狠操夜夜爽| 巨乳人妻的诱惑在线观看| 老司机在亚洲福利影院| 啦啦啦观看免费观看视频高清 | 久久久久久免费高清国产稀缺| 午夜精品国产一区二区电影| 成人av一区二区三区在线看| 亚洲熟女毛片儿| 黑人巨大精品欧美一区二区蜜桃| 国产成人系列免费观看| 男女做爰动态图高潮gif福利片 | 男人的好看免费观看在线视频 | 久久狼人影院| 少妇被粗大的猛进出69影院| 巨乳人妻的诱惑在线观看| 亚洲国产精品合色在线| 搞女人的毛片| 午夜福利影视在线免费观看| 黄色a级毛片大全视频| 无人区码免费观看不卡| 一区二区三区精品91| 亚洲av熟女| 国产精品久久久人人做人人爽| 国产免费男女视频| 真人做人爱边吃奶动态| 午夜福利成人在线免费观看| av福利片在线| 成人手机av| 国产精品 国内视频| 国产精品一区二区三区四区久久 | 97人妻天天添夜夜摸| 在线国产一区二区在线| 久久青草综合色| 91大片在线观看| 欧美黄色淫秽网站| 99香蕉大伊视频| 免费看十八禁软件| 51午夜福利影视在线观看| 久久久久久久午夜电影| 一进一出好大好爽视频| 在线观看一区二区三区| 波多野结衣av一区二区av| 久久久久亚洲av毛片大全| ponron亚洲| 一区二区三区高清视频在线| 99久久久亚洲精品蜜臀av| 丁香欧美五月| 在线天堂中文资源库| 露出奶头的视频| 18禁国产床啪视频网站| 波多野结衣av一区二区av| 女人高潮潮喷娇喘18禁视频| 精品不卡国产一区二区三区| 亚洲午夜理论影院| 久久久久精品国产欧美久久久| 亚洲国产精品久久男人天堂| 韩国av一区二区三区四区| 在线观看免费视频日本深夜| 丁香欧美五月| 久久香蕉国产精品| 日本 欧美在线| 国产精品亚洲av一区麻豆| 国产精品永久免费网站| 亚洲va日本ⅴa欧美va伊人久久| 成人av一区二区三区在线看| 99热只有精品国产| 制服丝袜大香蕉在线| 99在线视频只有这里精品首页| 美女扒开内裤让男人捅视频| 亚洲av片天天在线观看| 黄色片一级片一级黄色片| 欧洲精品卡2卡3卡4卡5卡区| 免费一级毛片在线播放高清视频 | 亚洲熟妇中文字幕五十中出| 高清黄色对白视频在线免费看| 两性夫妻黄色片| 欧美黄色淫秽网站| 校园春色视频在线观看| 亚洲国产精品久久男人天堂| 日日干狠狠操夜夜爽| 欧美乱码精品一区二区三区| 麻豆久久精品国产亚洲av| 搡老岳熟女国产| 男女做爰动态图高潮gif福利片 | a在线观看视频网站| 成熟少妇高潮喷水视频| 亚洲av片天天在线观看| 亚洲成人免费电影在线观看| 国产又色又爽无遮挡免费看| av在线播放免费不卡| 最近最新中文字幕大全免费视频| 亚洲第一欧美日韩一区二区三区| 免费在线观看视频国产中文字幕亚洲| 一二三四在线观看免费中文在| 好男人电影高清在线观看| 丁香欧美五月| 欧美午夜高清在线| 久久精品人人爽人人爽视色| 久久久久国内视频| 欧美丝袜亚洲另类 | 国产单亲对白刺激| 女性生殖器流出的白浆| 久久亚洲真实| 国产极品粉嫩免费观看在线| 免费在线观看黄色视频的| 嫩草影院精品99| 国产成人一区二区三区免费视频网站| 久久国产精品人妻蜜桃| 搞女人的毛片| 神马国产精品三级电影在线观看 | 女性生殖器流出的白浆| 人人妻人人爽人人添夜夜欢视频| 黄色视频不卡| 制服丝袜大香蕉在线| 青草久久国产| 十分钟在线观看高清视频www| 中文字幕久久专区| 欧美成人午夜精品| av天堂在线播放| 国产av精品麻豆| 精品欧美一区二区三区在线| 777久久人妻少妇嫩草av网站| 欧美激情 高清一区二区三区| 午夜精品久久久久久毛片777| 国产成人精品久久二区二区免费| 久久精品国产亚洲av香蕉五月| 久久久久国内视频| 国产1区2区3区精品| 自线自在国产av| 午夜福利,免费看| 国产国语露脸激情在线看| 国产伦一二天堂av在线观看| 宅男免费午夜| 夜夜夜夜夜久久久久| 少妇熟女aⅴ在线视频| 中文字幕人成人乱码亚洲影| 一级作爱视频免费观看| 午夜日韩欧美国产| 亚洲视频免费观看视频| 黄色片一级片一级黄色片| 欧美 亚洲 国产 日韩一| 日韩精品免费视频一区二区三区| 真人一进一出gif抽搐免费| 色综合婷婷激情| 亚洲第一av免费看| 一本久久中文字幕| 成人欧美大片| 国产高清激情床上av| 两性夫妻黄色片| 亚洲av成人一区二区三| 亚洲欧美日韩无卡精品| 一级,二级,三级黄色视频| 久久久国产成人精品二区| 亚洲欧美精品综合一区二区三区| 成人亚洲精品一区在线观看| 伦理电影免费视频| 国产精品久久久久久亚洲av鲁大| 视频在线观看一区二区三区| 国产亚洲精品综合一区在线观看 | 18禁观看日本| 搡老妇女老女人老熟妇| 午夜免费鲁丝| 男女午夜视频在线观看| 这个男人来自地球电影免费观看| 9191精品国产免费久久| 亚洲欧美日韩无卡精品| 波多野结衣一区麻豆| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| 欧美成狂野欧美在线观看| 咕卡用的链子| 天堂动漫精品| 成熟少妇高潮喷水视频| 大型黄色视频在线免费观看| 久久精品91无色码中文字幕| 9191精品国产免费久久| 日本精品一区二区三区蜜桃| 最新在线观看一区二区三区| 久久香蕉精品热| 国产一区二区激情短视频| 欧美日韩黄片免| 日韩欧美一区视频在线观看| 人人妻人人澡人人看| 欧美不卡视频在线免费观看 | 亚洲激情在线av| av福利片在线| 一边摸一边做爽爽视频免费| 制服丝袜大香蕉在线| 最近最新中文字幕大全电影3 | 国产真人三级小视频在线观看| 国产亚洲av嫩草精品影院| 色播在线永久视频| 亚洲久久久国产精品| 久久久久久亚洲精品国产蜜桃av| 丝袜在线中文字幕| 免费人成视频x8x8入口观看| 男男h啪啪无遮挡| 国产xxxxx性猛交| 午夜精品在线福利| 国语自产精品视频在线第100页| 亚洲精品国产精品久久久不卡| 欧美色欧美亚洲另类二区 | 三级毛片av免费| 欧美精品亚洲一区二区| 俄罗斯特黄特色一大片| 亚洲 欧美一区二区三区| 无遮挡黄片免费观看| 黄片大片在线免费观看| 国产精品国产高清国产av| 欧美黑人欧美精品刺激| 午夜成年电影在线免费观看| 村上凉子中文字幕在线| 制服诱惑二区| 九色亚洲精品在线播放| 日韩欧美免费精品| 丁香六月欧美| 亚洲第一青青草原| 午夜成年电影在线免费观看| 日韩成人在线观看一区二区三区| 国产极品粉嫩免费观看在线| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 人妻久久中文字幕网| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说| 欧美激情久久久久久爽电影 | 亚洲av片天天在线观看| 国产欧美日韩精品亚洲av| 欧美成人免费av一区二区三区| 久久久久久人人人人人| 电影成人av| 中文字幕高清在线视频| 亚洲男人天堂网一区| 成人国语在线视频| 日韩欧美国产一区二区入口| 久9热在线精品视频| 国产伦一二天堂av在线观看| 久久久久久大精品| 精品国产乱子伦一区二区三区| 99re在线观看精品视频| 老司机午夜十八禁免费视频| 999久久久国产精品视频| 老鸭窝网址在线观看| 99精品在免费线老司机午夜| 亚洲精品久久成人aⅴ小说| 热99re8久久精品国产| 久久国产精品影院| 久久久久久久精品吃奶| 亚洲专区字幕在线| 国产成人精品在线电影| 久久人人爽av亚洲精品天堂| 少妇被粗大的猛进出69影院| 欧美中文日本在线观看视频| 99国产极品粉嫩在线观看| 男人的好看免费观看在线视频 | 亚洲午夜理论影院| 91精品三级在线观看| 亚洲国产中文字幕在线视频| 久久国产乱子伦精品免费另类| 一级作爱视频免费观看| 欧美日韩黄片免| 久久久久久久久久久久大奶| 欧美激情久久久久久爽电影 | 国产aⅴ精品一区二区三区波| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩福利视频一区二区| 成人18禁高潮啪啪吃奶动态图| 国产熟女xx| 免费看a级黄色片| 天堂动漫精品| 国产成人影院久久av| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 宅男免费午夜| 国产熟女午夜一区二区三区| 久久国产亚洲av麻豆专区| 亚洲精品一区av在线观看| 亚洲黑人精品在线| 亚洲国产中文字幕在线视频| 日本黄色视频三级网站网址| 久久香蕉国产精品| 女人被狂操c到高潮| 亚洲色图av天堂| 黄片小视频在线播放| 国产精品美女特级片免费视频播放器 | 久久精品影院6| 熟女少妇亚洲综合色aaa.| 此物有八面人人有两片| 在线观看日韩欧美| 999精品在线视频| 最近最新免费中文字幕在线| 欧美日韩精品网址| 大型av网站在线播放| 亚洲国产日韩欧美精品在线观看 | 18禁黄网站禁片午夜丰满| 激情视频va一区二区三区| 国产精品久久久久久人妻精品电影| 欧美日本视频| 久久久国产精品麻豆| 国内精品久久久久精免费| 日韩欧美一区二区三区在线观看| 国产精品久久电影中文字幕| 精品一品国产午夜福利视频| 免费久久久久久久精品成人欧美视频| av在线播放免费不卡| 国产精品亚洲av一区麻豆| 日韩精品青青久久久久久| 给我免费播放毛片高清在线观看| 精品少妇一区二区三区视频日本电影| 大型av网站在线播放| 无限看片的www在线观看| 久久精品人人爽人人爽视色| 久久久久久久久中文| 黄色视频不卡| 真人做人爱边吃奶动态| 亚洲无线在线观看| 亚洲午夜理论影院| 久久中文字幕人妻熟女| 亚洲av片天天在线观看| 成在线人永久免费视频| 好看av亚洲va欧美ⅴa在| 亚洲无线在线观看| 亚洲av成人一区二区三| 嫩草影院精品99| 91精品国产国语对白视频| 深夜精品福利| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 欧美国产日韩亚洲一区| 一进一出好大好爽视频| 久久午夜综合久久蜜桃| 国产精品久久久人人做人人爽| 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 在线播放国产精品三级| 久久天堂一区二区三区四区| 久久国产精品人妻蜜桃| 99精品欧美一区二区三区四区| 国产aⅴ精品一区二区三区波| 国产av一区二区精品久久| 国产亚洲欧美精品永久| 国产在线观看jvid| 人妻久久中文字幕网| 丁香欧美五月| 亚洲精品国产一区二区精华液| 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| 国产av在哪里看| 国产麻豆成人av免费视频| ponron亚洲| av福利片在线| 亚洲av成人不卡在线观看播放网| 国内精品久久久久久久电影| 人人妻人人澡欧美一区二区 | 欧美黑人精品巨大| 国内久久婷婷六月综合欲色啪| 欧美黑人精品巨大| 级片在线观看| 亚洲久久久国产精品| 亚洲在线自拍视频| 在线天堂中文资源库| 亚洲色图综合在线观看| 国产精品日韩av在线免费观看 | 国产成人精品久久二区二区91| 老司机深夜福利视频在线观看| 欧美激情高清一区二区三区| 少妇熟女aⅴ在线视频| 亚洲精品中文字幕一二三四区| 欧美性长视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产精品乱码一区二三区的特点 | 国产一级毛片七仙女欲春2 | 一区二区三区国产精品乱码| 国产精品精品国产色婷婷| 搡老熟女国产l中国老女人| 黑丝袜美女国产一区| 看黄色毛片网站| 女性生殖器流出的白浆| 香蕉久久夜色| av视频在线观看入口| 色老头精品视频在线观看| 亚洲国产精品成人综合色| 亚洲自偷自拍图片 自拍| АⅤ资源中文在线天堂| 欧美成人免费av一区二区三区| 亚洲av五月六月丁香网| 男女做爰动态图高潮gif福利片 | 国产欧美日韩一区二区精品| 搞女人的毛片| 午夜福利,免费看| 久久精品国产99精品国产亚洲性色 | 国产精品免费视频内射| 黄色视频,在线免费观看| 精品第一国产精品| 亚洲欧美日韩无卡精品| 久久香蕉激情| 午夜两性在线视频| 久久久久久久精品吃奶| 亚洲一区二区三区不卡视频| 国产亚洲欧美在线一区二区| 成人18禁高潮啪啪吃奶动态图| 村上凉子中文字幕在线| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 久久香蕉激情| 激情在线观看视频在线高清| 亚洲av美国av| 国产成人啪精品午夜网站| 亚洲 国产 在线| 午夜福利视频1000在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久久久久久久免费视频| 国产不卡一卡二| x7x7x7水蜜桃| 久久久久久免费高清国产稀缺| 精品免费久久久久久久清纯| 成人永久免费在线观看视频| 欧美老熟妇乱子伦牲交| 日本在线视频免费播放| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利视频1000在线观看 | 俄罗斯特黄特色一大片| 一级毛片女人18水好多| av视频免费观看在线观看| 女人被狂操c到高潮| 日韩免费av在线播放| 大香蕉久久成人网| 国产精品久久久久久亚洲av鲁大| 国产精华一区二区三区| 午夜精品国产一区二区电影| 性欧美人与动物交配| 一a级毛片在线观看| 中文字幕最新亚洲高清| 在线天堂中文资源库| 亚洲午夜理论影院| 亚洲aⅴ乱码一区二区在线播放 | 岛国在线观看网站| 这个男人来自地球电影免费观看| 国产精品综合久久久久久久免费 | 12—13女人毛片做爰片一| 人人妻人人澡人人看| 波多野结衣av一区二区av| 欧美另类亚洲清纯唯美| 亚洲第一青青草原| 久久久久久久久中文| 18禁美女被吸乳视频| 亚洲专区国产一区二区| 国产欧美日韩一区二区精品| 91成人精品电影| 久久久久国产一级毛片高清牌| 久久精品aⅴ一区二区三区四区| 9色porny在线观看| 88av欧美| 色播在线永久视频| 亚洲黑人精品在线| 久久婷婷成人综合色麻豆| 极品人妻少妇av视频| 国产又色又爽无遮挡免费看| 精品一区二区三区av网在线观看| 久久精品人人爽人人爽视色| 美女国产高潮福利片在线看| 亚洲成av人片免费观看| 女人高潮潮喷娇喘18禁视频| 日本在线视频免费播放| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 啦啦啦免费观看视频1| 国产精品亚洲av一区麻豆| 精品国产超薄肉色丝袜足j| 精品熟女少妇八av免费久了| 亚洲第一av免费看| 久久人人爽av亚洲精品天堂| 国产av精品麻豆| 国语自产精品视频在线第100页| 午夜精品在线福利| 午夜福利18| www.精华液| 日韩欧美三级三区| 9191精品国产免费久久| 久久天躁狠狠躁夜夜2o2o| 99久久久亚洲精品蜜臀av| 国产亚洲欧美98| 在线永久观看黄色视频| 亚洲精品av麻豆狂野| 18禁美女被吸乳视频| 亚洲三区欧美一区| 亚洲欧美激情综合另类| 日韩欧美一区二区三区在线观看| 麻豆一二三区av精品| 亚洲av美国av| 亚洲国产日韩欧美精品在线观看 | 在线播放国产精品三级| 久久久久久久午夜电影| 欧美日韩瑟瑟在线播放| 久久午夜亚洲精品久久| 天天躁狠狠躁夜夜躁狠狠躁| 9色porny在线观看| 精品国产乱码久久久久久男人| 亚洲欧美日韩另类电影网站| 99精品久久久久人妻精品| 一区二区三区高清视频在线| 中文字幕人妻熟女乱码| 色老头精品视频在线观看| 夜夜看夜夜爽夜夜摸| 欧美日韩亚洲综合一区二区三区_| 国产99久久九九免费精品| 他把我摸到了高潮在线观看| 精品久久久久久成人av| 亚洲伊人色综图| 无人区码免费观看不卡| 成人av一区二区三区在线看| 色精品久久人妻99蜜桃| 国产免费男女视频| 搡老妇女老女人老熟妇| 无限看片的www在线观看| 色在线成人网| 老司机午夜福利在线观看视频| 美女大奶头视频| 国产亚洲欧美98| 亚洲国产精品999在线| 校园春色视频在线观看| 中文字幕人成人乱码亚洲影| 国产精品久久电影中文字幕| 国产免费av片在线观看野外av| 伦理电影免费视频| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 91成年电影在线观看| 欧美乱码精品一区二区三区| 欧美日韩乱码在线| 一边摸一边抽搐一进一出视频| 亚洲国产精品成人综合色| 久久国产精品影院| 午夜福利视频1000在线观看 | 日韩欧美免费精品| 欧美精品啪啪一区二区三区| 亚洲av熟女| 精品不卡国产一区二区三区| 欧美成狂野欧美在线观看| 日本免费一区二区三区高清不卡 | 91成人精品电影| 色综合欧美亚洲国产小说| 欧美老熟妇乱子伦牲交| 中文字幕精品免费在线观看视频| 精品欧美国产一区二区三| 成人三级黄色视频| 窝窝影院91人妻| 久久久久久久久久久久大奶| 久久欧美精品欧美久久欧美| 久久久久精品国产欧美久久久| 露出奶头的视频| 午夜两性在线视频| 成年女人毛片免费观看观看9| 免费高清视频大片| 老司机在亚洲福利影院| 极品人妻少妇av视频| 欧美激情 高清一区二区三区| 中文字幕精品免费在线观看视频| 久9热在线精品视频| 亚洲片人在线观看| 99久久99久久久精品蜜桃| 在线观看免费日韩欧美大片| 亚洲第一av免费看| 看片在线看免费视频| 一边摸一边抽搐一进一小说| 免费看a级黄色片| 非洲黑人性xxxx精品又粗又长| 在线观看www视频免费| 别揉我奶头~嗯~啊~动态视频| 在线观看免费午夜福利视频| 国产高清视频在线播放一区| 成人手机av| 777久久人妻少妇嫩草av网站| 高清黄色对白视频在线免费看| 亚洲欧美日韩另类电影网站| 久久精品成人免费网站| 在线十欧美十亚洲十日本专区| 十八禁网站免费在线| 九色国产91popny在线| 91成年电影在线观看| 国产精品国产高清国产av| 欧美成人性av电影在线观看| 91在线观看av| 99国产精品一区二区蜜桃av| 久久香蕉精品热| 国产精品久久视频播放| 亚洲电影在线观看av| 精品欧美国产一区二区三| 人人妻,人人澡人人爽秒播| 亚洲avbb在线观看| 日韩欧美三级三区| 男男h啪啪无遮挡| 国产成人精品无人区| av免费在线观看网站| 国产色视频综合| 自线自在国产av| 精品欧美一区二区三区在线| 色综合亚洲欧美另类图片| 成人18禁高潮啪啪吃奶动态图| 琪琪午夜伦伦电影理论片6080| 成人永久免费在线观看视频| 这个男人来自地球电影免费观看| 午夜精品国产一区二区电影| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av香蕉五月| 窝窝影院91人妻| 亚洲av熟女| 老汉色∧v一级毛片| 操美女的视频在线观看|