• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Same n-Types for the Wedges of the Eilenberg-Maclane Spaces?

    2016-06-05 03:10:47DaeWoongLEE

    Dae-Woong LEE

    1 Introduction

    Let us call X(n)the n-th Postnikov approximation of a connected CW-space X.X(n)is a CW-complex obtained from X by adjoining cells of dimension ≥ n+2 such that πi(X(n))=0 for i≥ n+1 and πi(X(n))= πi(X)for i≤ n.The Postnikov k-invariants kn+1(X)of X are maps X(n?1)→ K(πn(X),n+1)and thus cohomology classes in Hn+1(X(n?1);πn(X))for n≥2.We say that two connected CW-spaces X and X?have the same n-type if the n-th Postnikov approximations X(n)and X?(n)are homotopy equivalent for all n≥1.

    An interesting question raised by J.H.C.Whitehead is this:Suppose that X and X?are two spaces whose Postnikov approximations,X(n)and X?(n),are homotopy equivalent for each integer n.Does it follow that X and X?have the same homotopy type?It is well known that either if X isfinite dimensional(use the cellular approximation theorem)or if X has only a finite number of nonzero homotopy groups,then the answer to Whitehead’s question is yes!However,in general,there are examples,founded by Adams[1]and Gray[6]independently,saying that the answer to this question is no!It is also shown that in[16]if the base space of a sphere fibration ξ:is a topological manifold,then a Hopf index theorem can be obtained.

    Let Z be the ring of integers and let Σ denote the suspension functor.For a connected CW-space X,we let SNT(X)denote the set of all homotopy types[X?]such that the Postnikov approximations X(n)and X?(n)are homotopy equivalent for all n.This is a pointed set with base point?=[X].It is well known in[11]that the set of all the same homotopy n-types for the k-th iterated suspension of the Eilenberg-MacLane space K(Z,2b+1)is trivial for k≥0;that is,SNT(ΣkK(Z,2b+1))= ?.One reason of this fact is that ΣkK(Z,2b+1)has a rational homotopy type of a single sphere of dimension k+2b+1.As we can see,the even dimensional case is much more complicated because ΣK(Z,2a)has a rational homotopy type of a bouquet of in finitely many spheres of dimensions 2a+1,4a+1,···,2na+1,···.So it is natural to ask in the case of even integers.The first interesting case(a=1)is the following conjecture.

    Conjecture 1.1(see[11,p.287])SNT(ΣK(Z,2))= ?.

    The positive answer to this conjecture was given in[8].More generally,what will happen in the case of the suspension of the wedge products of the Eilenberg-MacLane spaces of various types?After suspensions or wedge products of the Eilenberg-MacLane spaces K(Z,2a)and K(Z,2b+1)for a,b≥1 as the in finite loop spaces,they become much more intractable,and they are worth mentioning what it is in the SNT-sense.The purpose of this paper is to provide an answer to the above query as a general version of the original same n-type conjecture.

    Theorem 1.1Let Y:=K(Z,2a1)∨ K(Z,2a2)∨ ···∨ K(Z,2ak)be the wedge products of the Eilenberg-MacLane spaces,where aiis the positive integer for i=1,2,···,k with a1

    In this paper we often do not distinguish notationally between a base point preserving map and its homotopy class.We denote Q by the set of all rational numbers.As an adjointness,we will make use of the notations Σ and Ω for the suspension and loop functors in the based homotopy category,respectively.

    2 Homotopy Self-Equivalences of CW-Spaces

    Let Aut(X)be the group of homotopy classes of homotopy self-equivalences of a space X and let Aut(π≤n(X))denote the group of automorphisms of the graded Z-module,π≤n(X),preserving the Whitehead product pairings.McGibbon and M?ller(see[11,Theorem 1])proved the following theorem.

    Theorem 2.1Let X be a 1-connected space with finite type over some subring of the rationals.Assume that X has the rational homotopy type of a bouquet of spheres.Then the following three conditions are equivalent:

    (a)SNT(X)=?;

    (b)the maphas a finite cokernel for each n;

    (c)the maphas a finite cokernel for each n.

    In 1976,Wilkerson(see[21,Theorem I])classified CW-spaces having the same n-type up to homotopy,and proved that for a connected CW-complex X,there is a bijection of pointed sets

    where lim1is the first derived limit of groups(not necessarily abelian)in the sense of Bous field and Kan[4].Thus,if X is a space of finite type,then the torsion subgroup of π?(X(n))can be ignored in the lim1-calculation(see[12]).

    We note that Y has a CW-decomposition of wedges based on the Eilenberg-MacLane spaces K(Z,2as)as follows:

    for s=1,2,···,k,where γnis an attaching map,anddenotes the other cells or the Moore spaces for torsions of the reduced homology groups for n=1,2,3,···.

    In order to define the homotopy self-maps of the suspension of wedges of the Eilenberg-MacLane spaces K(Z,2as),s=1,2,···,k,we first define maps:Y → ΩΣY for s=1,2,···,k and n=1,2,3,···as follows.

    definition 2.1Let

    for each s=1,2,···,k,and let Ytdenote the t-skeleton of Y:=K(Z,2a1)∨ K(Z,2a2)∨ ···∨K(Z,2ak).Then the co fibration sequences

    and

    induce the exact sequences of groups

    and

    for n ≥ 2 and s=1,2,···,k.We now take essential maps

    and

    for n ≥ 2 and s=1,2,···,k.Similarly,we can choose maps

    and

    withand s=1,2,···,k,respectively,by using the above exact sequences.

    In the above definition,we note that

    and

    We now have the following definition.

    definition 2.2We define the rationally non-trivial homotopy elementsandof the homotopy groups modulo torsions π2as(ΩΣY)/torsion and π2nas(ΩΣY)/torsion by=andrespectively,for s=1,2,···,k and n ≥ 2.

    We now take the self-maps:ΣY → ΣY and maps:S2nas+1→ ΣY as the adjointness of:Y→ ΩΣY and:S2nas→ ΩΣY,respectively,for s=1,2,···,k and n=1,2,3,···.We then order the basic Whitehead products(see[7])of weight 1 on the graded homotopy groups modulo torsion,π?(ΣY)/torsion,as follows:We order the rationally non-trivial elementsandaseither ifor ifand as

    LetΣY → ΣY be the commutator of self-mapsand;that is

    where the operations are the suspension additions on ΣY.By using this suspension structure,we construct self-maps of ΣY by I+where I is the identity map of ΣY andis the l-th iterated commutator of self-maps:ΣY → ΣY,i=1,2,···,l on the suspension structure for si=1,2,···,k,and ni=1,2,3,···.The Whitehead theorem asserts that the above self-mapsof ΣY are actually homotopy self-equivalences.

    We note that the above iterated commutator maps

    do make sense because there are in finitely many non-zero cohomology cup products in Y so that it has the in finite Lusternik-Schnirelmann category(see[20,Chapter X]and[18]).Moreover,Arkowitz and Curjel(see[2,Theorem 5])showed that the n-fold commutator is of finite order if and only if all n-fold cup products of any positive dimensional rational cohomology classes of a space vanish.

    Remark 2.1(a)Let x be a rationally non-trivial indecomposable element of the homotopy groups π2(n1as1+n2as2+··+nlasl)+1(ΣY).Then

    where the first addition is the one of suspension structure on ΣY,while the second addition refers to the one of homotopy groups(see[8,Lemma 3.2]).

    (b)Let J:Y→ΩΣY be the James map.Then we have

    in the group[Y,ΩΣY](see also[9,Lemma 4]).

    By using the Serre spectral sequence of a path space fibration

    for each s=1,2,···,k,we have an algebra isomorphism H?(K(Z,2as);Q) ~=Q[αs].Here Q[αs]is the polynomial algebra over Q generated by αsof dimension 2as;that is,αsis a generator of H2as(K(Z,2as);Q)withwhereis a rational homology generator of dimension 2nas.

    3 Proof of Theorem 1.1

    We point out that the proof of Theorem 1.1 depends highly on Theorem 2.1.We remark that the total rational homotopy group= π?(ΩΣY)? Q of ΩΣY is a graded Lie algebra over Q with Lie bracket?,?given by the Samelson product which is called the rational homotopy Lie algebra of ΣY(see[14]for the de Rham homotopy theory).For s=1,2,···,k and n=1,2,3,···,we letdenote the subalgebra of?L generated by all free algebra generators of degree less than or equal to 2nas,that is

    with generators(ΩΣYQ)so that njasi≤nas,whereis the compositionof the rationally non-trivial indecomposable elementΩΣY offor si=1,2,···,k and nj=1,2,3,···with the rationalization r:ΩΣY → ΩΣYQ.As an adjointness,

    with the Whitehead product[,]Whas the graded quasi-Lie algebra structure which is called the Whitehead algebra with generators

    Remark 3.1We consider the following co fibration sequence:

    where

    are the rationally non-trivial homotopy elements.By considering the homotopy co fibre of the above Whitehead product map and the cohomology cup product argument on it,we can see thatis rationally non-trivial,and that by induction on l the iterated basic Whitehead productsin the graded homotopy group π?(ΣY)/torsion are also rationally non-trivial(see[10,Lemma 3.5]for details).

    Thus we can define the following.

    definition 3.1The basic Whitehead productis said to be a purely decomposable generator of the rational homotopy group in dimension 2(n1a1+n2a2+ ···+nlal)+1 if s1=s2= ···=sl,and it is said to be a hybrid decomposable generator if there is at least one siwhich differs from one of those sj,where i ∈ {1,2,···,l}and j=1,2,···,l.

    Recall that

    as a graded Z-module and

    as a graded Q-module,whereandare the standard generators of the homology groups H2nas(Y;Z)/torsion and H2nas(Y;Q),respectively for n=1,2,3,···and s=1,2,···,k.The Bott-Samelson theorem(see[3])says that the Pontryagin algebra H?(ΩΣY;Q)is isomorphic to the tensor algebra TH?(Y;Q)generated by=1,2,3,···and s=1,2,···,k}.

    Let:Y ?→ ΩΣY be the adjoint of the iterated commutator mapΣY ?→ ΣY.Then we have

    since the map:[ΣY,ΣY]?→ [Y,ΩΣY]defined by

    is an isomorphism of groups,where ? ∈ [ΣY,ΣY],y ∈ Y,t∈ I and?y,t?∈ ΣY.Moreover,we have the following lemma.

    Lemma 3.1Let j:Yt?→ Y and q:Yt→ Stbe the inclusion map and the projection to the top cell of Yt,respectively.Then the following diagram

    is commutative up to homotopy,where t=2(n1as1+n2as2+···+nlasl)andis the iterated Samelson product.

    ProofWe first consider the exact sequence

    induced by a co fibration sequence

    Let:Y →Y ∧Y be the reduced diagonal map(i.e.,the composite of the diagonal Δ:Y →Y×Y with the projection π:Y×Y→Y∧Y onto the smash product)and let pni,asi:Y→Y/Y2niasi?1be the projection for i=1,2.Then by using the cellular approximation theorem,and considering the cell structure of Y∧Y and the composition with

    we haveFrom the above exact sequence,there exists a map

    such that

    By using this fact,we now consider the following commutative diagram up to homotopy(see also[13]in the case of the in finite complex projective space):

    where t=2(n1as1+n2as2)and C:ΩΣY ∧ΩΣY → ΩΣY is the commutator map with respect to the loop operation,that is

    Here the multiplication is the loop multiplication and the inverse means the loop inverse ν:ΩΣY → ΩΣY defined by ν(ω)= ω?1,where ω?1(t)= ω(1?t),t∈ [0,1].It shows that

    The proof in case of the l-fold iterated commutators and the Samelson products goes to the same way by substitutingandrespectively(similarly for the iterated Samelson products of homotopy classes).

    Lemma 3.2Let h:π?(ΩΣY)→ H?(ΩΣY;Q)be the Hurewicz homomorphism.Then

    whereis the standard generator of rational homology in dimension 2(n1as1+n2as2+ ···+

    ProofBy applying homology to the above homotopy commutative diagram(3.2)in the case of the two-fold commutators and the Samelson products,we obtain in rational homology of ΩΣY.Here nas=n1as1+n2as2andis the standard generator of H2(n1as1+n2as2)(Y;Q).The homotopy commutative diagram(3.1)in Lemma 3.1 shows that this lemma is still true for the l-th iterated commutators and the iterated Samelson products,as required.

    By considering the cell structure of the product of CW-spaces(this works for countable CW-complexes or when one factor is locally finite),we have the following lemma.

    Lemma 3.3If X is a CW-complex of finite type with base point x0as the zero skeleton and if f and g:X → ΩX?are the base point preserving maps withrespectively,then the restriction of the commutator[f,g]:X→ΩX?to the(p+q)-skeleton of X is inessential.

    ProofFor details,see[10,Lemma 2.3].

    Lemma 3.4Let t=2(n1as1+n2as2+ ···+nlasl).Then

    is inessential,where si=1,2,···,k and ni=1,2,3,···for i∈ {1,2,···,l}.

    ProofWe prove this lemma by induction on l.Sinceandfor s=1,2,···,k,and n=1,2,3,···,by Lemma 3.3,we seeiithat the commutatorrestricts to the trivial map on the skeleton Y2(na+na)?2.1s12s2By considering the cell structures of the Eilenberg-MacLane spaces described above,we see that Y has no cells in some ranges of dimensions,more precisely,between dimensions 2n1as1+2n2as2?2 and 2n1as1+2n2as2?1,that is

    The cellular approximation theorem shows that the restrictionto the skeleton is null homotopic.

    We now suppose thatis inessential.Sincethe similar argument as described above shows that

    By induction on l,we complete the proof of this lemma.

    Lemma 3.5For each basic Whitehead productof the graded homotopy group π?(ΣY),we can construct the corresponding iterated commutatorin the group[ΣY,ΣY]such that

    where λ0,andandare rationally non-trivial indecomposable elements,and nas=n1as1+n2as2+ ···+nlasl.

    ProofWe argue about a matter with induction on l again.We first show that

    where λ?0,and nas=n1as1+n2as2.To do this,we consider the following commutative diagram:

    The Cartan-Serre theorem(see[5,Theorem 16.10])asserts that the Hurewicz homomorphism h:π?(ΩΣY)→ H?(ΩΣY;Q)becomes an isomorphism

    where the latter is a primitive subspace of H?(ΩΣY;Q).Thus we observe that

    for each s=1,2,···,k and n=1,2,3,···(compare with the Hurewicz map of the Brown-Peterson spectra in[15,p.166]).Hereis the rationally non-trivial indecomposable element of the homotopy groups,andis the rational homology generator in dimension 2nas,where E:Y→ΩΣY is the canonical inclusion.We now have

    It can be noticed that the above zero term is derived from the fact that the restrictionto the skeleton is inessential by Lemma 3.4;that is

    for dim()≤ 2(n1as1+n2as2)?1 in rational homology of ΩΣY.Moreover,we see thatandare rationally non-trivial indecomposable and decomposable elements,respectively,in π2(n1as1+n2as2)(ΩΣY)/torsion,by Remark 3.1 as adjointness for decomposable generators,and thatis spherical,and thus primitive.Now considering the above equation(3.3),we observe that

    On the other hand,is a loop map,thus it is an H-map.Furthermore,the Scheerer’s theorem(see[17,p.75])says that there is a bijection between[ΣY,ΣY]and the set[ΩΣY,ΩΣY]Hof homotopy classes of H-maps ΩΣY → ΩΣY.Therefore,by taking the adjoint of the Samelson product,we obtain the result.

    We now suppose that the result holds for the(l?1)-fold Whitehead product.Since

    and the iterated Samelson productis rationally non-trivial,by using the first result above and combining with:Y→ΩΣY,we can construct an iterated commutator mapsuch that,after taking the adjointness,the desired formula of this lemma is obtained.

    Remark 3.2We turn now to the other types of purely decomposable generators,namelyandconsisting of the basic Whitehead products of the rational homotopy.It can be shown that we can also consider the iterated commutatorsand(corresponding to the basic Whitehead productsandrespectively)satisfying Lemma 3.5 whose proof goes to the similar way.

    By using the results described above,we now proceed to the proof of Theorem 1.1 as follows.

    If X is a connected H-space of finite type,then X has k-invariants of finite order,and H?(X;Q)becomes a Hopf algebra which is the tensor product of exterior algebras with odd degree generators and polynomial algebras with even degree generators.On the space level,this means that every H-space has a rational homotopy type of a product of rational Eilenberg-MacLane spaces.The Eckmann-Hilton dual of the Hopf-Thom theorem(see[19,p.263–269]and[20,Chapter III])says that ΣK(Z,2as)has the rational homotopy type of the wedge products of the in finite number of spheres,that is

    for each s=1,2,···,k.By using both the basic Whitehead products and the Hilton’s theorem(see[7]),we can find various kinds of rational homotopy indecomposable and purely decomposable generators on π?(ΣY)? Q as follows:

    Table 1 s=1,2,···,k

    Moreover,we can see that there exist hybrid decomposable generators of the rational homotopy.The hybrid decomposable generator might be occurred firstly in dimension 2a3+1.For example,if a1=1,a2=3 and a3=4,thenandare the hybrid decomposable generators in π9(ΣY)?Q and π17(ΣY)? Q,respectively.The number of purely or hybrid decomposable generators increases dramatically as the homotopy dimensions are on the increase.

    Since the ranks between the graded homotopy group modulo torsion and the graded rational homotopy group coincide with each other,we can also find the corresponding indecomposable and decomposable elements on π?(ΣY)/torsion.More precisely,it can be seen from the above table that there is only one indecomposable generator,up to sign,of the homotopy group π2nas+1(ΣY)/torsion for each n=1,2,3,···and s=1,2,···,k,while there are various kinds of purely or hybrid decomposable generators in it(possibly)for n≥2.

    We now let L=(π?(ΣY)/torsion,[,]W)and L≤as,n=(π≤2nas+1(ΣY)/torsion,[,]W)be the Whitehead algebras(corresponding to L and L≤as,n,respectively)under the Whitehead products.And we denoteandby the indecomposable and decomposable components,respectively,of the homotopy group modulo torsions,namely,π2nas+1(ΣY)/torsion.Then we have thatand thusfor each s=1,2,···,k and n=1,2,3,···.Moreover,the following sequence

    is exact for each s=1,2,···,k and n=1,2,3,···(see[11]).Here the map f sends

    to

    and the map g is given by restriction and projection,where q:is the projection and j:is the inclusion.We observe that the above short exact sequence is still valid since we are working on π≤2nas+1(ΣY)/torsion.Furthermore,we get Aut(π2as+1(ΣY)/torsion) ~=Z2for s=1,2,···,k,and Aut(π≤2nas+1(ΣY)/torsion)is in finite for all n ≥ 3 and s=1,2,···,k.Therefore the induction step begins.We now suppose that the map Aut(ΣY)→ Aut(L

    completely depending on the form ofsuch that the restrictionto the subalgebra L

    where λ0,and nas=n1as1+n2as2+ ···+nlasl.By considering the indecomposable and(purely or hybrid)decomposable generators,induction hypothesis and Theorem 2.1,we finally complete the proof of Theorem 1.1.

    Remark 3.3One may wonder why the k-th suspensions are not mentioned in this paper(or the previous papers[9–10])for k ≥ 2.Indeed,the homotopy self-equivalences I+constructed in our main theorem are not as well behaved as one might wish on the self-maps of the k-th suspension of a given CW-space Y for k≥2 since the group[ΣkY,ΣkY]becomes abelian for k ≥ 2.However,it is reasonable for us to conjecture that there are lots of self-maps in this abelian group which are nontrivial rationally,but suspend to the trivial self-map of Σk+1Y.

    AcknowledgementThe author is grateful to the anonymous referees for their careful readings and many helpful suggestions that improved the quality of the paper.

    [1]Adams,J.F.,An example in homotopy theory,Proc.Camb.Phil.Soc.,53,1957,922–923.

    [2]Arkowitz,M.and Curjel,C.R.,Homotopy commutators of finite order(I),Quart.J.Math.Oxford,Ser.2,14,1963,213–219.

    [3]Bott,R.and Samelson,H.,On the Pontryagin product in spaces of paths,Comment.Math.Helv.,27,1953,320–337.

    [4]Bous field,A.K.and Kan,D.M.,Homotopy limits,completions and localizations,Lecture Notes Math.,304,1972.

    [5]Félix,Y.,Halperin,S.and Thomas,J.C.,Rational Homotopy Theory,GTM,205,Springer-Verlag,New York,2001.

    [6]Gray,B.I.,Spaces on the same n-type for all n,Topology,5,1966,241–243.

    [7]Hilton,P.J.,On the homotopy groups of the union of spheres,J.Lond.Math.Soc.,30(2),1955,154–172.

    [8]Lee,D.-W.,On the same n-type conjecture for the suspension of the in finite complex projective space,Proc.Amer.Math.Soc.,137(3),2009,1161–1168.

    [9]Lee,D.-W.,On the same n-type structure for the suspension of the Eilenberg-MacLane spaces,J.Pure Appl.Algebra,214,2010,2027–2032.

    [10]Lee,D.-W.,On the same n-type of the suspension of the in finite quaternionic projective space,J.Pure Appl.Algebra,217,2013,1325–1334.

    [11]McGibbon,C.A.and M?ller,J.M.,On in finite dimensional spaces that are rationally equivalent to a bouquet of spheres,Proceedings of the 1990 Barcelona Conference on Algebraic Topology,Lecture Notes Math.,1509,1992,285–293.

    [12]McGibbon,C.A.and Steiner,R.,Some questions about the first derived functor of the inverse limit,J.Pure Appl.Algebra,103(3),1995,325–340.

    [13]Morisugi,K.,Projective elements in K-theory and self-maps of ΣCP∞,J.Math.Kyoto Univ.,38,1998,151–165.

    [14]Moriya,S.,The de Rham homotopy theory and differential graded category,Math.Z.,271,2012,961–1010.

    [15]Ravenel,D.C.,Nilpotence and periodicity in stable homotopy theory,Annals of Mathematics Studies,128,Princeton University Press,Princeton,1992.

    [16]Ruiz,F.G.,A note on residue formulas for the Euler class of sphere fibrations,Chin.Ann.Math.Ser.B.,32(4),2011,615–618.

    [17]Scheerer,H.,On rationalized H-and co-H-spaces with an appendix on decomposable H-and co-H-spaces,Manuscripta Math.,51,1984,63–87.

    [18]Scoville,N.A.,Lusternik-Schnirelmann category and the connectivity of X,Algebr.Geom.Topol.,12,2012,435–448.

    [19]Spanier,E.,Algebraic Topology,McGraw-Hill,New York,1966.

    [20]Whitehead,G.W.,Elements of Homotopy Theory,GTM,61,Springer-Verlag,New York,1978.

    [21]Wilkerson,C.W.,Classification of spaces of the same n-type for all n,Proc.Amer.Math.Soc.,60,1976,279–285.

    校园人妻丝袜中文字幕| 国产成人aa在线观看| 简卡轻食公司| 欧美日韩av久久| 久久99热6这里只有精品| 在线观看www视频免费| 亚洲不卡免费看| 久久久a久久爽久久v久久| 欧美变态另类bdsm刘玥| 九九在线视频观看精品| 亚洲av二区三区四区| 人妻制服诱惑在线中文字幕| 女性生殖器流出的白浆| 国产精品久久久久久久电影| 日本黄大片高清| 亚洲欧美精品自产自拍| 欧美精品人与动牲交sv欧美| 免费人妻精品一区二区三区视频| av播播在线观看一区| 久久国产乱子免费精品| 成人毛片60女人毛片免费| 亚洲国产精品一区二区三区在线| 人人妻人人爽人人添夜夜欢视频 | 街头女战士在线观看网站| 九色成人免费人妻av| 高清欧美精品videossex| 亚洲国产欧美日韩在线播放 | 亚洲色图综合在线观看| 亚洲成人一二三区av| 中国美白少妇内射xxxbb| 男女啪啪激烈高潮av片| 2018国产大陆天天弄谢| 亚洲av免费高清在线观看| 91成人精品电影| 色94色欧美一区二区| 99热国产这里只有精品6| 亚洲精品久久午夜乱码| 免费看av在线观看网站| 在线精品无人区一区二区三| 只有这里有精品99| 欧美国产精品一级二级三级 | 国产精品福利在线免费观看| 日本猛色少妇xxxxx猛交久久| 老司机亚洲免费影院| 日本91视频免费播放| .国产精品久久| 成人国产麻豆网| 国精品久久久久久国模美| 亚洲av综合色区一区| 亚洲无线观看免费| 亚洲精品久久久久久婷婷小说| 久久久精品94久久精品| 欧美xxxx性猛交bbbb| 亚洲丝袜综合中文字幕| 两个人的视频大全免费| 精品久久国产蜜桃| 欧美日韩av久久| 精品一品国产午夜福利视频| 国产免费一级a男人的天堂| 爱豆传媒免费全集在线观看| 欧美日韩国产mv在线观看视频| 亚洲图色成人| 亚洲成色77777| 国产精品秋霞免费鲁丝片| 91久久精品国产一区二区成人| 91精品国产九色| 九草在线视频观看| 人人妻人人澡人人看| 国产免费视频播放在线视频| 中文字幕制服av| 精品酒店卫生间| 国内揄拍国产精品人妻在线| 国产成人a∨麻豆精品| 国产深夜福利视频在线观看| av福利片在线观看| www.色视频.com| 国产免费一区二区三区四区乱码| 十八禁高潮呻吟视频 | 久久久久精品性色| 精品视频人人做人人爽| av网站免费在线观看视频| 国产精品三级大全| 少妇人妻精品综合一区二区| kizo精华| 国产精品成人在线| 国产综合精华液| 香蕉精品网在线| 黄色配什么色好看| 少妇人妻一区二区三区视频| 精品少妇久久久久久888优播| 另类精品久久| 亚洲国产日韩一区二区| 免费播放大片免费观看视频在线观看| 好男人视频免费观看在线| av在线app专区| 欧美日韩一区二区视频在线观看视频在线| 18禁裸乳无遮挡动漫免费视频| 热99国产精品久久久久久7| 欧美97在线视频| 中文天堂在线官网| 日韩av免费高清视频| 简卡轻食公司| 91精品一卡2卡3卡4卡| 国产精品福利在线免费观看| av国产精品久久久久影院| 自线自在国产av| 免费av不卡在线播放| 桃花免费在线播放| 热99国产精品久久久久久7| 国产欧美日韩精品一区二区| a级毛片在线看网站| 久久午夜综合久久蜜桃| 亚洲av综合色区一区| 岛国毛片在线播放| 又大又黄又爽视频免费| 国产免费一区二区三区四区乱码| 丝袜喷水一区| 欧美精品人与动牲交sv欧美| 美女xxoo啪啪120秒动态图| 国产精品久久久久久精品古装| 欧美成人精品欧美一级黄| 99re6热这里在线精品视频| 国内揄拍国产精品人妻在线| videossex国产| 精品亚洲成国产av| 国产免费福利视频在线观看| 一级a做视频免费观看| 日韩一区二区三区影片| 精品人妻熟女毛片av久久网站| 国产一区二区在线观看日韩| 亚洲综合精品二区| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 免费大片18禁| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 亚洲国产欧美在线一区| 日韩 亚洲 欧美在线| 久久亚洲国产成人精品v| 看非洲黑人一级黄片| av国产久精品久网站免费入址| 观看免费一级毛片| 伊人亚洲综合成人网| 偷拍熟女少妇极品色| 亚洲国产成人一精品久久久| 人体艺术视频欧美日本| 国产亚洲午夜精品一区二区久久| 建设人人有责人人尽责人人享有的| 成年人免费黄色播放视频 | 国产无遮挡羞羞视频在线观看| 精品酒店卫生间| 日韩中文字幕视频在线看片| 最近2019中文字幕mv第一页| 内射极品少妇av片p| 亚洲av成人精品一二三区| 夜夜骑夜夜射夜夜干| 午夜免费观看性视频| 国产精品偷伦视频观看了| 中文字幕av电影在线播放| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 噜噜噜噜噜久久久久久91| 三上悠亚av全集在线观看 | 久久精品国产亚洲网站| 成人免费观看视频高清| 又粗又硬又长又爽又黄的视频| 免费在线观看成人毛片| 精品酒店卫生间| 五月玫瑰六月丁香| 建设人人有责人人尽责人人享有的| 女性生殖器流出的白浆| 久久久国产一区二区| 久久精品久久久久久久性| 成人亚洲精品一区在线观看| 高清av免费在线| 另类精品久久| 人体艺术视频欧美日本| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片| 欧美xxⅹ黑人| 综合色丁香网| 观看免费一级毛片| 免费人妻精品一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 久久这里有精品视频免费| 国产真实伦视频高清在线观看| 久久午夜福利片| 日韩一区二区视频免费看| 午夜av观看不卡| 人妻人人澡人人爽人人| 18+在线观看网站| 99热国产这里只有精品6| 在线 av 中文字幕| 精品少妇黑人巨大在线播放| av免费在线看不卡| 在线免费观看不下载黄p国产| 国产欧美亚洲国产| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久精品久久久久真实原创| av在线播放精品| 国产片特级美女逼逼视频| 成人黄色视频免费在线看| 高清av免费在线| 热99国产精品久久久久久7| 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线| 日韩三级伦理在线观看| 成年人午夜在线观看视频| 两个人免费观看高清视频 | 国产av国产精品国产| 熟妇人妻不卡中文字幕| 精品酒店卫生间| 亚洲欧洲国产日韩| 午夜91福利影院| 亚洲av在线观看美女高潮| 高清午夜精品一区二区三区| 日韩制服骚丝袜av| 久久人人爽av亚洲精品天堂| 少妇熟女欧美另类| 亚洲久久久国产精品| 最近最新中文字幕免费大全7| 99热全是精品| 国产熟女欧美一区二区| av天堂久久9| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲5aaaaa淫片| 人妻人人澡人人爽人人| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 亚洲国产成人一精品久久久| 美女大奶头黄色视频| 热re99久久国产66热| 成人午夜精彩视频在线观看| 亚洲欧美成人综合另类久久久| 国产美女午夜福利| 欧美区成人在线视频| 欧美性感艳星| 久久国产精品男人的天堂亚洲 | 两个人的视频大全免费| 热re99久久国产66热| 欧美高清成人免费视频www| 亚洲av男天堂| 麻豆精品久久久久久蜜桃| 全区人妻精品视频| 亚洲精品久久午夜乱码| 日韩欧美一区视频在线观看 | 中文字幕久久专区| 视频区图区小说| 亚洲人与动物交配视频| 亚洲av二区三区四区| 国产日韩一区二区三区精品不卡 | 人妻 亚洲 视频| 26uuu在线亚洲综合色| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久免费av| 国产精品一区二区在线不卡| 黄色欧美视频在线观看| 日韩伦理黄色片| 51国产日韩欧美| 国产有黄有色有爽视频| 啦啦啦中文免费视频观看日本| 久热这里只有精品99| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区蜜桃 | 亚洲无线观看免费| 午夜激情久久久久久久| 久久精品国产a三级三级三级| 亚洲第一区二区三区不卡| 91在线精品国自产拍蜜月| 美女中出高潮动态图| 99热国产这里只有精品6| 精品人妻熟女av久视频| 欧美区成人在线视频| 免费观看性生交大片5| 久久这里有精品视频免费| 七月丁香在线播放| 欧美 日韩 精品 国产| 日韩人妻高清精品专区| 最近手机中文字幕大全| 又黄又爽又刺激的免费视频.| 日本午夜av视频| 最近2019中文字幕mv第一页| 欧美xxⅹ黑人| 王馨瑶露胸无遮挡在线观看| 欧美日本中文国产一区发布| 男女国产视频网站| 少妇精品久久久久久久| 久久精品久久久久久噜噜老黄| 99热全是精品| 边亲边吃奶的免费视频| 一本大道久久a久久精品| 黄色配什么色好看| 亚洲av电影在线观看一区二区三区| 老熟女久久久| 日韩中字成人| 日韩 亚洲 欧美在线| 国产免费福利视频在线观看| videossex国产| 九草在线视频观看| 天堂8中文在线网| 日韩欧美一区视频在线观看 | 国产又色又爽无遮挡免| 大片电影免费在线观看免费| 国产日韩欧美亚洲二区| 亚洲天堂av无毛| 99热全是精品| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| 久久久国产精品麻豆| 观看美女的网站| 午夜免费男女啪啪视频观看| 日韩av免费高清视频| tube8黄色片| 一区二区av电影网| 女的被弄到高潮叫床怎么办| 国产极品天堂在线| 欧美精品亚洲一区二区| 国产免费福利视频在线观看| 日韩免费高清中文字幕av| av有码第一页| 天美传媒精品一区二区| 色5月婷婷丁香| 国国产精品蜜臀av免费| 成人美女网站在线观看视频| 七月丁香在线播放| 久久精品国产a三级三级三级| 精品久久久久久久久亚洲| 欧美3d第一页| 国产永久视频网站| 老司机影院成人| 国产有黄有色有爽视频| 99久久综合免费| 亚洲中文av在线| 色视频在线一区二区三区| 久久亚洲国产成人精品v| 欧美少妇被猛烈插入视频| 亚洲第一av免费看| 成人国产av品久久久| 国产伦理片在线播放av一区| 国产视频首页在线观看| 秋霞伦理黄片| 久久久国产一区二区| 在线观看一区二区三区激情| 99久久中文字幕三级久久日本| 久久精品国产a三级三级三级| 最新中文字幕久久久久| 狠狠精品人妻久久久久久综合| 国产午夜精品久久久久久一区二区三区| 国产日韩欧美视频二区| 日韩av在线免费看完整版不卡| 国产精品一区www在线观看| 两个人的视频大全免费| 亚洲国产色片| 国产精品一区二区性色av| 久久国内精品自在自线图片| 精品熟女少妇av免费看| 大香蕉97超碰在线| 欧美日韩一区二区视频在线观看视频在线| 性色avwww在线观看| 色网站视频免费| 久久青草综合色| 久久精品国产亚洲av涩爱| 亚洲精品国产成人久久av| 高清毛片免费看| 日韩av不卡免费在线播放| 欧美精品亚洲一区二区| 久久久久久久久久人人人人人人| 国国产精品蜜臀av免费| 80岁老熟妇乱子伦牲交| av一本久久久久| av视频免费观看在线观看| 97在线视频观看| 少妇的逼水好多| 国产视频首页在线观看| 亚洲无线观看免费| 人人妻人人添人人爽欧美一区卜| 欧美激情国产日韩精品一区| 天美传媒精品一区二区| 黄色配什么色好看| 91久久精品国产一区二区成人| 国产在线免费精品| 在线观看免费高清a一片| 亚洲中文av在线| 精品少妇内射三级| 老司机影院毛片| 一区二区三区乱码不卡18| 欧美区成人在线视频| 亚洲欧美清纯卡通| 久久人妻熟女aⅴ| 日韩亚洲欧美综合| 两个人的视频大全免费| 欧美xxxx性猛交bbbb| 午夜日本视频在线| 性色av一级| 久久国产乱子免费精品| 久久久久久久国产电影| 精品一区二区免费观看| 免费黄频网站在线观看国产| 国产男人的电影天堂91| 国产淫语在线视频| 91久久精品国产一区二区三区| kizo精华| 久久久久久久精品精品| 欧美激情极品国产一区二区三区 | 天堂8中文在线网| 一个人看视频在线观看www免费| 啦啦啦中文免费视频观看日本| 国产精品一区二区三区四区免费观看| 王馨瑶露胸无遮挡在线观看| 中文字幕人妻丝袜制服| 丝袜脚勾引网站| 日韩一本色道免费dvd| 久久精品国产亚洲网站| 一区在线观看完整版| 国产爽快片一区二区三区| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 日本猛色少妇xxxxx猛交久久| 久久久欧美国产精品| 国产精品女同一区二区软件| 亚洲欧美日韩东京热| 免费观看无遮挡的男女| 九九在线视频观看精品| 曰老女人黄片| 婷婷色麻豆天堂久久| 日本黄色片子视频| 欧美日韩精品成人综合77777| 欧美成人精品欧美一级黄| 日本wwww免费看| 又爽又黄a免费视频| 丰满人妻一区二区三区视频av| 午夜影院在线不卡| 精品一区在线观看国产| 一个人看视频在线观看www免费| 久久国产亚洲av麻豆专区| 美女脱内裤让男人舔精品视频| 国产精品嫩草影院av在线观看| 97在线视频观看| 午夜免费男女啪啪视频观看| 嫩草影院新地址| 夫妻性生交免费视频一级片| 成年av动漫网址| 人人妻人人澡人人看| 在线观看人妻少妇| 男女边吃奶边做爰视频| 国产极品粉嫩免费观看在线 | 人妻 亚洲 视频| 国产综合精华液| 三级经典国产精品| 国内精品宾馆在线| 国产精品国产三级专区第一集| 亚洲精品456在线播放app| 人人妻人人澡人人看| 亚洲国产毛片av蜜桃av| 搡老乐熟女国产| 日韩,欧美,国产一区二区三区| 国产免费视频播放在线视频| 制服丝袜香蕉在线| 99热这里只有是精品在线观看| 美女主播在线视频| 少妇精品久久久久久久| 久久午夜综合久久蜜桃| 国产黄片美女视频| 亚洲国产色片| 一区在线观看完整版| 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| 在线播放无遮挡| 在线观看免费高清a一片| 欧美xxⅹ黑人| 色视频www国产| 又大又黄又爽视频免费| 精品一区二区三卡| 视频中文字幕在线观看| 99视频精品全部免费 在线| 黄色视频在线播放观看不卡| 美女主播在线视频| 国产日韩欧美在线精品| 国产精品女同一区二区软件| 欧美日韩综合久久久久久| 五月天丁香电影| av播播在线观看一区| 国产乱人偷精品视频| 免费久久久久久久精品成人欧美视频 | 亚洲av欧美aⅴ国产| 国产无遮挡羞羞视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩精品免费视频一区二区三区 | 精品久久久久久久久亚洲| 国产亚洲av片在线观看秒播厂| 国产男女内射视频| 99国产精品免费福利视频| 好男人视频免费观看在线| 91久久精品电影网| 成人二区视频| 日韩中文字幕视频在线看片| 亚洲国产精品999| 国产免费一区二区三区四区乱码| 久久免费观看电影| 内地一区二区视频在线| 午夜久久久在线观看| 国产一区二区三区综合在线观看 | 国产成人a∨麻豆精品| 久久99一区二区三区| 丰满饥渴人妻一区二区三| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美一区视频在线观看 | 高清黄色对白视频在线免费看 | 成人国产av品久久久| 夜夜看夜夜爽夜夜摸| 一级黄片播放器| 精品国产一区二区久久| 久久精品熟女亚洲av麻豆精品| 嫩草影院新地址| 亚洲第一区二区三区不卡| 在线观看www视频免费| 十分钟在线观看高清视频www | 国产欧美另类精品又又久久亚洲欧美| 日韩在线高清观看一区二区三区| 男男h啪啪无遮挡| 制服丝袜香蕉在线| 丝袜在线中文字幕| 亚洲自偷自拍三级| 免费看光身美女| 国产精品熟女久久久久浪| 午夜av观看不卡| 国产成人精品一,二区| 美女xxoo啪啪120秒动态图| 99视频精品全部免费 在线| 99热全是精品| av免费在线看不卡| 伦精品一区二区三区| 日韩欧美精品免费久久| 日韩av不卡免费在线播放| 高清毛片免费看| 丰满乱子伦码专区| 波野结衣二区三区在线| 97精品久久久久久久久久精品| 日本wwww免费看| 人人妻人人看人人澡| 99九九在线精品视频 | 成年av动漫网址| 97在线视频观看| .国产精品久久| 亚洲精品成人av观看孕妇| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃在线观看..| 好男人视频免费观看在线| 汤姆久久久久久久影院中文字幕| 涩涩av久久男人的天堂| 丰满迷人的少妇在线观看| 一级毛片黄色毛片免费观看视频| 另类精品久久| xxx大片免费视频| 久久久久久久久久成人| 久久久久网色| 精品国产乱码久久久久久小说| 精品亚洲乱码少妇综合久久| 五月玫瑰六月丁香| 日韩在线高清观看一区二区三区| 亚洲精品国产av成人精品| av在线观看视频网站免费| 婷婷色av中文字幕| 亚洲av成人精品一二三区| h视频一区二区三区| 亚洲高清免费不卡视频| 2022亚洲国产成人精品| 国产一区有黄有色的免费视频| 嫩草影院新地址| av网站免费在线观看视频| av线在线观看网站| 99九九线精品视频在线观看视频| 欧美xxⅹ黑人| 成年av动漫网址| 狂野欧美激情性xxxx在线观看| 国产有黄有色有爽视频| 丝袜在线中文字幕| √禁漫天堂资源中文www| 成人亚洲欧美一区二区av| 欧美丝袜亚洲另类| 高清av免费在线| .国产精品久久| 日本黄色片子视频| 国产亚洲欧美精品永久| 国产伦在线观看视频一区| 一二三四中文在线观看免费高清| 熟女电影av网| 亚洲一级一片aⅴ在线观看| 天天操日日干夜夜撸| 一区二区三区四区激情视频| 黄色一级大片看看| 午夜91福利影院| 国产女主播在线喷水免费视频网站| 欧美xxxx性猛交bbbb| 亚洲天堂av无毛| av在线app专区| 男女边吃奶边做爰视频| 欧美+日韩+精品| 成人无遮挡网站| 国产女主播在线喷水免费视频网站| 韩国高清视频一区二区三区| 26uuu在线亚洲综合色| 国产高清三级在线| 噜噜噜噜噜久久久久久91| 少妇高潮的动态图| 国产精品熟女久久久久浪| 国产精品偷伦视频观看了| 国产深夜福利视频在线观看| 高清av免费在线| 欧美激情国产日韩精品一区| 欧美日韩国产mv在线观看视频| 国产免费福利视频在线观看| 天堂俺去俺来也www色官网| 亚洲美女视频黄频| 日韩视频在线欧美|