• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Quantum MDS Code from Constacyclic Codes?

    2016-06-05 03:10:35LiqinHUQinYUEXiaomengZHU

    Liqin HUQin YUEXiaomeng ZHU

    1 Introduction

    Quantum codes were introduced to protect quantum information from decoherence and quantum noise.After the pioneering work of Shor[24]and Steane[25],a systematic mathematical scheme has been employed to construct q-ary quantum codes from classical error-correcting codes over Fqor Fq2with certain orthogonality properties.The quantum codes obtained in this way are called stabilizer codes.After the establishment of the connection between quantum codes and classical codes(see[3]),the construction of stabilizer codes can be converted to that of classical codes with symplectic,Euclidean,or Hermitian self-orthogonal property.

    A q-ary quantum code Q of length n and size K is a K-dimensional subspace of a qndimensional Hilbert spaceAn important parameter of a quantum code is its minimum distance:If a quantum code has minimum distance d,then it can detect d? 1 and correctquantum errors.Let k=K,we useto denote a q-ary quantum code of length n with size qkand minimum distance d.The parameters of an[[n,k,d]]qquantum code must satisfy the quantum Singleton bound:2d ≤ n?k+2(see[19–20]).A quantum code achieving this quantum Singleton bound is called a quantum maximum-distanceseparable(MDS for short)code.Ketkar et al.in[19]pointed out that,for any odd prime power q,if the classical MDS conjecture holds,then the length of nontrivial quantum MDS codes can not exceed q2+1.As mentioned in[16],except for some sparse lengths n such as n=q2+1,and q2,almost all known q-ary quantum MDS codes have minimum distance less than or equal to+1.The following result gives a connection between classical Hermitian self-orthogonal MDS codes and quantum MDS codes.

    Theorem 1.1(see[2])If C is a q2-ary[n,k,n?k+1]MDS code such that C? C⊥H,then there exists a q-ary[[n,n?2k,k+1]]quantum code.

    In recent years,constructing quantum MDS codes has become a hot research topic.Many classes of quantum MDS codes have been found by employing different methods(see[1,4–5,7–17,22–23]).Recently,Kai et al.[17–18]constructed several classes of good quantum codes from classical constacyclic codes,including some new classes of quantum MDS codes.

    Motivated by the above works,a new family of quantum MDS code is constructed in this paper.The quantum code in this paper can be regarded as a generalization of[18,Theorems 3.14–3.15],in the sense that our quantum MDS code has bigger minimum distance.

    2 Preliminaries

    In this section,we recall some definitions and basic properties of constacyclic codes.Throughout this paper,q denotes an odd prime power and Fq2denotes the finite field with q2elements.Assume that n is a positive integer relatively prime to q,i.e.,gcd(n,q)=1.

    Letbe thevector space of n-tuples.A linear code C of length n is an Fq2subspace ofFor a nonzero element η of Fq2,a linear code C of length n over Fq2is said to be η-constacyclic if(ηcn?1,c0,···,cn?2) ∈ C for every(c0,c1,···,cn?1) ∈ C.If each codeword c=(c0,c1,···,cn?1)∈ C corresponds with its polynomial representation c(x)=c0+c1x+···+cn?1xn?1∈ Fq2[x],then the η-constacyclic code C is identified with exactly one ideal of the quotient ring Fq2[x]/(xn? η).Since Fq2[x]/(xn? η)is a principal ideal ring,an η-constacyclic code C is generated uniquely by a monic divisor g(x)of xn?η and denoted by C=?g(x)?.Hence g(x)and h(x)=are called the generator polynomial and the check polynomial of C,respectively.

    Similarly to cyclic codes,there exists the following BCH bound for η-constacyclic codes(see[21]).

    Lemma 2.1Let C=?g(x)?be an η-constacyclic code of length n overand gcd(q,n)=1.Suppose that the roots of g(x)include γαi,i=1,2,···,d ? 1(≤ degg(x)),where γ and α are nonzero elements in some extension field of Fq2,and α is an element of order n.Then the minimum distance of the code is at least d.

    For two vectors b=(b1,b2,···,bn)and c=(c1,c2,···,cn)in,we define the Hermitian inner productto be=where=for each 1≤i≤n.The vectors b and c are called orthogonal with respect to Hermitian inner product if=0.For a q2-ary linear code C,the Hermitian dual codes of C is defined as

    A q2-ary linear code C of length n is called Hermitian self-orthogonal if C? C⊥H.Conversely,if C⊥H? C,we say that C is a Hermitian dual-containing code.

    The automorphism of Fq2given by“?”,=aqfor any a∈ Fq2,can be extended to an automorphism of[x]in an obvious way:

    for any a0,a1,···,anin,which is also denoted by “ ? ” for simplicity.

    For a monic polynomial f(x)∈Fq2[x]of degree k with f(0)?0,its reciprocal polynomial will be denoted by

    The following result gives the generator polynomial of C⊥H.

    Lemma 2.2(see[26,Lemma 2.1(ii)])Let C=?g(x)?be an η-constacyclic code of length n and dimensional k over.Set h(x)=.Then the Hermitian dual code C⊥His an-constacyclic code with the generator polynomialwhere

    and

    are the reciprocal and conjugate-reciprocal polynomials of h(x),respectively.

    By Lemma 2.2,we can get the following result.

    Lemma 2.3Let η∈Fq2be a primitive r-th root of unity and let C be a Hermitian dualcontaining η-constacyclic code of length n over Fq2.Then η = η?q,i.e.,r|q+1.

    Let C=?g(x)?be an η-constacyclic code of length n and let Ω ={1+jr|0 ≤ j ≤ n? 1}.The set Z={k ∈ Ω |g(ζk)=0}is called the defining set of C,where ζ is a primitive rn-th root of unity in some extension field of Fq2such that ζn= η.The following result presents a criterion to determine whether or not an η-constacyclic code of length n over Fq2is Hermitian dual-containing.

    Lemma 2.4(see[18,Lemma 2.2])Let r be a positive divisor of q+1 and let η ∈Fq2 be of order r.Assume that C is an η-constacyclic code of length n over Fq2with a defining set Z.Then C is a Hermitian dual-containing code if and only if Z ∩ (?q)Z= ?,where(?q)Z={?qz(mod rn)|z∈ Z}.

    The Hermitian construction suggests that we can obtain q-ary quantum codes as long as we can construct classical Hermitian dual-containing codes over Fq2.Constacyclic codes form an important class of linear codes due to their good algebraic structures.In this paper,we will use the Hermitian construction to obtain MDS quantum codes through constacyclic codes.

    3 New Quantum MDS Code

    Throughout this section,we always assume that η is a primitive r-th root of unity in Fq2 with r|(q+1),and n is a positive integer with rn|(q4?1)and rn?(q2?1).In this section,we construct a family of q-ary quantum codes with good parameters through the Hermitian construction.

    Let C be an η-constacyclic code and let Ω ={1+jr|0 ≤ j ≤ n?1}.Since rn|(q4?1),we always have that|C1+jr|≤2,0≤j≤n?1,where C1+jris the q2-cyclotomic coset containing 1+jr modulo rn.

    Lemma 3.1There exist exactly two q2-cyclotomic cosets C1+rkandwith|C1+rk|=|C1+r(k+n2)|=1 if and only if n|(q2+1)and n is even,where rk?1mod?,0≤k≤?1.

    ProofSuppose that i=1+jr∈Ω,0≤j≤n?1.Then there are exactly two q2-cyclotomic cosets Ciand Ci?(i,i?∈ Ω,ii?)with|Ci|=|Ci?|=1 if and only if the congruence equation(1+jr)q2≡1+jr(mod rn)has exactly two different solutions,which implies that

    has two solutions k and k?with 0≤k?=k?≤n?1.As rn|q4?1 and gcd(q2?1,q2+1)=2,(3.1)has two solutions if and only if gcd(n,q2?1)=2 if and only if n|(q2+1)and n is even,so i=1+rk,i?=1+r?k+?,where rk≡?1?mod?,0≤k≤?1.

    Suppose that n|q2+1 and n is even.By Lemma 3.1,there are exactly two q2-cyclotomic cosets Csandwith|Cs|==1,where s=

    Lemma 3.2Let n be an even divisor of q2+1.Suppose that s=.Then Ω={1+jr|0≤j≤n?1}is a disjoint union of q2-cyclotomic cosets:

    ProofSince n|q2+1 and n is even,by Lemma 3.1 there are exactly two q2-cyclotomic cosets Csandwith one element.

    For each j,1≤j≤?1,

    Hence Cs+rj={s?rj,s+rj}for 1≤j≤?1.

    In order to use Lemma 3.2 to construct Hermitian dual-containing MDS constacyclic code,we need the condition that?qCs=,i.e.,Cs?qCs.

    Proposition 3.1Let n be an even divisor of q2+1 and s=Then Cs??qCsif and only if 2,where Cs={s}is the q2-cyclotomic coset containing s.

    ProofFor s=,s≡?qs(mod rn)if and only if rn|(q+1)s,which implies n|By s=,we have|s with s odd,so n|if and only if 2|.Hence,we get the result.

    The following results are given in[18].

    Lemma 3.3(see[18,Theorem 3.14])Let q be an odd prime power with the form 20m+3 or 20m+7,where m is a positive integer.Let n=.Then,there exists a q-ary[[n,n?2d+2,d]]-quantum MDS code,where 2≤d≤is even.

    Lemma 3.4(see[18,Theorem 3.15])Let q be an odd prime power with the form 20m?3 or 20m?7,where m is a positive integer.Let n=.Then,there exists a q-ary[[n,n?2d+2,d]]-quantum MDS code,where 2≤d≤is even.

    Using the Hermitian construction,we will obtain q-ary quantum codes of lengthfrom constacyclic codes over Fq2.The main code of this paper has much larger minimum distance than the one of[18]when q>23.

    Let q be an odd prime power with q≡ 3(mod 10)or q≡ ?3(mod 10),and n=.We consider η-constacyclic code of length n over Fq2.

    In order to construct quantum MDS codes,we give a sufficient condition for η-constacyclic codes which contain their Hermitian duals.For any odd prime power q with q≡±3(mod 10),we first consider the case q≡3(mod 10).

    Lemma 3.5Assume that q is an odd prime power with q≡3(mod 10)andodd.Let s=and n=.If C is an η-constacyclic code over Fq2of length n with defining setwhere 0 ≤ δ≤,then C is a Hermitian dual-containing code.

    ProofBy Lemma 2.4,it is sufficient to prove that Z∩(?q)Z= ?.Suppose that Z∩(?q)Z?.Then,there exist two integers j,k,0≤ j,k ≤,such that s?rj≡ ?q(s?rk)(mod rn)or s?rj≡?q(s+rk)(mod rn).

    Case Is?rj≡?q(s?rk)(mod rn).This is equivalent to

    By s=andodd,we obtain

    Since 0≤ j,k ≤,0≤ j+qk≤.We have that j+qk≡(mod n)if and only if qk+j=.Since

    we have

    By division algorithm,j=.This is impossible,because

    Case IIs?rj≡?q(s+rk)(mod rn).This is equivalent to

    As s=andodd,we obtain

    Since 0≤ j,k≤,we have

    We have that?qk+j≡(mod n)if and only if

    Hence

    By division algorithm,

    This is impossible.

    Theorem 3.1Let q be an odd prime power with q≡3(mod 10).Then,there exist quantum MDS codes with parameterswhereis even.

    ProofPut s=withodd.Let η be an r-th primitive root in Fq2.Consider the η-constacyclic code C over Fq2of length n=with defining setwhere 0≤ δ≤From Lemma 3.5,C⊥? C.From Lemma 3.2 we can see that Z contains 2δ+1 consecutive integers.This implies that C has minimum distance at least 2δ+2.Hence,C is an[n,n?2δ?1,2δ+2]MDS constacyclic code.Combining the Hermitian construction with quantum Singleton bound,we can obtain a quantum MDS code with parameterswhere d,2≤d≤,is even.

    Compare our quantum MDS codes in Theorem 3.1 with quantum MDS codes in[18],our quantum MDS codes has much bigger minimum distance than the known codes in[18]when q>23,because

    for q>23.

    Example 3.1Take q=43,and so n=370.Using Theorem 3.1 produces a new quantum MDS code with parameters[[370,320,26]]43.

    For the case q≡ ?3(mod 10),we can produce the following quantum MDS codes.The proof is similar to that in the case q≡3(mod 10)and we omit it.

    Theorem 3.2Let q be an odd prime power with q≡ ?3(mod 10).Then,there exist quantum MDS codes with parameterswhere 2≤ d≤is even.

    Example 3.2Take q=37,and so n=137.Using Theorem 3.2 produces a new quantum MDS code with parameters[[137,95,22]]37.

    [1]Aly,S.A.,Klappenecker,A.and Sarvepalli,P.K.,On quantum and classical BCH codes,IEEE Trans.Inf.Theory,53(3),2007,1183–1188.

    [2]Ashikhmin,A.and Knill,E.,Nonbinary quantum stablizer codes,IEEE Trans.Inf.Theory,47(7),2001,3065–3072.

    [3]Calderbank,A.R.,Rains,E.M.,Shor,P.W.and Sloane,N.J.A.,Quantum error correction via codes over GF(4),IEEE Trans.Inf.Theory,44(4),1998,1369–1387.

    [4]Chen,H.,Some good quantum error-correcting codes from algebraic-geometric codes,IEEE Trans.Inf.Theory,47(5),2001,2059–2061.

    [5]Chen,H.,Ling,S.and Xing,C.,Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound,IEEE Trans.Inf.Theory,47(5),2001,2055–2058.

    [6]Chen,H.,Ling,S.and Xing,C.,Quantum codes from concatenated algebraic-geometric codes,IEEE Trans.Inf.Theory,51(8),2005,2915–2920.

    [7]Chen,B.,Ling,S.and Zhang,G.,Application of constacyclic codes to quantum MDS codes,IEEE Trans.Inf.Theory,61(3),2015,1474–1484.

    [8]Feng,K.,Quantum codes[[6,2,3]]pand[[7,3,3]]p(p≥3)exist,IEEE Trans.Inf.Theory,48(8),2002,2384–2391.

    [9]Feng,K.,Ling,S.and Xing,C.,Asymptotic bounds on quantum codes from algebraic geometry codes,IEEE Trans.Inf.Theory,52(3),2006,986–991.

    [10]Grassl,M.,Beth,T.and R¨otteler,M.,On optimal quantum codes,Int.J.Quantum Inform.,2(1),2004,757–766.

    [11]R¨otteler,M.,Grassl,M.and Beth,T.,On quantum MDS codes,Information Theory,Proceedings International Symposium on IEEE,2004,356.

    [12]Guardia,G.G.L.,New quantum MDS codes,IEEE Trans.Inf.Theory,57(8),2011,5551–5554.

    [13]Hu,X.,Zhang,G.and Chen,B.,Constructions of new nonbinary quantum codes,Int.J.Theor.Phys.,54(1),2014,92–99.

    [14]Jin,L.,Ling,S.,Luo,J.and Xing,C.,Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes,IEEE Trans.Inf.Theory,56(9),4735–4740,2010.

    [15]Jin,L.and Xing,C.,Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes,IEEE Trans.Inf.Theory,58,2012,5484–5489.

    [16]Jin,L.and Xing,C.,A construction of new quantum MDS codes,IEEE Trans.Inf.Theory,60,2014,2921–2925.

    [17]Kai,X.and Zhu,S.,New quantum MDS codes from negacyclic codes,IEEE Trans.Inf.Theory,59(2),2013,1193–1197.

    [18]Kai,X.,Zhu,S.and Li,P.,Constacyclic codes and some new quantum MDS codes,IEEE Trans.Inf.Theory,60(4),2014,2080–2086.

    [19]Ketkar,A.,Klappenecker,A.,Kumar,S.and Sarvepalli,P.K.,Nonbinary stabilizer codes over finite fields,IEEE Trans.Inf.Theory,52(11),2006,4892–4914.

    [20]Knill,E.and La flamme,R.,Theory of quantum error-correcting codes,Phys.Rev.A,55(2),1997,900–911.

    [21]Krishna,A.and Sarwate,D.V.,Pseudocyclic maximum-distance separable codes,IEEE Trans.Inf.Theory,36(4),1990,880–884.

    [22]Li,Z.,Xing,L.J.and Wang,X.M.,Quantum generalized Reed-Solomon codes:Unified framework for quantum maximum-distance separable codes,Phys.Rev.A,77,2008,012308(1)–012308(4).

    [23]Ling,S.,Luo,L.and Xing,C.,Generalization of Steane’s enlargement construction of quantum codes and applications,IEEE Trans.Inf.Theory,56(8),2010,4080–4084.

    [24]Shor,P.W.,Scheme for reducing decoherence in quantum computer memory,Phys.Rev.A,52(4),1995,2493–2496.

    [25]Steane,A.M.,Multiple particle interference and quantum error correction,Proc.Roy.Soc.London A,452(1),1996,2551–2577.

    [26]Yang,Y.and Cai,W.,On self-dual constacyclic codes over finite fields,Des.,Codes Cryptogr.,74(2),2013,355–364.

    精品酒店卫生间| 成人漫画全彩无遮挡| 一区二区三区乱码不卡18| 99热这里只有是精品在线观看| 观看免费一级毛片| 亚洲色图av天堂| 亚洲av中文av极速乱| 亚洲av福利一区| 欧美zozozo另类| 成人鲁丝片一二三区免费| 亚洲av中文字字幕乱码综合| 三级国产精品欧美在线观看| 3wmmmm亚洲av在线观看| 色播亚洲综合网| 精品一区二区三区视频在线| 91精品伊人久久大香线蕉| 女人久久www免费人成看片| 女人久久www免费人成看片| 欧美不卡视频在线免费观看| 人人妻人人澡人人爽人人夜夜 | 精品酒店卫生间| 国产高清不卡午夜福利| 国产精品一区二区性色av| 在线观看av片永久免费下载| 男女边摸边吃奶| 久久99精品国语久久久| 亚洲熟女精品中文字幕| 爱豆传媒免费全集在线观看| 欧美xxxx黑人xx丫x性爽| 欧美极品一区二区三区四区| 伦理电影大哥的女人| 亚洲欧美日韩无卡精品| 一区二区三区四区激情视频| 99热这里只有精品一区| 国产男女超爽视频在线观看| 国产成人91sexporn| 亚洲国产精品成人综合色| 婷婷色av中文字幕| 国内精品一区二区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久97久久精品| 国产69精品久久久久777片| 国产午夜精品一二区理论片| 三级经典国产精品| 你懂的网址亚洲精品在线观看| 亚洲国产成人一精品久久久| 精品久久久久久久久久久久久| 一个人看视频在线观看www免费| av福利片在线观看| 在线观看av片永久免费下载| 久久久成人免费电影| 22中文网久久字幕| 日本一本二区三区精品| 久久久久性生活片| 日韩欧美精品免费久久| 精品一区在线观看国产| 日韩制服骚丝袜av| 亚洲av中文av极速乱| 精品国产一区二区三区久久久樱花 | 中文精品一卡2卡3卡4更新| 中文欧美无线码| 久久久久精品久久久久真实原创| 亚洲欧洲日产国产| 欧美一区二区亚洲| 99热6这里只有精品| 欧美高清成人免费视频www| 亚洲激情五月婷婷啪啪| 97在线视频观看| 少妇人妻精品综合一区二区| 免费看光身美女| 国产不卡一卡二| 国产成人a∨麻豆精品| 国产久久久一区二区三区| 欧美激情久久久久久爽电影| 亚洲av男天堂| 国模一区二区三区四区视频| 精品国内亚洲2022精品成人| 午夜福利网站1000一区二区三区| 久久久久久久午夜电影| 99久国产av精品| 国产成人freesex在线| 纵有疾风起免费观看全集完整版 | 老司机影院成人| 亚洲成人久久爱视频| 免费黄网站久久成人精品| 深爱激情五月婷婷| 乱人视频在线观看| 亚洲综合精品二区| 男人狂女人下面高潮的视频| 亚洲在线观看片| 波多野结衣巨乳人妻| 日本免费在线观看一区| av网站免费在线观看视频 | 国产国拍精品亚洲av在线观看| 青春草亚洲视频在线观看| 欧美日韩国产mv在线观看视频 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品人妻视频免费看| 亚洲成人中文字幕在线播放| 我的女老师完整版在线观看| 国产精品一及| 欧美精品国产亚洲| 色播亚洲综合网| 在线免费观看不下载黄p国产| 蜜桃亚洲精品一区二区三区| 亚洲久久久久久中文字幕| 内地一区二区视频在线| 日日摸夜夜添夜夜添av毛片| 91狼人影院| 久久久久久久久久人人人人人人| ponron亚洲| 亚洲国产av新网站| 色综合站精品国产| 天天躁日日操中文字幕| 欧美xxxx性猛交bbbb| 亚洲精品乱码久久久v下载方式| 天堂av国产一区二区熟女人妻| 夫妻性生交免费视频一级片| 免费高清在线观看视频在线观看| 日本午夜av视频| 国产av不卡久久| 狂野欧美激情性xxxx在线观看| 久久99热这里只频精品6学生| 在现免费观看毛片| 免费黄网站久久成人精品| 国产欧美日韩精品一区二区| 日韩在线高清观看一区二区三区| 国产一级毛片七仙女欲春2| 国产极品天堂在线| 亚洲国产av新网站| 国国产精品蜜臀av免费| 久久韩国三级中文字幕| 国产视频内射| 日韩强制内射视频| av在线天堂中文字幕| 综合色av麻豆| 久久久久网色| 免费少妇av软件| 全区人妻精品视频| 国产精品一及| 亚洲婷婷狠狠爱综合网| 蜜桃久久精品国产亚洲av| 18+在线观看网站| 男的添女的下面高潮视频| xxx大片免费视频| 亚洲精品国产av成人精品| 欧美高清性xxxxhd video| 成人午夜精彩视频在线观看| 精品国产一区二区三区久久久樱花 | 最近中文字幕2019免费版| freevideosex欧美| 99久久精品热视频| 亚洲av一区综合| 精品一区二区三区视频在线| 国产乱人偷精品视频| 小蜜桃在线观看免费完整版高清| .国产精品久久| 日本与韩国留学比较| 在线免费观看的www视频| 嫩草影院新地址| 老司机影院成人| 亚洲av电影不卡..在线观看| 午夜免费观看性视频| 三级经典国产精品| 男女啪啪激烈高潮av片| 免费播放大片免费观看视频在线观看| 九色成人免费人妻av| 日韩成人av中文字幕在线观看| 久久精品夜色国产| 国产日韩欧美在线精品| 中国美白少妇内射xxxbb| 国产高潮美女av| 日韩精品有码人妻一区| 一区二区三区四区激情视频| 中文字幕亚洲精品专区| 亚洲人成网站高清观看| 高清午夜精品一区二区三区| 婷婷色麻豆天堂久久| 五月玫瑰六月丁香| 最近手机中文字幕大全| 免费看日本二区| 欧美+日韩+精品| 男女边摸边吃奶| 爱豆传媒免费全集在线观看| 日韩强制内射视频| 国产美女午夜福利| 国产 一区 欧美 日韩| 欧美最新免费一区二区三区| 亚洲一级一片aⅴ在线观看| 视频中文字幕在线观看| 亚洲精品日本国产第一区| 中文字幕久久专区| 免费观看av网站的网址| 亚洲怡红院男人天堂| 免费观看性生交大片5| 日韩一区二区三区影片| 成年女人在线观看亚洲视频 | 高清视频免费观看一区二区 | 97精品久久久久久久久久精品| 久久久a久久爽久久v久久| 国产亚洲精品av在线| 国产免费福利视频在线观看| 亚洲乱码一区二区免费版| 2018国产大陆天天弄谢| 能在线免费观看的黄片| 亚洲图色成人| 大陆偷拍与自拍| 亚洲国产精品专区欧美| 在线观看免费高清a一片| 欧美高清性xxxxhd video| 尾随美女入室| 国产精品无大码| 一边亲一边摸免费视频| 国模一区二区三区四区视频| 亚洲国产成人一精品久久久| 人人妻人人看人人澡| 大陆偷拍与自拍| 亚洲美女视频黄频| 性插视频无遮挡在线免费观看| 九九爱精品视频在线观看| 老司机影院毛片| 哪个播放器可以免费观看大片| 免费不卡的大黄色大毛片视频在线观看 | 一区二区三区乱码不卡18| 蜜桃久久精品国产亚洲av| 不卡视频在线观看欧美| 亚洲欧美精品专区久久| 成人午夜高清在线视频| 干丝袜人妻中文字幕| av专区在线播放| 白带黄色成豆腐渣| 少妇被粗大猛烈的视频| 最近视频中文字幕2019在线8| 久久99热6这里只有精品| 夜夜爽夜夜爽视频| 网址你懂的国产日韩在线| 婷婷六月久久综合丁香| 91久久精品国产一区二区成人| 久热久热在线精品观看| 亚洲,欧美,日韩| 国产三级在线视频| 嫩草影院精品99| 禁无遮挡网站| 欧美日韩亚洲高清精品| 99re6热这里在线精品视频| 我的老师免费观看完整版| 一级毛片 在线播放| 两个人视频免费观看高清| 天堂俺去俺来也www色官网 | 精品一区二区三卡| 天堂影院成人在线观看| 免费av不卡在线播放| 街头女战士在线观看网站| av一本久久久久| 午夜亚洲福利在线播放| 在现免费观看毛片| 久久久久久久国产电影| 高清在线视频一区二区三区| 成年版毛片免费区| 亚洲国产精品sss在线观看| 一个人免费在线观看电影| 国产亚洲一区二区精品| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 亚洲av电影在线观看一区二区三区 | 亚洲av福利一区| 日韩一区二区三区影片| 日日摸夜夜添夜夜添av毛片| 日韩精品青青久久久久久| 亚洲国产欧美人成| 亚洲av不卡在线观看| 国产成人freesex在线| 26uuu在线亚洲综合色| 午夜福利在线观看吧| 欧美成人午夜免费资源| 日本熟妇午夜| 日本色播在线视频| 日日摸夜夜添夜夜爱| 久久草成人影院| 插逼视频在线观看| 国产国拍精品亚洲av在线观看| 麻豆成人午夜福利视频| 亚洲丝袜综合中文字幕| 91午夜精品亚洲一区二区三区| 精品一区在线观看国产| 日韩一区二区三区影片| kizo精华| 黄片无遮挡物在线观看| 天美传媒精品一区二区| 国产精品一二三区在线看| 伊人久久精品亚洲午夜| 日本午夜av视频| 美女内射精品一级片tv| 欧美丝袜亚洲另类| 亚洲无线观看免费| 中文欧美无线码| 成人午夜高清在线视频| 日本三级黄在线观看| 免费av不卡在线播放| 亚洲欧美成人综合另类久久久| 国模一区二区三区四区视频| 亚洲精品国产av蜜桃| 亚洲色图av天堂| 国产亚洲5aaaaa淫片| 成人漫画全彩无遮挡| 亚洲精品日本国产第一区| 联通29元200g的流量卡| 国产精品久久久久久久电影| 免费av毛片视频| 插阴视频在线观看视频| 日韩视频在线欧美| 国产成人精品久久久久久| 高清av免费在线| 国产乱来视频区| 亚洲电影在线观看av| 两个人视频免费观看高清| 91精品一卡2卡3卡4卡| 九色成人免费人妻av| 国产 一区 欧美 日韩| 最新中文字幕久久久久| 蜜桃久久精品国产亚洲av| 亚洲成人精品中文字幕电影| a级毛色黄片| 男女边摸边吃奶| 精品欧美国产一区二区三| 在线天堂最新版资源| 亚洲欧美日韩卡通动漫| 国产伦一二天堂av在线观看| 嫩草影院精品99| 成人欧美大片| 成人特级av手机在线观看| 日韩视频在线欧美| 日本猛色少妇xxxxx猛交久久| 久久久a久久爽久久v久久| 草草在线视频免费看| 中文字幕制服av| 国产精品无大码| 建设人人有责人人尽责人人享有的 | 成年人午夜在线观看视频 | 国精品久久久久久国模美| 国产伦在线观看视频一区| 久久久精品欧美日韩精品| av专区在线播放| 日韩av免费高清视频| 亚洲在线自拍视频| 国产精品一区二区三区四区久久| 日韩电影二区| 精品久久国产蜜桃| 秋霞伦理黄片| 一级毛片电影观看| 亚洲不卡免费看| 日韩精品青青久久久久久| 欧美日韩国产mv在线观看视频 | 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产专区5o| 国产成人精品福利久久| 久久这里只有精品中国| 一区二区三区免费毛片| 亚洲人成网站高清观看| 日日啪夜夜撸| 久久99热这里只频精品6学生| 亚洲国产成人一精品久久久| 插逼视频在线观看| 成人特级av手机在线观看| 成人二区视频| av.在线天堂| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 91久久精品国产一区二区成人| 大香蕉久久网| 亚洲婷婷狠狠爱综合网| av.在线天堂| 一本久久精品| 国产午夜福利久久久久久| 一区二区三区乱码不卡18| 美女脱内裤让男人舔精品视频| 美女内射精品一级片tv| 插逼视频在线观看| 国产老妇伦熟女老妇高清| 国产成人精品久久久久久| 久久国内精品自在自线图片| 国产女主播在线喷水免费视频网站 | 欧美+日韩+精品| 国产精品女同一区二区软件| 日韩,欧美,国产一区二区三区| 一夜夜www| 黄色配什么色好看| 大片免费播放器 马上看| 免费av不卡在线播放| 亚洲精品影视一区二区三区av| 免费无遮挡裸体视频| 美女内射精品一级片tv| 一级毛片黄色毛片免费观看视频| 麻豆成人午夜福利视频| 亚洲精品自拍成人| 久久精品久久久久久久性| 黄片无遮挡物在线观看| 如何舔出高潮| 免费av毛片视频| 亚洲av不卡在线观看| 久久精品国产自在天天线| 国产v大片淫在线免费观看| 少妇丰满av| 亚洲美女搞黄在线观看| 日韩制服骚丝袜av| 欧美一级a爱片免费观看看| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 一级毛片电影观看| 91狼人影院| 午夜亚洲福利在线播放| 黄色日韩在线| 高清欧美精品videossex| 欧美三级亚洲精品| 狂野欧美白嫩少妇大欣赏| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 免费看a级黄色片| 成人鲁丝片一二三区免费| 久久国产乱子免费精品| 精品99又大又爽又粗少妇毛片| 亚洲av成人精品一二三区| 亚洲精品一区蜜桃| 一个人观看的视频www高清免费观看| 国产精品.久久久| 天天躁日日操中文字幕| 亚洲电影在线观看av| 精品欧美国产一区二区三| 一区二区三区高清视频在线| 秋霞在线观看毛片| 少妇被粗大猛烈的视频| av线在线观看网站| 亚洲熟妇中文字幕五十中出| 看黄色毛片网站| 一个人免费在线观看电影| 看免费成人av毛片| 午夜老司机福利剧场| 亚洲第一区二区三区不卡| 男人和女人高潮做爰伦理| 久久久亚洲精品成人影院| 久久人人爽人人片av| 哪个播放器可以免费观看大片| 久久久久久久大尺度免费视频| 国内揄拍国产精品人妻在线| 成人美女网站在线观看视频| 国产精品三级大全| 高清视频免费观看一区二区 | 亚洲第一区二区三区不卡| 老司机影院成人| 2022亚洲国产成人精品| 18禁动态无遮挡网站| 久久久久久伊人网av| 日本一本二区三区精品| 搡老乐熟女国产| 国产精品99久久久久久久久| 嫩草影院入口| 精品一区二区三区人妻视频| 国产精品一二三区在线看| 亚洲精品日韩av片在线观看| 天堂影院成人在线观看| 国产黄a三级三级三级人| 色5月婷婷丁香| 国产极品天堂在线| 干丝袜人妻中文字幕| 又大又黄又爽视频免费| 国产亚洲av片在线观看秒播厂 | 真实男女啪啪啪动态图| 色哟哟·www| 尾随美女入室| 欧美xxxx黑人xx丫x性爽| 国产免费福利视频在线观看| 99热这里只有是精品在线观看| 精品久久久久久久久亚洲| 精品亚洲乱码少妇综合久久| 亚洲内射少妇av| 欧美激情国产日韩精品一区| 大片免费播放器 马上看| 麻豆久久精品国产亚洲av| 最近的中文字幕免费完整| 深夜a级毛片| 又爽又黄a免费视频| 国产一区亚洲一区在线观看| 赤兔流量卡办理| 69人妻影院| 国产精品久久久久久久电影| 熟女人妻精品中文字幕| 哪个播放器可以免费观看大片| 老师上课跳d突然被开到最大视频| 五月玫瑰六月丁香| 中文资源天堂在线| 欧美日韩国产mv在线观看视频 | 欧美日韩综合久久久久久| 亚洲国产色片| 日本与韩国留学比较| 欧美极品一区二区三区四区| 五月玫瑰六月丁香| 欧美激情国产日韩精品一区| 18禁在线无遮挡免费观看视频| av在线蜜桃| 欧美丝袜亚洲另类| 久久久久精品久久久久真实原创| 亚洲在线观看片| 超碰av人人做人人爽久久| 久久久久久久久久久免费av| 精品人妻熟女av久视频| 亚洲国产精品sss在线观看| 国产久久久一区二区三区| 五月玫瑰六月丁香| 99re6热这里在线精品视频| 性插视频无遮挡在线免费观看| 身体一侧抽搐| 婷婷色av中文字幕| 日日撸夜夜添| 欧美高清成人免费视频www| 六月丁香七月| 亚洲精品aⅴ在线观看| 成年免费大片在线观看| 亚洲一级一片aⅴ在线观看| 久久久精品免费免费高清| 嫩草影院新地址| 亚洲欧美精品自产自拍| 国产精品国产三级国产专区5o| 久久这里只有精品中国| 国产伦精品一区二区三区四那| 欧美日韩视频高清一区二区三区二| 久久久久久久久久人人人人人人| 亚洲精品成人av观看孕妇| 男女下面进入的视频免费午夜| 国产高清三级在线| 一个人免费在线观看电影| 全区人妻精品视频| 国产69精品久久久久777片| 久久久久久伊人网av| 日韩欧美一区视频在线观看 | 我的老师免费观看完整版| 超碰97精品在线观看| 我的女老师完整版在线观看| 午夜视频国产福利| 一个人观看的视频www高清免费观看| av网站免费在线观看视频 | 久久久亚洲精品成人影院| 欧美极品一区二区三区四区| 国产精品三级大全| www.av在线官网国产| 午夜爱爱视频在线播放| 最新中文字幕久久久久| 日韩一区二区视频免费看| 91精品伊人久久大香线蕉| 午夜福利网站1000一区二区三区| 99久国产av精品| 亚洲国产欧美在线一区| 国产午夜精品论理片| 99久久精品国产国产毛片| 神马国产精品三级电影在线观看| 亚洲久久久久久中文字幕| 日本猛色少妇xxxxx猛交久久| 国产白丝娇喘喷水9色精品| 亚洲最大成人手机在线| 国产一区二区三区av在线| 亚洲在线观看片| 青青草视频在线视频观看| 亚洲国产高清在线一区二区三| 成人二区视频| 黑人高潮一二区| 内射极品少妇av片p| 精品一区二区三区视频在线| 日本色播在线视频| 大又大粗又爽又黄少妇毛片口| 少妇猛男粗大的猛烈进出视频 | 日本猛色少妇xxxxx猛交久久| 不卡视频在线观看欧美| 人妻少妇偷人精品九色| 26uuu在线亚洲综合色| 99久久精品一区二区三区| 色播亚洲综合网| 中文天堂在线官网| 高清毛片免费看| 日韩强制内射视频| 美女脱内裤让男人舔精品视频| 建设人人有责人人尽责人人享有的 | 久久久精品免费免费高清| 天天躁日日操中文字幕| 久久久午夜欧美精品| 日本一本二区三区精品| 国产av国产精品国产| 国产永久视频网站| 中文字幕人妻熟人妻熟丝袜美| 青春草亚洲视频在线观看| 国产免费福利视频在线观看| 18禁动态无遮挡网站| 精品一区在线观看国产| 九九在线视频观看精品| 国产v大片淫在线免费观看| 国产成人福利小说| 久久久久久久久久人人人人人人| 99热这里只有是精品在线观看| 中文精品一卡2卡3卡4更新| 国产精品一区二区三区四区免费观看| 简卡轻食公司| 高清日韩中文字幕在线| 一个人看视频在线观看www免费| 毛片女人毛片| freevideosex欧美| 女的被弄到高潮叫床怎么办| av免费在线看不卡| 少妇的逼水好多| 成人午夜高清在线视频| 成人亚洲精品一区在线观看 | 免费看av在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 国产成人精品一,二区| 搡老乐熟女国产| 成人高潮视频无遮挡免费网站| 日韩欧美精品免费久久| 国产一级毛片七仙女欲春2|