• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A soft sensor for industrial melt index prediction based on evolutionary extreme learning machine☆

    2016-06-01 03:00:48MiaoZhangXinggaoLiuZeyinZhang

    Miao Zhang ,Xinggao Liu ,*,Zeyin Zhang

    1 State Key Laboratory of Industrial Control Technology,Department of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China

    2 Department of Mathematics,Zhejiang University,Hangzhou 310027,China

    1.Introduction

    The advanced monitoring and control of polymerization processes,in particular the properties of polymer products,is of major strategic importance to the polymer manufacturing industry.The melt index(MI)of polypropylene is one of the most significant parameters determining different grades of the product.The measurements of the MI are used to control the process operating conditions to meet a desired quality of the intermediate or final products.However,MI is usually evaluated off-line with an analytical procedure in the laboratory,which takes almost 2-4 h[1].The lack of sufficiently fast measurement limits the achievable control performance for polymer quality control.Basically two types of models are considered in literature for MI prediction:mechanism models which use the chemical and physical relationships of variables and statistical models which take advantage of historical observation data.Mogilicharlaet al.[2],Kim and Yeo[3]and Chenet al.[4]developed mechanism models based on process energy and mass balance.But the development of inferential models with the mechanism of polymerization[5-9]is greatly challenged because of the engineering activity and the relatively high complexity of the kinetic behavior and operation of the polymer plants.

    One alternative to the mechanism model is the machine learning(or statistical model)that is now being experimented in a wide variety ofindustrialMIprediction applications.The statisticalmodels utilize,assimilate and ‘learn’from the evidence of past MI trends using observational dataset to predict the future.Many types of machine learning algorithmshave recently been proposed in literature such asneuralnetworks(NNs),support vector machines(SVM)and fuzzy logic[10-14].Hanetal.[15]developed three softsensormodels involving SVM,partial least squares(PLS)and artificial NN to predict MI for styrene-acrylonitrile and polypropylene process.Zhangetal.[16]presented sequentially trained bootstrap aggregated NNs for MI estimation.Gonzagaet al.[17]proposed a soft-sensor based on a feed forward artificial NN for real time process monitoring and control of an industrial polymerization process.Furthermore,Shi and Liu[18]compared the performance of the standard SVM,the LSSVM,and the weighted least squares support vector machines(WLSSVM)models.Jianget al.[19]developed a new MI prediction sensor by introducing relevance vector machine(RVM)optimized by Modified particle swarm optimization(PSO)algorithm.Recently a soft sensor based on adaptive fuzzy neural network(FNN)and support vector regression was presented by Zhang and Liu[20].Ahmedet al.[21]proposed a statistical data modeling based on PLS for MI prediction in high density polyethylene processes(HDPE)to achieve energy-saving operation.Zhanget al.[22]proposed a soft sensor based on aggregated RBF neural networks trained with chaotic theory.Despite improvements in the performance of statistical MI prediction models,the development of better predictive models for industrial MI estimation is still an appealing problem.

    Extreme learning machine(ELM)developed by Huangetal.is a novel fast machine learning algorithm for single-hidden-layer feedforward neural network(SLFN)[23].In ELM,the weights between input layer and hidden layer are chosen randomly while the weights between hidden layer and output layer are obtained by solving a system of linear matrix equations.Compared with traditional NNs and SVM,ELM offers significant advantages such as fast learning speed,ease of implementation,and minimal human intervention[24,25].Due to its remarkable generalization performance and implementation efficiency,the ELM model has been widely used for the solution of estimation problems in different fields[26-28].Up to now,little information on ELM applications in MI prediction of polypropylene processes has been reported in the literature.In this work,the ELM is therefore explored to predict the MIaccording to a group ofprocess variables in propylene polymerization that can be easily obtained.

    However,it is found that ELM may yield unstable performance because of the random assignments of input weights and hidden biases[29].Therefore,an optimization of the ELM structure is essential to improve the performance of the ELM model in the MI prediction.This paper developed a Modified gravitational search algorithm(MGSA)to look for the optimal set of input weights and hidden biases.The MGSA is a swarm-based optimization algorithm which embodies interesting concepts and fully incorporates the social essence of adaptive PSO(APSO)with the motion mechanism of GSA.It adopts co-evolutionary technique to simultaneously update particle positions with APSO velocity and GSA acceleration.Thus,an efficientbalance between exploration and exploitation in the MGSA can be effectively improved.Finally,the newly MI prediction model named MGSA-ELM for propylene polymerization process is achieved.The performance of the proposed models is illustrated and evaluated based on some real industrial processing data.

    The rest of the paper is structured as follows:Section 2 provides the theoretic descriptions of the ELM,the MGSA and the proposed evolutionary ELM prediction model.Section 3 and Section 4 present the case study of the paper,where the performance of the proposed approach is evaluated and discussed.Finally Section 5 closes the paper with some concluding remarks.

    2.Methodology

    2.1.Basic extreme learning machine

    Usually an ELM means a three layer neural network[23]in which the weights between input layer and hidden layer are randomly selected and the weights between hidden layer and output layer are determined by solving a generalized system of linear equations(i.e.,by computing the pseudo inverse of a matrix).Fig.1 depicts the basic schematic topological structure of an ELM network.

    For a training set ofNsamples(xi,ti),the output of a standard SLFN withnhidden neurons and activation functiong(x)is

    where xiis the inputvector,tiis the outputvector,wjis the inputweight vector,bjis the hidden bias vector,βjis the output weight vector and oiis the actual network output.The aboveNequations can be written compactly as O=Hβ,where

    Fig.1.Structure of an ELM network.

    H is called the hidden layer output matrix of the neural network.Based on ELM theories,the input weights wjand hidden biases bjcan be randomly assigned instead of tuning.To minimize the cost function‖O-T‖,where T=[t1,t2,…,tN]Tis the target value matrix,the output weights are derived by finding the least square solutions to the linear system Hβ=T,which is given by

    where H?is the Moore-Penrose(MP)generalized inverse of the hidden layer output matrix H.

    2.2.Modified gravitational search algorithm

    2.2.1.Basic GSA

    GSA, firstly introduced by Rashediet al.[30],is a population-based meta-heuristic method inspired by the law of gravity and mass interactions.Suppose a system withNPagents in which the position of the agentiis de fined asfori=1,2,… ,NP,whereDis the dimension of the search space.Perform the fitness evaluation for all agents attiteration and also calculate thebestandworstfitness for minimization problem,which are de fined as follows:

    wherefiti(t)represents the fitness value of the agentiat iterationt.

    Then the gravitational and inertial masses are calculated by the following equations:

    The force acting on agentifrom agentjis de fined in Eq.(8)and the total force that acts on agentiis de fined in Eq.(9).

    whereMaj(t)is the active gravitational mass related to agentj,Mpi(t)is the passive gravitational mass related to agenti,ε is a small constant,Rij(t)is the Euclidian distance between two agentsiandjin the search space,randjis a random number in the interval[0,1],Kbestis the set of firstKagents with the best fitness values and the biggest masses,andG(t)is the gravitational constant calculated by

    where α is the descending coefficient,G0is the initial gravitational constant,andtmaxis the maximum iteration.

    By the law of motion,the acceleration of the agentiwith the inertial massMiiis given by

    The next velocity of an agentis considered as a fraction of its current velocity added to its acceleration.Therefore,the velocity and position of the agent are calculated as follows:

    2.2.2.PSO algorithm

    PSO is a biologically inspired computational stochastic search method introduced by Kennedy[31].By randomly initializing the population of particles in the search space,each particle in PSO has a randomized velocity associated to it,which moves through the space of the problem.

    In the original PSO,the velocity and position of each particle are updated as follows:

    In the adaptive PSO(APSO)algorithm,the acceleration coefficientsc1andc2vary adaptively with each generation[32].The velocity and position of each particle are updated as follows:

    wherewis the inertial factor which decreases gradually,kanditermaxare the number of current generation and the maximum number of generations,respectively,c1i,c1f,c2iandc2fare constants.c1decreases from 2.5 to 0.5 andc2increases from 0.5 to 2.5.The APSO is more effective than the original PSO as the search space reduces step by step.

    2.2.3.Hybridization of GSA and APSO

    In APSO,the exploration ability has been implemented usingpbestand the exploitation ability has been implemented usinggbest[32,33].In GSA,by choosing suitable values for the random parameters(G0andα),the exploration can be guaranteed and slow movementofheavier agents can guarantee the exploitation ability[30,34,35].However,APSO has an aptitude for exploring in a multi-dimensional space while GSA's potentialities are its local exploitation capability.PSO and GSA have supplementary potentialities.

    On the other hand,GSA becomes sluggish due to the presence of heavier agents at the end of run.It takes more time to reach the optimal solution.So when allagents of GSA are near a good solution and moving very slowly,gbestin APSO can be considered to help them exploit the global best.Each agent can observe the best solution(gbest)and tend toward it.Moreover,by adjusting the acceleration coefficients of APSO,the abilities of global searching and local searching can be balanced.

    Based on the above analysis,the paper hybridizes APSO and GSA by means of applying co-evolutionary technique,treating any particle in the swarm as a particle introduced by GSA.A novel hybrid algorithm,namely Modified GSA(MGSA),is proposed by combining the ability for social thinking in APSO with the local search capability of GSA.The velocity updating formulation in MGSA includes the cooperative contribution of APSO velocity and GSA acceleration and is given below

    whereVi(t)is the velocity of particleiat iterationt,ai(t)is the acceleration of particleiat iterationt,gbestis the best solution so far,c1andc2are adaptive acceleration coefficients given by Eqs.(19),(20),wis the inertial factor calculated by Eq.(18),andri1andri2are two random variables in the range[0,1].

    In each iteration,the positions of particles are updated as follows:

    In MGSA,at first,all particles are randomly initialized,and each particle is considered as a candidate solution.Then,the gravitational constant,inertia factor and adaptive acceleration coefficients are calculated.After evaluating the fitness of each particle,the best and worst fitness values of the population are found.Then,calculate the totalforce and the accelerations for allparticles.After that,the velocities and positions of all particles are updated.The fitness value of each new particle is calculated,and the bestsolution(gbest)and the personalbest position(pbest)so farare also updated.The same iteration steps run circularly to find the optimal solution of the optimization problem,until the maximum iteration number is reached.Note that,whenever the position of a new particle goes beyond its lower or upper bound,the particle will take the value of its corresponding lower or upper bound.

    2.3.The proposed evolutionary ELM prediction model

    ELM need not spend much time to tune the input weights and hidden biases of the SLFN by randomly choosing these parameters.However,it is also found that ELM tends to require more hidden neurons than traditional gradient-based learning algorithms as well as result in ill-condition problem due to randomly selecting input weights and hidden biases[29].So ELM may have worse performance in case of non-optimal parameters[36,37].In this paper,the proposed MGSA algorithm is used to find the optimal set of input weights and hidden biases for ELM.Thus,the proposed evolutionary ELM prediction model,named MGSA-ELM,is obtained.The root mean square error(RMSE)is chosen as the fitness function,which is given by

    The hybrid learning algorithm takes advantage of the merits of ELM and MGSA.First,MGSA combines the ability of social thinking of APSO with the local search capability of GSA,which allows the learning algorithm to avoid the local minima and converge to the global minimum.Moreover,the optimal parameters from MGSA guarantee that ELM has a smalltraining error.Second,in MGSA-ELM,only the inputweights and hidden biasesare optimized by MGSA,while the outputweights are calculated by the least squares method.The learning process will be accelerated because fewer parameters are estimated.Furthermore,since the output weights are calculated by a least squares method at each iteration,the training error is always at a global minimum with respect to the output weights[38].The robustness of training process is highly improved.

    Fig.2.Flow chart of the proposed MGSA-ELM model.

    Fig.2 shows the flow chart of the MGSA-ELM model and the whole optimization process.To apply the proposed model in MI prediction problem,the following steps have to be taken:

    Step 1 Generate the initial population randomly and each individual consists of a set of inputweights and hidden biases.All components in the individual are within the range[-1,1].Initialize the parametersG0,α,c1f,c1i,c2f,c2i,anditermax,and the population sizeNP.Set the iteration numberk=1.

    Step 2 Calculate the gravitational constantGby Eq.(10),the weighting factorwby Eq.(18),and the acceleration coefficientsc1andc2by Eqs.(19),(20).

    Step 3 For each particle,the output weights are obtained through calculating the MP inverse by Eq.(2).

    Step 4 Evaluate the fitness of each particle using the ELM model according to Eq.(23).

    Step 5 Calculate the bestsol ution(gbest)and the personal best position(pbest)for the population by comparing the fitness value.

    Step 6 Find the best and worst fitness value of the population by Eqs.(3),(4).

    Step 7 For each particle,calculate the gravitational and inertial masses by Eqs.(5)-(7),the totalforce by Eq.(9),and the acceleration by Eq.(11).

    Step 8 After calculating the accelerations,update the velocities and positions of all particles by Eqs.(21),(22).Whenever the position of a new particle goes beyond its lower or upper bound,the particle will take the value of its corresponding lower or upper bound.

    Step 9 Ifi≤NP,go back to Step 7;else go to Step 10.

    Step 10 Take the new candidate solution as the set of input weights and hidden biases to obtain the new prediction results.Then update thegbestaccording to the new fitness.

    Step 11 Run Step 2 to Step 10 circularly until the maximum iteration numberitermaxis reached,otherwise proceed to Step 12.

    Step 12 Output the best solutiongbestas the optimal set of input weights and hidden biases of the ELM model.Finally,the MGSA-ELM model for MI prediction is established.

    3.Case Study

    The process considered here is a propylene polymerization process located in a plant in China.A highly simplified schematic diagram of the process is illustrated in Fig.3.The process consists of a chain of reactors in series,the first two continuous stirred-tank reactors(CSTR)and two fluidized-bed reactors(FBR).Hydrogen is fed into each reactor,but the catalyst and propylene are added only to the firstreactor along with the solvent.These liquids and gases supply reactants for the growing polymer particles and provide the heat transfer media.Besides,hydrogen entering along with the streams is used as the molecular-weight control agent to produce various grades of polypropylene.The MI of the PP,which depends on the catalyst properties,reactant composition,and reactor temperature,etc.,can determine different brands of products and different grades of product quality.

    To develop an effective model to predict the MI from a group of easy-measured variables,a pool of process information formed by nine process variables(t,p,l,a,f1,f2,f3,f4,f5)was selected according to experience and mechanism to construct the model for MI prediction,wheret,p,l,andastand for the process temperature,pressure,level of liquid,and percentage ofhydrogen in vapor phase in the first CSTR reactor,respectively;f1-f3 are flow rates of three streams of propylene into the reactor,andf4 andf5 are flow rates of catalyst and aid catalyst respectively.To avoid the occurrence of abnormal situations and to improve the quality of the prediction model,a greatnumber of operational data has been taken from the DCS historical recorded in the real plant and filtered first,and these are operational data points of polypropylene products of brand F401.Principal component analysis(PCA)is used to determine the important variables surrounding the process.It has been considered that the average sample time for this real propylene polymerization process is about 2 h.Data from the time records are partitioned into three sets which are classified as training,test and generalization sets with 50 data points for training,20 data points for test and the rest for generalization.It should be noted that the test and training set come from the same,whereas the generation set is from another batch.

    Fig.3.General scheme of propylene polymerization.

    In order to study the prediction accuracy of the proposed model,the difference between the output of the model and the real output is considered and represented in several ways,including mean absolute error(MAE),mean relative error(MRE),root of mean square error(RMSE),Theil's inequality coefficient(TIC)and standard deviation of absolute error(STD)[39].The error indicators are de fined as follows:

    4.Results and Discussion

    In this research,the parameter settings for the MGSA-ELM are con figured as recommended by the corresponding articles[30,32].The initial gravitational constantG0is set to 100.The descending coefficient αis set to 20.As the acceleration coefficientsc1decreases from 2.5 to 0.5 andc2increases from 0.5 to 2.5,the corresponding constants settings arec1i=0.5,c1f=2.5,c2i=0.5 andc2f=2.5.Besides,the maximum iteration numberitermax=100 and the population sizeNP=50.

    In order to investigate the performance of the proposed MGSA-ELM model,several other models,including the ELM,APSO-ELM and GSAELM have also been developed to be as comparison basis.Table 1 lists the performance comparison of different models on the test dataset.Itshows that the MGSA-ELM model has the best performance over all,with anMAEof 0.0180,compared with 0.0335,0.0434 and 0.0775 obtained from the corresponding APSO-ELM,GSA-ELM and ELM models.In terms ofMRE,the MGSA-ELM's prediction accuracy is 0.72%and that of APSO-ELM is 1.31%,much better than ELM(3.26%),error decreasing 77.91%,59.81%respectively.Similar results are observed in terms ofRMSE,with a decrease from 0.0916 to 0.0250.Moreover,theSTDobtained by MGSA-ELM model is 0.0244,while that of APSO-ELM is 0.0475,that of GSA-ELM is 0.0610 and that of ELM is 0.0937.So the MGSA-ELM model has the best stability.It is noted that theTICof MGSA-ELM(0.0049)is quite acceptable when compared with that of APSO-ELM(0.0094),GSA-ELM(0.0118),and ELM(0.0187),which indicates a good level of agreement between the proposed model and the real process.In a word,theMAE,MRE,RMSE,TICandSTDof the MGSA-ELM model are the smallest,with percentage decreases of 76.77%,77.91%,72.71%,73.80%and 73.96%,respectively,compared to the ELM model.The obviously huge percentage decrease further demonstrates the high accuracy of the MGSA-ELM model for the prediction of the MI.

    Table 1Performance comparison of different models on the test dataset

    Fig.4.Prediction of the optimized models on the test dataset.

    Fig.4 illustrates more explicitly in how better the MGSA-ELM model performs than the other models do on the test dataset.As can be seen from the figure,the ELM model marked with crosses shows significant predicting errors,and it is inappropriate to be used in the real industrial plant.The prediction results of the APSO-ELM and GSA-ELM models are better,while the prediction result of the MGSA-ELMmodelmarked with solid squares is the bestand very close to the realMIvalue on mosttesting dataset points.

    To specify the universality of the MGSA-ELM model,a comparative study of four models is carried out on the generalization dataset.According to the displayed results in Table 2,the GSA-ELM model and the APSO-ELMmodel have obtained much improved prediction accuracy than the ELM model,but the MGSA-ELM model still has the most accurate prediction results.Compared to the ELM model,the MGSA-ELM model shows a percentage decrease of 55.68%inMREfrom 2.73%to 1.21%.The same happens in terms ofMAE,RMSE,TICandSTD.Moreover,Fig.5 gives an exhibition of how the models perform on the generalization dataset.Obviously,the prediction results of the MGSA-ELM model marked with solid squares are much more accurate than the other models.It proves the excellent university of the MGSA-ELM model for MI prediction both statistically and graphically.

    Table 2Performance comparison of different models on the generalization dataset

    Fig.5.Prediction of the optimized models on the generalization dataset.

    Table 3 compares the proposed MGSA-ELM model with other models presented in the open literatures[3,18,21,40].Note that only the research data used in Ref.[18]are the same as that in this paper while the others apply different dataset whose results are for reference only.With the same research data,our work improves the prediction precision fromMRE3.27%presented in Ref.[18]to 0.72%.It shows the advantages of the proposed model.

    5.Conclusions

    A soft sensor based on an optimized ELMfor PP MI prediction is presented.The ELM is optimized by the MGSA,which hybridizes the APSO and the GSA to choose the optimal set of input weights and hiddenbiases for ELM.According to the comparison results in a real industrial PP plant,the proposed MGSA-ELM model predicts MI with anMREof 0.72%on the test dataset,compared with 1.31%and 1.70%obtained from the APSO-ELM model and the GSA-ELM model.It obtains even smaller prediction error than the ELM model does,with percentage decrease of 77.91%and 55.68%inMREon test dataset and generalization dataset,respectively.Research work shows the effectiveness of the MGSA,and indicates that the proposed MGSA-ELM model is capable of predicting the MI in practical PP industrial processes,and also provides a reference to the soft sensor of other complex industrial processes.Since user-friendly and publicly accessible web-servers represent the future direction for developing practically more useful predictors[41],we shall make efforts in our future work to provide a web-server for the prediction method presented in this paper.

    Table 3The comparison between the current work and the published literatures

    [1]S.S.Bafna,A.M.Beall,A design of experiments study on the factors affecting variability in the melt index measurement,J.Appl.Polym.Sci.65(1997)277-288.

    [2]A.Mogilicharla,K.Mitra,S.Majumdar,Modeling of propylene polymerization with long chain branching,Chem.Eng.J.246(2014)175-183.

    [3]T.Y.Kim,Y.K.Yeo,Development of polyethylene melt index inferential model,Korean J.Chem.Eng.27(2010)1669-1674.

    [4]X.Z.Chen,D.P.Shi,X.Gao,Z.H.Luo,A fundamental CFD study of the gas-solid flow if eld in fluidized bed polymerization reactors,Powder Technol.205(2011)276-288.

    [5]S.Lucia,T.Finkler,S.Engell,Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty,J.Process Control23(2013)1306-1319.

    [6]A.Shamiri,M.A.Hussain,F.S.Mjalli,M.S.Shafeeyan,N.Mostou fi,Experimental and modeling analysis of propylene polymerization in a pilot-scale fluidized bed reactor,Ind.Eng.Chem.Res.53(2014)8694-8705.

    [7]P.Sarkar,S.K.Gupta,Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors,Polym.Eng.Sci.33(1993)368-374.

    [8]W.Meng,J.Li,B.Chen,H.Li,Modeling and simulation of ethylene polymerization in industrial slurry reactor series,Chin.J.Chem.Eng.21(2013)850-859.

    [9]A.Shamiri,M.A.Hussain,F.S.Mjalli,N.Mostou fi,S.Hajimolana,Dynamics and predictive control of gas phase propylene polymerization in fluidized bed reactors,Chin.J.Chem.Eng.21(2013)1015-1029.

    [10]W.Wang,X.Liu,Melt index prediction by least squares support vector machines with an adaptive mutation fruit fly optimization algorithm,Chemometr.Intell.Lab.Syst.141(2015)79-87.

    [11]J.Li,X.Liu,H.Jiang,Y.Xiao,Melt index prediction by adaptively aggregated RBF neural networks trained with novel ACO algorithm,J.Appl.Polym.Sci.125(2012)943-951.

    [12]N.M.Ramli,M.Hussain,B.M.Jan,B.Abdullah,Composition prediction of a debutanizer column using equation based artificial neural network model,Neurocomputing131(2014)59-76.

    [13]L.Ye,H.Yang,A multi-model approach for soft sensor development based on feature extraction using weighted kernel Fisher criterion,Chin.J.Chem.Eng.22(2014)146-152.

    [14]Z.Cong,Y.Hao,Consistency and asymptotic property of a weighted least squares method for networked control systems,Chin.J.Chem.Eng.22(2014)754-761.

    [15]I.S.Han,C.Han,C.B.Chung,Meltindex modeling with supportvectormachines,partial least squares,and artificial neural networks,J.Appl.Polym.Sci.95(2005)967-974.

    [16]J.Zhang,Q.B.Jin,Y.M.Xu,Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks,Chem.Eng.Technol.29(2006)442-448.

    [17]J.Gonzaga,L.Meleiro,C.Kiang,R.Maciel Filho,ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process,Comput.Chem.Eng.33(2009)43-49.

    [18]J.Shi,X.Liu,Melt index prediction by weighted least squares support vector machines,J.Appl.Polym.Sci.101(2006)285-289.

    [19]H.Jiang,Y.Xiao,J.Li,X.Liu,Prediction of the melt index based on the relevance vector machine with Modified particle swarm optimization,Chem.Eng.Technol.35(2012)819-826.

    [20]M.Zhang,X.Liu,A soft sensor based on adaptive fuzzy neural network and support vector regression for industrial melt index prediction,Chemometr.Intell.Lab.Syst.126(2013)83-90.

    [21]F.Ahmed,L.H.Kim,Y.K.Yeo,Statistical data modeling based on partial least squares:Application to melt index predictions in high density polyethylene processes to achieve energy-saving operation,Korean J.Chem.Eng.30(2013)11-19.

    [22]Z.Zhang,T.Wang,X.Liu,Melt index prediction by aggregated RBF neural networks trained with chaotic theory,Neurocomputing131(2014)368-376.

    [23]G.B.Huang,Q.Y.Zhu,C.K.Siew,Extreme learning machine:Theory and applications,Neurocomputing70(2006)489-501.

    [24]G.-B.Huang,An insight into extreme learning machines:Random neurons,random features and kernels,Cogn.Comput.6(2014)376-390.

    [25]G.-B.Huang,H.Zhou,X.Ding,R.Zhang,Extreme learning machine for regression and multiclass classification,IEEE Trans.Syst.,Man Cybern.B Cybern.42(2012)513-529.

    [26]D.Wang,M.Alhamdoosh,Evolutionary extreme learning machine ensembles with size control,Neurocomputing102(2013)98-110.

    [27]R.C.Deo,M.?ahin,Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia,Atmos.Res.153(2015)512-525.

    [28]S.Li,P.Wang,L.Goel,Short-term load forecasting by wavelet transform and evolutionary extreme learning machine,Electr.Power Syst.Res.122(2015)96-103.

    [29]Q.Y.Zhu,A.K.Qin,P.N.Suganthan,G.B.Huang,Evolutionary extreme learning machine,Pattern Recogn.38(2005)1759-1763.

    [30]E.Rashedi,H.Nezamabadi-Pour,S.Saryazdi,GSA:A gravitational search algorithm,Inf.Sci.179(2009)2232-2248.

    [31]J.Kennedy,W.M.Spears,Matching algorithms to problems:An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator,IEEE,New York,1998.

    [32]K.Vaisakh,L.R.Srinivas,K.Meah,Genetic evolving ant direction particle swarm optimization algorithm for optimal power flow with non-smooth cost functions and statistical analysis,Appl.Soft Comput.13(2013)4579-4593.

    [33]I.C.Trelea,The particle swarm optimization algorithm:Convergence analysis and parameter selection,Inf.Process.Lett.85(2003)317-325.

    [34]E.Rashedi,H.Nezamabadi-Pour,S.Saryazdi,BGSA:Binary gravitational search algorithm,Nat.Comput.9(2010)727-745.

    [35]E.Rashedi,H.Nezamabadi-Pour,S.Saryazdi,Filter modeling using gravitational search algorithm,Eng.Appl.Artif.Intell.24(2011)117-122.

    [36]F.Ding,System identification—New theory and methods,Science Press,Beijing,2013.

    [37]F.Ding,System identification—Performances analysis for identification methods,Science Press,Beijing,2014.

    [38]S.McLoone,M.D.Brown,G.Irwin,G.Lightbody,A hybrid linear/nonlinear training algorithm for feedforward neural networks,IEEE Trans.Neural Netw.9(1998)669-684.

    [39]D.Murray_Smith,Methods for the external validation of continuous system simulation models:A review,Math.Comp.Model.Dyn.4(1998)5-31.

    [40]C.Jin,W.Guizeng,X.Bowen,Prediction of polypropylene melt index based on robust and adaptive RBF networks,Control Decis.14(1999)339-343.

    [41]K.-C.Chou,H.-B.Shen,Recent advances in developing web-servers for predicting protein attributes,Nat.Sci.1(2009)63-92.

    又爽又黄无遮挡网站| 亚洲国产看品久久| 亚洲人与动物交配视频| 97碰自拍视频| 偷拍熟女少妇极品色| 国产高清视频在线播放一区| 久久久国产成人精品二区| 欧美性猛交╳xxx乱大交人| 少妇人妻一区二区三区视频| 三级男女做爰猛烈吃奶摸视频| 成人三级做爰电影| 国产精华一区二区三区| 亚洲av电影在线进入| 欧美精品啪啪一区二区三区| 淫妇啪啪啪对白视频| 欧美日韩福利视频一区二区| 久久中文字幕人妻熟女| 国产精品久久久久久亚洲av鲁大| 亚洲欧美日韩无卡精品| 桃色一区二区三区在线观看| 色精品久久人妻99蜜桃| 国产一区二区在线av高清观看| 成人国产综合亚洲| 真人一进一出gif抽搐免费| 国产成人啪精品午夜网站| 国产亚洲精品一区二区www| 国产亚洲精品久久久com| 人人妻,人人澡人人爽秒播| 一本精品99久久精品77| 啪啪无遮挡十八禁网站| 久久精品国产清高在天天线| 男女午夜视频在线观看| 麻豆成人av在线观看| 国产熟女xx| 日韩欧美在线乱码| 免费一级毛片在线播放高清视频| 一区二区三区国产精品乱码| 久9热在线精品视频| 观看美女的网站| 欧美一区二区国产精品久久精品| 欧美午夜高清在线| 日韩成人在线观看一区二区三区| av天堂中文字幕网| 色av中文字幕| 香蕉丝袜av| 午夜免费观看网址| 此物有八面人人有两片| 国产精品99久久99久久久不卡| 欧美乱色亚洲激情| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩高清在线视频| 免费在线观看亚洲国产| 免费在线观看亚洲国产| aaaaa片日本免费| 国产亚洲av嫩草精品影院| 欧美日韩亚洲国产一区二区在线观看| 欧美不卡视频在线免费观看| 久久这里只有精品中国| 男插女下体视频免费在线播放| 中文字幕最新亚洲高清| 国产高清videossex| 亚洲人与动物交配视频| 在线观看一区二区三区| 国产精品久久电影中文字幕| 国产精品一区二区三区四区久久| 亚洲一区二区三区不卡视频| 在线免费观看不下载黄p国产 | 一级a爱片免费观看的视频| 亚洲中文字幕日韩| 成人国产综合亚洲| 不卡av一区二区三区| 搞女人的毛片| 国产av麻豆久久久久久久| 日日夜夜操网爽| 欧美最黄视频在线播放免费| 国产精品野战在线观看| 亚洲乱码一区二区免费版| 中文字幕熟女人妻在线| 这个男人来自地球电影免费观看| 麻豆av在线久日| 国产精品久久久久久人妻精品电影| 欧美成人性av电影在线观看| 免费看美女性在线毛片视频| 制服丝袜大香蕉在线| 九九久久精品国产亚洲av麻豆 | 亚洲精品美女久久久久99蜜臀| 热99在线观看视频| 中文字幕人成人乱码亚洲影| 亚洲精品乱码久久久v下载方式 | 久久久久免费精品人妻一区二区| 成人性生交大片免费视频hd| 老鸭窝网址在线观看| 黄频高清免费视频| 舔av片在线| 久久久国产精品麻豆| 免费电影在线观看免费观看| 久久这里只有精品中国| 香蕉av资源在线| 99热只有精品国产| 午夜a级毛片| 日韩欧美三级三区| 亚洲18禁久久av| 舔av片在线| 变态另类丝袜制服| 国产97色在线日韩免费| 黄色成人免费大全| 国产黄a三级三级三级人| 无人区码免费观看不卡| 日韩欧美在线乱码| 9191精品国产免费久久| 窝窝影院91人妻| 亚洲第一欧美日韩一区二区三区| 黄色片一级片一级黄色片| 国产精华一区二区三区| a级毛片在线看网站| 国模一区二区三区四区视频 | 国产成人精品久久二区二区免费| 99久久99久久久精品蜜桃| 国内精品久久久久精免费| 窝窝影院91人妻| 欧美日韩国产亚洲二区| 黄色日韩在线| 国产99白浆流出| 亚洲国产欧洲综合997久久,| 精品无人区乱码1区二区| 国产伦一二天堂av在线观看| 岛国视频午夜一区免费看| 一边摸一边抽搐一进一小说| 俺也久久电影网| 精品久久久久久久末码| 舔av片在线| 久久中文字幕一级| 国产精华一区二区三区| 可以在线观看的亚洲视频| 国产单亲对白刺激| 99久久精品国产亚洲精品| 欧美中文综合在线视频| 国产成人精品久久二区二区免费| 变态另类成人亚洲欧美熟女| 日韩精品青青久久久久久| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 后天国语完整版免费观看| 亚洲av片天天在线观看| 色综合亚洲欧美另类图片| 久9热在线精品视频| netflix在线观看网站| 18禁黄网站禁片免费观看直播| 在线观看午夜福利视频| 欧美乱码精品一区二区三区| 在线观看一区二区三区| bbb黄色大片| 在线十欧美十亚洲十日本专区| 亚洲激情在线av| 欧美日韩福利视频一区二区| 免费看光身美女| 国产私拍福利视频在线观看| 女人被狂操c到高潮| 国产精品99久久99久久久不卡| 亚洲精品美女久久久久99蜜臀| 国产日本99.免费观看| 婷婷亚洲欧美| 90打野战视频偷拍视频| 中文在线观看免费www的网站| 男人舔女人的私密视频| 国模一区二区三区四区视频 | 在线免费观看的www视频| 狂野欧美白嫩少妇大欣赏| 757午夜福利合集在线观看| 精品乱码久久久久久99久播| 中出人妻视频一区二区| 悠悠久久av| 男女之事视频高清在线观看| 99热这里只有精品一区 | 国产主播在线观看一区二区| 91av网站免费观看| 亚洲精品456在线播放app | 又粗又爽又猛毛片免费看| 一二三四社区在线视频社区8| 亚洲国产欧美人成| 桃红色精品国产亚洲av| 国产亚洲欧美98| 国产午夜精品论理片| 丰满的人妻完整版| 少妇的丰满在线观看| 亚洲国产高清在线一区二区三| 中文字幕熟女人妻在线| 国内精品久久久久精免费| 色在线成人网| 日本一二三区视频观看| 久久久久免费精品人妻一区二区| 国产欧美日韩精品亚洲av| www国产在线视频色| 精品国产亚洲在线| 久久中文字幕一级| 国产激情欧美一区二区| 久久久久久九九精品二区国产| 亚洲中文av在线| 老熟妇仑乱视频hdxx| 国产精品久久久人人做人人爽| 久久中文字幕一级| 亚洲成人久久爱视频| 脱女人内裤的视频| 国产一级毛片七仙女欲春2| 久久精品综合一区二区三区| 亚洲欧美激情综合另类| 亚洲av成人一区二区三| 亚洲自拍偷在线| 国产成人精品无人区| 日本三级黄在线观看| 国产午夜福利久久久久久| 久久久久久久久久黄片| 久久久色成人| 国产av麻豆久久久久久久| 男人舔女人的私密视频| 亚洲av电影在线进入| e午夜精品久久久久久久| 国产精品99久久久久久久久| 精品久久久久久,| 久久中文字幕一级| 亚洲精品456在线播放app | 动漫黄色视频在线观看| 国产成年人精品一区二区| 后天国语完整版免费观看| 国产精品电影一区二区三区| 亚洲专区中文字幕在线| 淫秽高清视频在线观看| 日本黄色片子视频| 亚洲午夜精品一区,二区,三区| 午夜免费成人在线视频| 99国产综合亚洲精品| 女人被狂操c到高潮| 日本熟妇午夜| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 美女高潮的动态| 欧美另类亚洲清纯唯美| 国产亚洲精品综合一区在线观看| 婷婷亚洲欧美| 18禁黄网站禁片免费观看直播| cao死你这个sao货| 99热这里只有精品一区 | 在线视频色国产色| 在线观看美女被高潮喷水网站 | 久久香蕉精品热| 国产私拍福利视频在线观看| 国产成人精品无人区| 亚洲欧美精品综合久久99| 国产精品1区2区在线观看.| 88av欧美| 黄色丝袜av网址大全| 国产三级中文精品| 欧美日韩福利视频一区二区| 精品国产超薄肉色丝袜足j| 亚洲电影在线观看av| 免费大片18禁| 亚洲午夜理论影院| 国产高清视频在线观看网站| 99热这里只有精品一区 | 别揉我奶头~嗯~啊~动态视频| 亚洲色图av天堂| 黄色视频,在线免费观看| 日韩大尺度精品在线看网址| 欧美黄色片欧美黄色片| 中文在线观看免费www的网站| 亚洲国产精品999在线| 熟女人妻精品中文字幕| 黄色 视频免费看| 午夜福利在线观看吧| 亚洲自偷自拍图片 自拍| 成年女人永久免费观看视频| 亚洲 欧美一区二区三区| 在线永久观看黄色视频| 亚洲精品乱码久久久v下载方式 | 亚洲av第一区精品v没综合| 免费一级毛片在线播放高清视频| 久久精品影院6| 国产高清videossex| 18禁黄网站禁片免费观看直播| 三级毛片av免费| 不卡一级毛片| 性色avwww在线观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利免费观看在线| 国产伦精品一区二区三区四那| 国产精品,欧美在线| 欧美日韩亚洲国产一区二区在线观看| 少妇人妻一区二区三区视频| 美女高潮的动态| 亚洲 国产 在线| 欧美乱妇无乱码| 国产黄片美女视频| 啪啪无遮挡十八禁网站| 欧美绝顶高潮抽搐喷水| 观看美女的网站| 色综合婷婷激情| 老汉色av国产亚洲站长工具| 怎么达到女性高潮| 亚洲av成人av| 亚洲av成人精品一区久久| 99久久精品热视频| 在线播放国产精品三级| 国产精品久久久久久精品电影| 色综合欧美亚洲国产小说| 亚洲精品一区av在线观看| 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 99在线视频只有这里精品首页| 精品不卡国产一区二区三区| 亚洲精品久久国产高清桃花| 99视频精品全部免费 在线 | 日本五十路高清| 熟女人妻精品中文字幕| 男人舔女人的私密视频| 午夜激情欧美在线| 1000部很黄的大片| 性色av乱码一区二区三区2| 亚洲成a人片在线一区二区| 欧美色视频一区免费| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av在线| 91久久精品国产一区二区成人 | 啪啪无遮挡十八禁网站| 久久热在线av| 成年女人看的毛片在线观看| 成人特级av手机在线观看| 国产97色在线日韩免费| 曰老女人黄片| 日韩三级视频一区二区三区| 国产69精品久久久久777片 | 国产成人啪精品午夜网站| 欧美在线黄色| 蜜桃久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 啪啪无遮挡十八禁网站| 一级毛片女人18水好多| 美女大奶头视频| 久久久国产成人免费| 成年女人看的毛片在线观看| 欧美成狂野欧美在线观看| 国产精品久久久久久久电影 | 最近最新中文字幕大全电影3| 国产免费av片在线观看野外av| 蜜桃久久精品国产亚洲av| 色噜噜av男人的天堂激情| 欧美一级毛片孕妇| 国内揄拍国产精品人妻在线| 高清在线国产一区| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 88av欧美| 日日夜夜操网爽| 亚洲熟妇熟女久久| 少妇的逼水好多| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av片天天在线观看| 我要搜黄色片| 亚洲国产精品合色在线| 嫩草影院入口| 日韩中文字幕欧美一区二区| 久9热在线精品视频| av在线蜜桃| 99在线视频只有这里精品首页| av在线蜜桃| av女优亚洲男人天堂 | 精品久久蜜臀av无| av欧美777| 法律面前人人平等表现在哪些方面| 国产精品久久久av美女十八| 国产激情久久老熟女| 国产主播在线观看一区二区| 久久午夜综合久久蜜桃| 免费高清视频大片| 亚洲中文日韩欧美视频| 91av网站免费观看| 欧美不卡视频在线免费观看| 在线观看午夜福利视频| 国产一区二区三区视频了| 好男人在线观看高清免费视频| 黄色 视频免费看| 亚洲国产色片| 精品不卡国产一区二区三区| 亚洲欧美一区二区三区黑人| 一级毛片高清免费大全| 黄色女人牲交| 国产高清videossex| 宅男免费午夜| 日日夜夜操网爽| 欧美一区二区国产精品久久精品| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 欧美不卡视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播放欧美日韩| 欧美色视频一区免费| ponron亚洲| 国产麻豆成人av免费视频| 午夜福利在线在线| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影| 国产aⅴ精品一区二区三区波| 1024香蕉在线观看| 国产激情欧美一区二区| 极品教师在线免费播放| 国产精品一区二区三区四区免费观看 | 久久天堂一区二区三区四区| 男女那种视频在线观看| 国产精品日韩av在线免费观看| netflix在线观看网站| 在线观看美女被高潮喷水网站 | 日本三级黄在线观看| 国产精品一及| 国产欧美日韩精品一区二区| 久久中文字幕人妻熟女| 亚洲av五月六月丁香网| 青草久久国产| 亚洲av成人不卡在线观看播放网| 精品久久蜜臀av无| 一进一出好大好爽视频| 日韩大尺度精品在线看网址| 听说在线观看完整版免费高清| 两性午夜刺激爽爽歪歪视频在线观看| 日本a在线网址| 国语自产精品视频在线第100页| 高清毛片免费观看视频网站| ponron亚洲| 两人在一起打扑克的视频| 啦啦啦免费观看视频1| 欧美国产日韩亚洲一区| 国产精品一区二区三区四区久久| 亚洲av片天天在线观看| 久久久久久久午夜电影| 脱女人内裤的视频| 夜夜看夜夜爽夜夜摸| 久久久久久久精品吃奶| 久久久久久久久免费视频了| 欧美在线黄色| 精品一区二区三区四区五区乱码| 1000部很黄的大片| 国模一区二区三区四区视频 | 亚洲av第一区精品v没综合| 国产激情久久老熟女| 男人舔女人下体高潮全视频| 真实男女啪啪啪动态图| 淫秽高清视频在线观看| 欧美激情久久久久久爽电影| 久久性视频一级片| 99国产极品粉嫩在线观看| 99久国产av精品| 一进一出好大好爽视频| 看片在线看免费视频| 免费大片18禁| 又黄又爽又免费观看的视频| 久久性视频一级片| 婷婷精品国产亚洲av在线| 色综合欧美亚洲国产小说| 1024香蕉在线观看| 色综合婷婷激情| 两个人视频免费观看高清| 三级男女做爰猛烈吃奶摸视频| 亚洲色图 男人天堂 中文字幕| 久久久久亚洲av毛片大全| 成人亚洲精品av一区二区| 久久中文看片网| 99国产精品99久久久久| 欧美激情在线99| 亚洲电影在线观看av| 热99re8久久精品国产| av国产免费在线观看| 欧美大码av| 久久久久久久午夜电影| 婷婷亚洲欧美| 亚洲国产色片| av国产免费在线观看| 色综合欧美亚洲国产小说| 色吧在线观看| 人妻丰满熟妇av一区二区三区| 国产精品自产拍在线观看55亚洲| 黄色日韩在线| 一进一出抽搐动态| 色噜噜av男人的天堂激情| 91老司机精品| 免费大片18禁| 亚洲中文字幕日韩| e午夜精品久久久久久久| 久久精品国产亚洲av香蕉五月| 亚洲在线自拍视频| 少妇裸体淫交视频免费看高清| 国产免费男女视频| 51午夜福利影视在线观看| 日韩国内少妇激情av| 51午夜福利影视在线观看| 老司机深夜福利视频在线观看| 国产精品自产拍在线观看55亚洲| 国产成人精品久久二区二区免费| 99在线人妻在线中文字幕| 亚洲欧美日韩高清在线视频| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3| 1024香蕉在线观看| 一本精品99久久精品77| 国产私拍福利视频在线观看| 真实男女啪啪啪动态图| 天堂动漫精品| 免费在线观看日本一区| 成年女人永久免费观看视频| 99国产精品99久久久久| 久久精品综合一区二区三区| 高潮久久久久久久久久久不卡| 美女黄网站色视频| 天堂影院成人在线观看| 国产精品av视频在线免费观看| 成人三级做爰电影| 最新中文字幕久久久久 | 黄色日韩在线| 亚洲精品久久国产高清桃花| 欧美三级亚洲精品| 狂野欧美白嫩少妇大欣赏| 国产精品香港三级国产av潘金莲| 啦啦啦韩国在线观看视频| 狠狠狠狠99中文字幕| 色哟哟哟哟哟哟| 老司机午夜福利在线观看视频| 亚洲片人在线观看| 成人精品一区二区免费| 久久精品91无色码中文字幕| 国产精品久久久久久亚洲av鲁大| 午夜福利成人在线免费观看| 亚洲av美国av| 天天一区二区日本电影三级| www.www免费av| av中文乱码字幕在线| 中文在线观看免费www的网站| 亚洲性夜色夜夜综合| 免费av不卡在线播放| 午夜激情欧美在线| 九九久久精品国产亚洲av麻豆 | 国产又色又爽无遮挡免费看| 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 麻豆久久精品国产亚洲av| 亚洲欧美精品综合久久99| 国产av不卡久久| 成人高潮视频无遮挡免费网站| 精品一区二区三区视频在线 | 嫩草影院入口| 亚洲av成人不卡在线观看播放网| 亚洲欧洲精品一区二区精品久久久| 舔av片在线| 亚洲成人免费电影在线观看| 久久精品国产99精品国产亚洲性色| 天堂动漫精品| 激情在线观看视频在线高清| 国产成人av教育| 欧美午夜高清在线| 国产熟女xx| 99riav亚洲国产免费| 午夜福利18| 亚洲欧美日韩高清在线视频| 久久久久久久精品吃奶| 日韩欧美 国产精品| 精品日产1卡2卡| 国产av不卡久久| 国语自产精品视频在线第100页| 99热6这里只有精品| 美女黄网站色视频| 亚洲va日本ⅴa欧美va伊人久久| 99精品久久久久人妻精品| 久久精品aⅴ一区二区三区四区| 国产亚洲精品综合一区在线观看| 男插女下体视频免费在线播放| 成人三级黄色视频| 丁香六月欧美| www.www免费av| 亚洲欧美日韩无卡精品| 亚洲 欧美一区二区三区| a级毛片在线看网站| 最好的美女福利视频网| 精品一区二区三区av网在线观看| 91久久精品国产一区二区成人 | 婷婷六月久久综合丁香| 欧美日本视频| 久久午夜亚洲精品久久| 色噜噜av男人的天堂激情| 看黄色毛片网站| 久久性视频一级片| 在线观看一区二区三区| 亚洲午夜理论影院| 久久久色成人| 国产伦精品一区二区三区视频9 | 久久国产精品影院| 欧美中文日本在线观看视频| 久久香蕉国产精品| 久久香蕉精品热| 欧美成人免费av一区二区三区| 久久久国产精品麻豆| 日本黄色视频三级网站网址| 亚洲av电影不卡..在线观看| 亚洲av电影在线进入| 精品国产超薄肉色丝袜足j| 美女扒开内裤让男人捅视频| 亚洲性夜色夜夜综合| 免费在线观看影片大全网站| 丰满人妻熟妇乱又伦精品不卡| 一个人免费在线观看电影 | 熟女少妇亚洲综合色aaa.| 亚洲av日韩精品久久久久久密| 亚洲电影在线观看av| 精品99又大又爽又粗少妇毛片 | 国产视频一区二区在线看| 久久久久国产一级毛片高清牌| 九九热线精品视视频播放| 999久久久精品免费观看国产| 日韩欧美在线二视频| 在线观看美女被高潮喷水网站 |