• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous desulfurization and denitrification of sintering flue gas via composite absorbent☆

    2016-06-01 03:01:14JieWangWenqiZhong

    Jie Wang ,Wenqi Zhong ,*

    1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,School of Energy and Environment,Southeast University,Nanjing 210096,China

    2 Centre for Simulation and Modelling of Particulate Systems,Southeast University-Monash University Joint Research School,Suzhou 215123,China

    1.Introduction

    Among the various processes in iron and steel industry,the emission of NOXfrom the sintering process accounts for 50%of the total NOXemission.Additionally,the SO2discharging from the sintering process is about 80%.These gases are the main pollutant harmful to human and other living beings,the reduction of which is an important work of the iron and steel production enterprises[1].Along with the fact that the emission standard of NOXand SO2is more and more rigorous,the development ofnoveltechnologies for simultaneous desulfurization and denitrification of sintering flue gas will be another challenging and urgent issue following the flue gas treatment of power plant[2].At present,wet flue gas desulfurization(FGD)is a relatively mature and most widely applied technology in iron and steelindustry to controlthe SO2emission.However,It is notmuch effective For the absorption ofNOXbecause NOXfrom the sintering flue gas mainly exists in the form of NO which is poorly soluble in water[3].The common technologies for denitrification used in coalfired power plant are the selective catalytic reduction(SCR)and selective non-catalytic reduction(SNCR)methods[4-6],butneitherof them can be applied to sintering flue gas directly due to the special characteristics of sintering flue gas whose gas temperature is relative low(80-160°C),gas flow rate is too large(average 2.5 × 106m3·h-1),and the concentration of NOXis low(100-400 mg·m-3).What is more,establishment of completely new equipment and technology to remove SO2and NOXsimultaneously requires too much economic budget and thus is hardly accepted by most iron and steel industries.An alternative way is to add NO removal function to the existing FGD system to reach the goal of simultaneous absorption of SO2and NOX[7].In other words,the aim of this technique is to use proper oxidize agents to react NO into NO2which ultimately can be absorbed by water.

    Currently,commonly used oxidizing agents include ClO2[8,9],O3[10,11],KMnO4[12-15],H2O2[16-18],NaClO2[19-27],NaClO[28,29]and so on.For the wet FGD,the reaction mainly occurs in the liquid phase,so ClO2,O3etc.will not be taken into consideration.KMnO4,and H2O2could be effective for simultaneous absorption of SO2and NOXin alkaline conditions,and the removal effects improve with the increase of pH.However,the pH of actual desulfurization slurry is between 5 and 7,KMnO4,H2O2will not be primarily considered.Moreover,the reaction products of KMnO4may contaminate the FGD gypsum and causing secondary pollution.And the chemical performance of H2O2is unstable,so It is difficultto be transported for long distance and reserved for long time.In general,NaClO2is the oxidizing agents which had been researched a lot and its effect is great for simultaneous desulfurization and denitrification.For example,Sadaet al.[19-21]used NaClO2/NaOH solution as the absorbent to study the removal efficiency of NO under various operating parameters.They found that adding NaOH to NaClO2would decrease the absorption rate of NO.The removal efficiency is mainly affected by the L/G ratio and the concentration of NaClO2in the solution.Next,Chienetal.[22-24]did a series of similarex periments in a bench-scale spraying scrubber system in order to investigate the absorption kinetics of SO2and NO and the reaction mechanism was revealed.Unlike previous research,Yanget al.[25,26]performed the absorption experiments of NO by nitric acid solution of NaClO2in a packed bed scrubber and found the color of solution turned greenish yellow due to the presence of ClO2,they also used bubble column and spary chamber scrubber to absorb NO in acidic NaClO or Cl2solution and obtained the similar results.Deshwalet al.[27]revealed that NaClO2could decomposed into ClO2gas in acidic solution,which was believed to participate in denitrification and determined the removal efficiency of NO.In addition,researches on NaClO are relatively rare due to the fact that the Oxidation of NaClO is weak compared with NaClO2.Chenet al.[28,29]developed a two-stage chemical scrubbing system to removal NO,the efficiency is obvious but the process is complicated.

    According to the previous studies,NaClO2was demonstrated to be comparatively effective among all kinds of oxidizing agents in desulfurization and denitrification,but it is still difficult to be applied extensively in industry because of the high cost.In order to solve such problems,a compound absorbent containing NaClO2and NaClO was used to investigate simultaneous removal of SO2and NO in this study,and the key point of this art is to determine the amount of oxidizing agents and the optimal experimental conditions.At last,the success of engineering test proved that this novel method has advantages of both higher efficiency and lower cost compared with the NaClO2oxidation absorption method.

    2.Experimental

    The experimental device is illustrated in Fig.1 which includes four main parts:a flue gas simulation system,an absorption reactor system,a gas sampling and analyzing system and an off-gas treatment system.The flue gas simulation system mainly consists of a pure N2gas cylinder(Shangyuan Gas,purity 99.9%),a pure SO2gas cylinder(Shangyuan Gas,purity 99.9%),a pure NO gas cylinder(Shangyuan Gas,purity 99.9%),a gas buffertank and fourmass flow controllers(MFC).The absorption reactor unit mainly includes a self-designed lab-scale bubbling reactor and a digital heating and temperature control device.Besides,the reactor is made of stainless steel with a diameter D1of 320 mm and a height H1of 240 mm.There are 4 intake-tubes with a diameter D2of 14 mm and 1 exhaust tube with a diameter D3of 80 mm.The gas sampling and analyzing system contain a sample conditioner(Juchuang,JCGH-2)and a flue gas analyzer(MRU,Germany).The off-gas treatment system is a tank saturated with aqueous alkaline solution.The grade of sodium chlorite is analytical-pure(available chlorine≥80%,Aladdin IndustrialCorporation,Shanghai,China).The grade of sodium hypochlorite is technical-pure(available chlorine≥30%,Nanjing Chemical Reagent Co.,Ltd.,Nanjing,China).The grade of sodium hydroxide(≥96%)and phosphoric acid(65%-68%)is analytical-pure(BOLT Chemical Trading Co.,Ltd.,Tianjin,China).

    Fig.1.Schematic diagram of experimental system.

    During the experiment,the flow rates of N2,SO2and NO were controlled through the mass flow meters and mixed into desired concentrations in a buffer tank firstly.10 L aqueous solution with a required amountof NaClO2/NaClO in the reactorwas heated and then kept in desired temperatures by a digital heating and temperature control device.Thereafter,the simulated gas continuously flowed through the reactor with a flow rate and was absorbed by the solution.After reaction,the simulated flue gas was sampled by a sample conditioner and analyzed through a flue gas analyzer so that the concentration of NO and SO2would be monitored in real time.Meanwhile,the testdata was recorded in every 2 min,so the removalefficiency ofNOand SO2can be calculated through Eqs.(1)to(2).

    In addition,the initial pH of absorption solution in the bubbling reactor could be adjusted by adding acid or alkaline solution(H3PO4and NaOH)and detected by the LEICI pH meter.Continuous stirring was provided by a mechanical agitator.The operating conditions are shown in Table 1.Finally,the simulated flue gas before being released into atmosphere would be post-processed by the off-gas treatment system.

    Table 1Operating conditions

    3.Results and Discussion

    3.1.Effect of the concentration of NaClO2(ms)and NaClO(mp)

    Fig.2.Effect of the concentration ofNaClO2/NaClOon the removalefficiencies(T R=25°C,pH=6,V g=30 L·h-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    Fig.2 depicts the variation in NO and SO2removal efficiencies with the concentration of absorbent,it can be seen that the removal efficiency of NO increases at first and then slow down withmsand the SO2removal efficiency almost remains constant.Whenmsincreases from1 to 3 mmol·L-1,the removalefficiency ofNOis sharply improved by 11%.Whilemschanges from 4 to 6 mmol·L-1,the removalefficiency increases by 4%only.Ifmsis constant,the removal efficiency of NO inmp=3 mmol·L-1is higher thanmp=0 mmol·L-1.It means that adding NaClOto NaClO2aqueous solution hasobvious promotion on denitrification but the effect would be weakened if excess quantities of NaClO were used.

    Moreover,considering that the oxidation properties of the solution may be different under different molar ratios of NaClO2/NaClO(M)which iscalculated by using Eq.(3),experiments were carried out in different molar ratios of NaClO2/NaClO to check the oxidization of the solution.Due to the fact that the removal efficiency of SO2is less affected by the concentration of oxidizing agent,we focus on the removal efficiency of NO here.

    As shown in Fig.3,the removal efficiency of NO shows an upward trend with the increase ofM.WhenMis above 1.3,the removal efficiency of NO begins to be stable.These results indicate that NaClO2plays an important role in the process of oxidative absorption,slight change of its concentration can lead to significant increase of the removal efficiency of NO.From the aspect of economy that the price of NaClO2is much higher than NaClO,the cost of oxidizing agent can be reduced by decreasing NaClO2concentration while increasing NaClO concentration.In this study,based on the efficiency and the cost consideration,the optimalMwas chosen as 1.3.

    Fig.3.Effect of the molar ratio of NaClO2/NaClO on the removal efficiencies(T R=25°C,pH=6,V g=30 L·h-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    3.2.Effect of solution temperature(TR)

    For the gas-liquid two phase chemical reaction,the temperature plays dual role.On one hand,the increase of temperature is beneficial to ion diffusion in solution which accelerates the rate of reaction and promotes the removal of SO2and NO.On the other hand,the increase of temperature lowers the solubility ofSO2and NOin solution which increases the mass transfer resistance between gas and liquid and restrains the oxidation and absorption of SO2and NO.Therefore,the rise of temperature has effects of promoting and inhibiting on the experiment.Theoretically,the reaction exists optimal reaction temperature.As shown in Fig.4,whenTRis between 30 °C and 50 °C,the removal efficiency of NO increases with the increase ofTR,which indicates that the positive effect of temperature is greater than its inhibition on the reaction.When the temperature is above 50°C,the removal efficiency ofNO remains almost unchanged with furtherincreasingTR,which indicates that the promotion and inhibition of temperature on the reaction are in an equilibrium state.In the actual projects,the reaction temperature is between 50 and 70 °C,so the optimalTRwas selected as 55 °C.

    Fig.4.Effect of solution temperature on the removal efficiencies(pH=6,V g=30 L·h-1,m s=4 mmol·L-1,m p=3 mmol·L-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    3.3.Effect of initial solution pH

    Previous study shows that the removal efficiencies of NO and SO2were greatly affected by the initial solution pH[27],because the variation of pH would influence the oxidative absorption characteristics of solution and lead to the change of the removal efficiencies of SO2and NO.As shown in Fig.5,the removal efficiency of SO2is slightly affected and the removal efficiency of NO decreases with increasing the initial solution pH.The main reasons are as follows:SO2is easily soluble in water to produceand H+.When the solution pH increases,the equilibrium reaction takes place in the positive direction which promotes the absorption of SO2.Furthermore,when the solution pH decreases,ClO2and Cl2are generated by the aqueous solution of NaClO2/NaClO in acidic condition,and both of the gases are beneficial to increase the removal efficiencies of NO and SO2.Therefore,the solution pH has slight effect on desulfurization,but its decrease can dramatically improve the removal efficiency of NO.Moreover,NO is insoluble in water which means that the absorption ofNOcan only rely on oxidizing agent.Therefore,the removal of efficiency of NO drops continuously when pH of the solution increases.Above analysis indicates that the lower the initial pH of the solution is,the higher removal efficiency of NO will be obtained.By considering that strong acid condition could cause severe corrosion on the experimental equipment,optimal solution pH was usually taken as 6.

    Fig.5.Effect of initial solution pH on the removal efficiencies(T R=25 °C,V g=30 L·h-1,m s=4 mmol·L-1,m p=3 mmol·L-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    3.4.Effect of gas flow rate(Vg)

    For a specific experiment device,Vgdetermines the staying time of gas in water,influences the gas-liquid mass transfer process,and changes the removal efficiencies of NO and SO2,so it is necessary to takeVginto consideration.From Fig.6,it can be seen that the removal efficiency of SO2decreased slightly but NO drops almost linearly asVgincreases.The high removal efficiency of SO2is due to the SO2dissolved in water.While NO is not soluble in water,it must be oxidized firstly by composite absorbent,and then absorbed by water.WhenVgis large,the time of NO touching oxidizing agent will be reduced,consequently,there is notenough time for NOto be oxidized and absorbed thoroughly.The results indicate thatVgis lower,the removal efficiency of NO is higher.Considering aboutVgis constant in actual projects,we just discuss the effect of it,and the optimalVgwill not be given.

    Fig.6.Effect of gas flow rate on the removal efficiencies(T R=25°C,pH=6,m s=4 mmol·L-1,m p=3 mmol·L-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    3.5.Effect of the inlet concentration of SO2(CS)and NO(CN)

    In the practical engineering process,the content of nitrogen and sulfuris differentin various types ofcoal,which willchangeCSandCNfrom the sintering flue gas and affectthe concentration driving force between gas and liquid phases.Therefore,the removal efficiencies of SO2and NO will also change.As shown in Fig.7,the removal efficiency of SO2remains 100%and the removal efficiency of NO presents a slight upward trend with the increase ofCS.The phenomenon may be attributed to the hydrolysis of SO2,resulting in decreasing the solution pH and improving the oxidation of the absorbent.As seen from Fig.8,the removal efficiency of SO2remains stable and the removal efficiency of NO increases slightly with increasingCN.The reason might be that the increase ofCNmakes the pressure of NO in the gas phase rise and accelerates the gas-liquid mass transfer,which leads to the increase of removal efficiency of NO.

    3.6.Parallel tests

    Fig.7.Effect of SO2 concentration on the removal efficiencies(T R=25°C,pH=6,V g=30 L·h-1,m s=4 mmol·L-1,m p=3 mmol·L-1,C N=350 mg·m-3).

    Fig.8.Effect of NO concentration on the removal efficiencies(T R=25°C,pH=6,V g=30 L·h-1,m s=4 mmol·L-1,m p=3 mmol·L-1,C S=1000 mg·m-3).

    In order to check the stability and accuracy of experiment,parallel tests were carried out under the optimal conditions in whichms=4 mmol·L-1,mp=3 mmol·L-1,TR=55 °C,the initial solution pH=6,Vg=30 L·h-1,andCS=1000 mg·m-3,CN=350 mg·m-3.From Table 2,it can be seen that the average removal efficiencies of SO2and NO are 99.5%and 90.8%,respectively,and the standard deviation of removal efficiencies are 0.5 and 0.795,respectively.It indicates that the reproducibility of experiment date is good,and the performance of experiment apparatus is stable.

    Table 2Results of parallel experiments

    4.Reaction Mechanism

    For revealing the reaction mechanism and the process of simultaneous removal of SO2and NO by the aqueous solution of NaClO2/NaClO,products of desulfurization and denitrificationwere qualitatively and quantitatively analyzed.As we know,the possible existence of ionand some intermediate products ClO2or Cl2[7].Based on the chemical properties of different ions,Cl-,were tested by the hydronium chromatography method and,ClO2,were detected by the electric potential titrimetric method.

    4.1.Interaction mechanism of NaClO2/NaClO

    By monitoring the color and smell of absorption solution and analyzing the reaction products,we can find that the oxidizability of NaClO2/NaClO may be different under various initial solution pH.As shown in Fig.9.Samples 1 and 2 are the aqueous solution containing NaClO2and NaClO,respectively.Sample 3 is the aqueous solution of NaClO2/NaClO whose pH is 9.8 without adding acid or alkaline solution to adjust,the solution is almost colorless and a little pungent odor could be smelled.Sample 4 is the solution whose initial pH is adjusted to 6 on the basis of Sample 3,the color of it turns yellowish green,pungent odor becomes more intense.The phenomenon is attributed to products from the reaction of NaClO2/NaClO in acidic condition.From a survey of previous literatures[30-32],we can speculate that the products may be ClO2and Cl2which have positive effect on desulfurization and denitrification.In order to further understand the interaction mechanism of NaClO2/NaClO,ions concentration of a single absorbents and its mixture were determined.The results are shown in Table 3.

    Fig.9.The color contrast of absorbents in different experiments process.

    Table 3The changes of ions concentration in absorbing liquid(mg·L-1)

    The possible reactions between ClO2and Cl2in alkaline solution are listed as follows:

    So the existence of ClO2and Cl2can be con firmed by checking the variation ofand Cl-concentration.Comparing Samples 1 to 3,we can find that Samples 1 and 2 both contain Cl-,but ClO3-only exists in Sample 1.It can be considered that the properties of single oxidant had changed under acid condition,the reaction equations are presumed as follows[32,33]:

    The concentration ofand Cl-in Sample 3 is higher than in Samples 1 and 2,indicating that ClO2and Cl2are produced.In addition,by comparing Samples 3 and 4,we can find that the concentration ofand ClO-decreases,while the concentration ofand Cl-increases,stating that a lower pH of the solution makes it more favorable for the generation of ClO2.According to the analysis of the reaction products and the reaction mechanism presumed above,the overall reaction equation of NaClO2/NaClO acid solution can be considered as follow:

    4.2.Reaction mechanism of simultaneous desulfurization and denitrification

    In order to explore reaction mechanism of simultaneous absorption of NO and SO2,experiments were carried out under the optimal conditions and the reaction products were detected.The results of products analysis are listed in Table 4.

    Table 4Products analysis of simultaneous desulfurization and denitrification using NaClO2/NaClO complex absorbent(mg·L-1)

    Sample 5 is the initial solution containing NaClO2/NaClO which is not involved in the reaction of simultaneous removal of NO and SO2,Sample 6 is NaClO2/NaClO aqueous solution which has been in reaction for 10 min,and Sample 7 is the solution whose oxidizability has been in failure for 5 min.As shown in Table 4,both the concentration ofanddecreases,and meanwhile Cl-,,andare produced continuously by comparing Sample 5 and 6.It indicates that composite absorbent can oxidize SO2and NO to the highest state in acidic condition.After the failure ofoxidizing agent,the concentration of Cl-andis stillrising whileconcentration begins to decline,sois speculated as an intermediate product.

    According to the previous analysis of interaction mechanism of NaClO2/NaClO,it was found that there exists a small quantity of ClO2and Cl2in the complex absorbent solution,and there might be a part ofClO2and Cl2from the liquid phase to the gas phase because their partial pressures in gas phase are smaller than the gas-liquid equilibrium partial pressures.Considering that SO2is soluble in water,the absorption of SO2mainly happens in the liquid phase.However,NO is poorly soluble in water,and the mass transfer resistance from liquid phase to gas phase is large,so the oxidation of NO mainly through touching with ClO2and Cl2in the interface between gas and liquid phases,then the reaction products can be absorption in the liquid phase,so the absorption of NO might happen in the gas and liquid phases at the same time.

    On the basis of analysis above and the results of previous research[31-33],the possible reaction equations of simultaneous desulfurization and denitrification by NaClO2/NaClO acid solution are listed as follows:

    In conclusion,the process of simultaneous removal of SO2and NO using NaClO2/NaClO aqueous solution is relatively complex,the overall reaction equations can be summarized as follows:

    5.Engineering Experiments

    In order to verify the availability of above experimental results and provide a solid technical support on the large-scale industrial application in the future,engineering experiments were carried out in a 2×220 m2sintering flue gas desulfurization tower at Nanjing Iron&Steel Co.The system of the wet FGD is shown in Fig.10.The experimental conditions are as follow:the flow rate of inlet gas ranges from 1.36× 106to 2.51× 106m3·h-1,the inlet gas temperature increases from 125.1 to 166.63°C,the desulfurization slurry temperature in absorber is between 50 to 70°C,the SO2concentration of inlet gas changes from 517.24 to 1128.06 mg·m-3,the NOXconcentration of inlet gas ranges from 249.75 to 340.05 mg·m-3and the molar ratio of NaClO2/NaClO is about 1.3.The variation of NO and SO2mass flux was monitored through the Pollution Source On-line Monitoring system of Nanjing City,then the removal efficiencies of NOXand SO2can be evaluated by Eqs.(26)to(27),respectively.

    As shown in Figs.11 and 12,during the experimental period,QSdecreases from 9.8 to 6.9 kg·min-1,the removal efficiency of NOXincreases around 20%compared with ordinary times and the removal efficiency of SO2remains stable above 94%.The results meet national environmental standards and demonstrate the capability of the technology for simultaneous desulfurization and denitration.However,it can be seen in Fig.12 that the increase of NOXremoval efficiency is limited.It is speculated that when NO was oxidized to NO2which cannot be absorbed completely,because the treated flue gas with a little reddish brown color(the original flue gas color is white)and the color is similar to NO2during engineering experiment.

    In terms of the present running situation of Nanjing Iron&Steel Co,the annual costs of the composite absorbent is about 5.43 million,the fee for pollutant discharge can be saved about 1.19 million a year.If the reagents are purchased in large quantities,the price could be reduced by 30%-40%.Compared with other simultaneous desulfurization and denitrification technologies,using NaClO2/NaClO as the absorbent has certain advantages in the aspect of environmental protection and economy.

    6.Conclusions

    A composite absorbentcontaining NaClO2and NaClO was used to simultaneous desulfurization and denitrification from flue gas.The effects of various operating parameters on the experiment were considered and the reaction products were analyzed.According to the results of discussion,following conclusions can be made:

    1.Under the optimal experimental conditions,the removal efficiencies of SO2and NO reach 99.5%and 90.8%,respectively.These results indicate that the oxidizing agent,which is made of NaClO2and NaClO,has good promotion prospects in simultaneous removal of NO and SO2.

    2.The removal efficiency of SO2is slightly affected by different operating parameters in the experiment and holds steady above 98%.

    3.In acidic condition,high removal efficiencies of SO2and NO owe to the fact that ClO2and Cl2are produced by the reaction between NaClO2and NaClO.

    4.The initial solution pH and the gas flow rate are the main factors affecting simultaneous desulfurization and denitrification.

    Nomenclature

    CNinitial NO inlet concentration,mg·m-3

    CNO,inthe inlet concentration of NO,mg·m-3

    CNO,outthe outlet concentration of NO,mg·m-3

    CSinitial SO2inlet concentration,mg·m-3

    CSO2,inthe inlet concentration of SO2,mg·m-3

    CSO2,outthe outlet concentration of SO2,mg·m-3

    Mthe molar ratio of NaClO2/NaClO

    mpNaClO concentration,mmol·L-1

    msNaClO2concentration,mmol·L-1

    QNOX,inthe inlet mass flux of NOX,kg·min-1

    QNOX,outthe outlet mass flux of NOX,kg·min-1

    QSO2,inthe inlet mass flux of SO2,kg·min-1

    QSO2,outthe outlet mass flux of SO2,kg·min-1

    TRsolution temperature,°C

    Vggas flow rate,L·h-1

    η the removal efficiency

    ηNremoval efficiency of NO

    ηSremoval efficiency of SO2

    Fig.10.The system of wet FGD:(a)Appearance of bubbling gas absorbing tower;(b)the technological progress of sintering flue gas desulfurization.

    Fig.11.The mass flux change of NO X/SO2 during experimental period.

    Fig.12.The change of removal efficiencies during experimental period.

    [1]Y.Li,W.Q.Zhong,J.Ju,Experiment on simultaneous absorption of NO and SO2from sintering flue gas by oxidizing agents of KMnO4/NaClO,Int.J.Chem.React.Eng.12(1)(2014)1-9.

    [2]D.G.Streets,S.T.Waldhoff,Present and future emissions of air pollutants in China:SO2,NOXand CO,Atmos.Environ.34(3)(2000)363-374.

    [3]F.J.Gutierrez Ortiz,F.Vidal,P.Ollero,L.Salvador,V.Cortes,Pilot-plant technical assessment of wet flue gas desulfurization using limestone,Ind.Eng.Chem.Res.45(4)(2006)1466-1477.

    [4]G.Qi,R.T.Yang,R.Chang,MnOX-CeO2mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3at low temperatures,Appl.Catal.B Environ.51(2)(2004)93-106.

    [5]M.T.Javed,N.Irfan,B.M.Gibbs,Control of combustion-generated nitrogen oxides by selective non-catalytic reduction,J.Environ.Manag.83(3)(2007)251-289.

    [6]S.W.Bae,S.A.Roh,S.D.Kim,NO removal by reducing agents and additives in the selective non-catalytic reduction(SNCR)process,Chemosphere65(1)(2006)170-175.

    [7]Y.Zhao,T.Guo,Z.Chen,Y.Du,Simultaneous removal of SO2and NO using M/NaClO2complex absorbent,Chem.Eng.J.160(1)(2010)42-47.

    [8]D.S.Jin,B.R.Deshwal,Y.S.Park,H.K.Lee,Simultaneous removal of SO2and NO by wet scrubbing using aqueous chlorine dioxide solution,J.Hazard.Mater.135(1-3)(2006)412-417.

    [9]H.K.Lee,B.R.Deshwal,K.S.Yoo,Simultaneous removal of SO2and NO by sodium chlorite solution in Wetted-Wall column,Korean J.Chem.Eng.22(2)(2005)208-213.

    [10]Y.S.Mok,H.J.Lee,Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption reduction technique,Fuel Process.Technol.87(7)(2006)591-597.

    [11]Z.Wang,J.Zhou,Y.Zhu,Simultaneous removal of NOX,SO2and Hg in nitrogen flow in a narrow reactor by ozone injection:experimental results,Fuel Process.Technol.88(8)(2007)817-823.

    [12]H.Chu,T.W.Chien,S.Y.Li,Simultaneous absorption of SO2and NO from flue gas with KMnO4/NaOH solutions,Sci.Total Environ.275(1-3)(2001)127-135.

    [13]H.Chu,S.Y.Li,T.W.Chien,The absorption kinetics of NO from flue gas in a stirred tank reactor with KMnO4/NaOH solutions,J.Environ.Sci.Health A33(5)(1998)801-827.

    [14]C.Brogren,H.T.Karlsson,I.Bjerle,Absorption of NO in an alkaline solution of KMnO4,Chem.Eng.Technol.20(6)(1997)396-402.

    [15]Z.Wei,H.Niu,Y.Ji,Simultaneous removal of SO2and NOXby microwave with potassium permanganate over zeolite,Fuel Process.Technol.90(2)(2009)324-329.

    [16]D.Thomas,S.Colle,J.Vanderschuren,Kinetics of SO2absorption into fairly concentrated sulphuric acid solutions containing hydrogen peroxide,Chem.Eng.Process.42(6)(2003)487-494.

    [17]S.Colle,J.Vanderschuren,D.Thomas,Pilot-scale validation of the kinetics of SO2absorption into sulphuric acid solutions containing hydrogen peroxide,Chem.Eng.Process.43(11)(2004)1397-1402.

    [18]S.Colle,J.Vanderschuren,D.Thomas,Simulation of SO2absorption into sulfuric acid solutions containing hydrogen peroxide in the fast and moderately fast kinetic regimes,Chem.Eng.Process.60(22)(2005)6472-6479.

    [19]E.Sada,H.Kumazawa,I.Kudo,T.Kondo,Absorption of NO in aqueous mixed solutions of NaClO2 of and NaOH,Chem.Eng.Sci.33(3)(1978)315-318.

    [20]E.Sada,H.Kumazawa,Y.Yamanaka,I.Kudo,T.Kondo,And nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide,J.Chem.Eng.Jpn11(4)(1978)276-282.

    [21]E.Sada,H.Kumazawa,M.A.Butt,Single and simultaneous absorptions of lean SO2and NO2into aqueous slurries of Ca(OH)2or Mg(OH)2particles,J.Chem.Eng.Jpn12(2)(1979)111-117.

    [22]T.W.Chien,H.Chu,H.T.Hsueh,Kinetic study on absorption of SO2and NOXwith acidic NaClO2solutions using the spraying column,J.Environ.Eng.129(11)(2003)967-974.

    [23]H.Chu,T.W.Chien,B.W.Twu,The absorption kinetics of NO in NaClO2/NaOH solutions,J.Hazard.Mater.84(2-3)(2001)241-252.

    [24]T.W.Chien,H.Chu,Removal of SO2and NO from flue gas by wet scrubbing using an aqueous NaClO2solution,J.Hazard.Mater.80(1-3)(2000)43-57.

    [25]C.Yang,H.Shaw,H.Perlmutter,Absorption of NO promoted by strong oxidizing agents:1.Inorganic oxychlorites in nitric acid,Chem.Eng.Commun.143(1)(1996)23-38.

    [26]C.Yang,H.Shaw,Aqueous absorption of nitric oxide induced by sodium chlorite oxidation in the presence of sulfur dioxide,Environ.Prog.17(2)(1998)80-85.

    [27]B.R.Deshwal,S.H.Lee,J.H.Jung,B.H.Shon,H.K.Lee,Study on the removal of NOxfrom simulated flue gas using acidic NaClO2solution,J.Environ.Sci.20(1)(2008)33-38.

    [28]L.Chen,C.Hsu,C.Yang,Oxidation and absorption of nitric oxide in a packed tower with sodium hypochlorite aqueous solutions,Environ.Prog.24(3)(2005)279-288.

    [29]L.Chen,J.W.Lin,C.L.Yang,Absorption of NO2in a packed tower with Na2SO3aqueous solution,Environ.Prog.21(4)(2002)225-230.

    [30]B.R.Deshwal,H.Jo,H.Lee,Reaction kinetics of decomposition of acidic sodium chlorite,Can.J.Chem.Eng.82(3)(2004)619-623.

    [31]T.W.Chien,H.Chu,H.T.Hsueh,Spray scrubbing of the nitrogen oxides into NaClO2solution under acidic conditions,J.Environ.Sci.Health A36(4)(2001)403-414.

    [32]B.Kormanyos,I.Nagypal,G.Peintler,A.Horvath,Effect of chloride ion on the kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid,Inorg.Chem.47(17)(2008)7914-7920.

    [33]T.Lehtimaa,V.Tarvo,G.Mortha,S.Kuitunen,T.Vuorinen,Reactions and kinetics of Cl(III)decomposition,Ind.Eng.Chem.Res.47(15)(2008)5284-5290.

    成年女人毛片免费观看观看9 | 1024香蕉在线观看| 91av网站免费观看| 一区在线观看完整版| 国产精品欧美亚洲77777| 亚洲国产欧美网| 国产一区二区三区视频了| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av电影在线进入| 久久性视频一级片| 最近最新中文字幕大全电影3 | 老汉色av国产亚洲站长工具| 又大又爽又粗| 高清在线国产一区| 侵犯人妻中文字幕一二三四区| 在线观看一区二区三区激情| 亚洲一码二码三码区别大吗| 国产精品久久电影中文字幕 | 亚洲成av片中文字幕在线观看| 久久精品91无色码中文字幕| 色尼玛亚洲综合影院| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇的丰满在线观看| 可以免费在线观看a视频的电影网站| 国产高清国产精品国产三级| 久久久久久久久免费视频了| 水蜜桃什么品种好| 亚洲成人免费av在线播放| 亚洲精品久久成人aⅴ小说| 十八禁网站免费在线| 狠狠婷婷综合久久久久久88av| 亚洲五月婷婷丁香| 国产精品欧美亚洲77777| 一区二区三区国产精品乱码| 亚洲熟女毛片儿| 18禁观看日本| 亚洲男人天堂网一区| 男女之事视频高清在线观看| 日本vs欧美在线观看视频| av一本久久久久| 亚洲国产欧美网| 国产亚洲一区二区精品| 久久精品aⅴ一区二区三区四区| 露出奶头的视频| 电影成人av| 国产成人一区二区三区免费视频网站| 看免费av毛片| 精品国产亚洲在线| 午夜影院日韩av| 日韩三级视频一区二区三区| 中文欧美无线码| 成人影院久久| 水蜜桃什么品种好| 精品一区二区三卡| 精品免费久久久久久久清纯 | 亚洲精品成人av观看孕妇| 免费黄频网站在线观看国产| 国产午夜精品久久久久久| 国产黄色免费在线视频| 高清av免费在线| 国产99久久九九免费精品| 9热在线视频观看99| 人人妻,人人澡人人爽秒播| 高清视频免费观看一区二区| 免费人成视频x8x8入口观看| 国产成人啪精品午夜网站| 91在线观看av| 精品人妻1区二区| 免费在线观看完整版高清| 高清黄色对白视频在线免费看| 国产国语露脸激情在线看| 久久影院123| av不卡在线播放| 久久久久久人人人人人| 亚洲视频免费观看视频| 欧美精品人与动牲交sv欧美| 一级片'在线观看视频| 亚洲av成人一区二区三| 激情视频va一区二区三区| 国产又爽黄色视频| 18禁美女被吸乳视频| 热99re8久久精品国产| 91老司机精品| 国产99白浆流出| 午夜福利乱码中文字幕| 国产精品久久久久久人妻精品电影| 国产成人一区二区三区免费视频网站| 看黄色毛片网站| 超碰97精品在线观看| av欧美777| 中文字幕人妻丝袜制服| 国产欧美日韩综合在线一区二区| 啦啦啦在线免费观看视频4| 黑人巨大精品欧美一区二区mp4| 一区福利在线观看| 亚洲av日韩精品久久久久久密| 十八禁人妻一区二区| 91麻豆av在线| 久久精品国产综合久久久| 亚洲精品中文字幕在线视频| 国产欧美日韩精品亚洲av| 男女下面插进去视频免费观看| 精品无人区乱码1区二区| 黄色怎么调成土黄色| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 99精国产麻豆久久婷婷| 久99久视频精品免费| 国产日韩一区二区三区精品不卡| 亚洲熟女毛片儿| 捣出白浆h1v1| 精品熟女少妇八av免费久了| 中文字幕av电影在线播放| 动漫黄色视频在线观看| 日韩欧美三级三区| 制服诱惑二区| 日日爽夜夜爽网站| 午夜影院日韩av| 少妇被粗大的猛进出69影院| 免费女性裸体啪啪无遮挡网站| 国产成人一区二区三区免费视频网站| 校园春色视频在线观看| 99国产精品一区二区三区| 婷婷精品国产亚洲av在线 | 亚洲 欧美一区二区三区| 欧美精品av麻豆av| 欧美成人午夜精品| 亚洲一区二区三区不卡视频| 一二三四在线观看免费中文在| 99久久人妻综合| 国产高清激情床上av| 欧美日韩中文字幕国产精品一区二区三区 | 高潮久久久久久久久久久不卡| 伦理电影免费视频| 午夜91福利影院| 激情在线观看视频在线高清 | 欧美黑人精品巨大| 亚洲av熟女| 一级片'在线观看视频| 热99国产精品久久久久久7| 无遮挡黄片免费观看| 叶爱在线成人免费视频播放| 大片电影免费在线观看免费| 老熟妇仑乱视频hdxx| 成年人免费黄色播放视频| 久久精品亚洲av国产电影网| 日韩免费高清中文字幕av| 久久久国产欧美日韩av| 国产精品av久久久久免费| x7x7x7水蜜桃| 午夜91福利影院| 国产野战对白在线观看| 69av精品久久久久久| 国产男女内射视频| 九色亚洲精品在线播放| 日韩欧美三级三区| 无人区码免费观看不卡| 免费在线观看视频国产中文字幕亚洲| 黑人巨大精品欧美一区二区蜜桃| 女人久久www免费人成看片| 日韩欧美免费精品| 精品一区二区三区四区五区乱码| 欧美久久黑人一区二区| 丰满饥渴人妻一区二区三| 日韩欧美三级三区| 国产精华一区二区三区| 我的亚洲天堂| 亚洲av成人不卡在线观看播放网| 91成年电影在线观看| 日本wwww免费看| 9191精品国产免费久久| 亚洲欧美激情在线| 18禁观看日本| 国产不卡av网站在线观看| а√天堂www在线а√下载 | 巨乳人妻的诱惑在线观看| 俄罗斯特黄特色一大片| 久久久久视频综合| 又黄又爽又免费观看的视频| av在线播放免费不卡| 欧美精品人与动牲交sv欧美| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 国产精品久久久人人做人人爽| 日韩人妻精品一区2区三区| 久久久久国产一级毛片高清牌| 亚洲国产精品合色在线| a级片在线免费高清观看视频| 国产精品成人在线| 精品久久久久久久久久免费视频 | 久久影院123| 亚洲三区欧美一区| 国产免费现黄频在线看| 久久久国产一区二区| 欧美日韩精品网址| 十八禁网站免费在线| 日本wwww免费看| 亚洲午夜理论影院| 亚洲国产看品久久| 午夜亚洲福利在线播放| 久久久国产一区二区| 又紧又爽又黄一区二区| 欧美性长视频在线观看| 亚洲中文字幕日韩| 亚洲av日韩精品久久久久久密| 视频区图区小说| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av成人一区二区三| 波多野结衣av一区二区av| 满18在线观看网站| 丰满迷人的少妇在线观看| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 超碰97精品在线观看| 国产av一区二区精品久久| 嫁个100分男人电影在线观看| 人人澡人人妻人| 999精品在线视频| 大香蕉久久网| 首页视频小说图片口味搜索| 欧美日韩av久久| 1024香蕉在线观看| 中文字幕人妻熟女乱码| 看黄色毛片网站| tube8黄色片| 亚洲av日韩在线播放| 午夜久久久在线观看| 欧美精品亚洲一区二区| a级片在线免费高清观看视频| 国产熟女午夜一区二区三区| svipshipincom国产片| 亚洲国产精品合色在线| 午夜福利,免费看| 午夜老司机福利片| 一本大道久久a久久精品| 久久亚洲精品不卡| 国产精华一区二区三区| 一区二区三区国产精品乱码| 国产精品香港三级国产av潘金莲| 亚洲人成电影免费在线| av不卡在线播放| 他把我摸到了高潮在线观看| 一进一出抽搐动态| 欧美人与性动交α欧美软件| 中文字幕人妻丝袜一区二区| 成年女人毛片免费观看观看9 | 人人妻人人爽人人添夜夜欢视频| 国产精品亚洲av一区麻豆| 午夜激情av网站| 深夜精品福利| 欧美丝袜亚洲另类 | 色94色欧美一区二区| 亚洲免费av在线视频| 色老头精品视频在线观看| 精品国产美女av久久久久小说| 波多野结衣一区麻豆| 欧美日韩国产mv在线观看视频| 精品国产一区二区三区四区第35| 久久精品亚洲av国产电影网| 咕卡用的链子| 高清视频免费观看一区二区| 国产精品秋霞免费鲁丝片| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 十分钟在线观看高清视频www| 一级a爱视频在线免费观看| 99国产精品免费福利视频| 日本撒尿小便嘘嘘汇集6| 成年人午夜在线观看视频| 国产精品免费一区二区三区在线 | 久久精品亚洲精品国产色婷小说| 国产主播在线观看一区二区| 午夜精品久久久久久毛片777| 国产精品久久久久成人av| 国产主播在线观看一区二区| 国产国语露脸激情在线看| 女性被躁到高潮视频| 人妻一区二区av| 亚洲欧美激情综合另类| 少妇 在线观看| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 中文亚洲av片在线观看爽 | 在线观看午夜福利视频| 欧美日韩瑟瑟在线播放| 免费观看人在逋| 亚洲精品久久午夜乱码| 国产深夜福利视频在线观看| 国产极品粉嫩免费观看在线| 亚洲精品中文字幕在线视频| 狠狠婷婷综合久久久久久88av| 国产高清国产精品国产三级| 日韩成人在线观看一区二区三区| 欧美乱妇无乱码| 午夜福利影视在线免费观看| 久久中文看片网| 老司机午夜十八禁免费视频| av线在线观看网站| 国产精品久久视频播放| 啦啦啦在线免费观看视频4| 99re在线观看精品视频| 欧美乱妇无乱码| 欧美乱色亚洲激情| 亚洲熟妇熟女久久| 久久久久久亚洲精品国产蜜桃av| 午夜两性在线视频| 99精国产麻豆久久婷婷| 亚洲欧洲精品一区二区精品久久久| 亚洲专区中文字幕在线| 最近最新中文字幕大全免费视频| 中文字幕av电影在线播放| 日韩 欧美 亚洲 中文字幕| 别揉我奶头~嗯~啊~动态视频| 欧美精品啪啪一区二区三区| 一区福利在线观看| 国产欧美日韩一区二区精品| 欧美性长视频在线观看| 十八禁网站免费在线| 久久久久国产一级毛片高清牌| 黄色 视频免费看| 亚洲av第一区精品v没综合| 黄色a级毛片大全视频| tube8黄色片| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 久久中文看片网| 久久久久久亚洲精品国产蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 中国美女看黄片| 欧美日韩av久久| 视频区欧美日本亚洲| 免费观看精品视频网站| av欧美777| 国产麻豆69| 亚洲成人免费电影在线观看| 69av精品久久久久久| 99国产精品99久久久久| 在线永久观看黄色视频| aaaaa片日本免费| 女同久久另类99精品国产91| 亚洲一码二码三码区别大吗| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩亚洲高清精品| 日本a在线网址| 怎么达到女性高潮| 乱人伦中国视频| 久久天躁狠狠躁夜夜2o2o| 咕卡用的链子| 老汉色av国产亚洲站长工具| 久久久久视频综合| 色在线成人网| 99热国产这里只有精品6| av免费在线观看网站| 一个人免费在线观看的高清视频| 国产成人av激情在线播放| 一级a爱片免费观看的视频| 在线观看免费视频网站a站| 国产97色在线日韩免费| 丝袜在线中文字幕| 亚洲国产欧美一区二区综合| 国产精品电影一区二区三区 | 麻豆av在线久日| 咕卡用的链子| 久久人妻熟女aⅴ| 男男h啪啪无遮挡| 国产91精品成人一区二区三区| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| 久热这里只有精品99| 黄色视频,在线免费观看| 丰满迷人的少妇在线观看| 亚洲国产毛片av蜜桃av| 在线天堂中文资源库| www.精华液| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 一区二区三区国产精品乱码| 十八禁网站免费在线| 国内久久婷婷六月综合欲色啪| 久久国产精品影院| 欧美激情高清一区二区三区| 免费在线观看日本一区| 国产一区有黄有色的免费视频| 18在线观看网站| 91老司机精品| 精品人妻在线不人妻| 黄色片一级片一级黄色片| 黑人巨大精品欧美一区二区mp4| 中文字幕人妻丝袜制服| 看片在线看免费视频| 黄色女人牲交| 久久久久国产一级毛片高清牌| 自线自在国产av| 欧美成狂野欧美在线观看| 欧美日韩精品网址| 性色av乱码一区二区三区2| 美女福利国产在线| 国产精品二区激情视频| 国产精品久久电影中文字幕 | 免费高清在线观看日韩| 亚洲情色 制服丝袜| 欧美黑人精品巨大| 18禁裸乳无遮挡动漫免费视频| 999久久久国产精品视频| 一区二区三区精品91| 亚洲精品一卡2卡三卡4卡5卡| 少妇裸体淫交视频免费看高清 | 国产熟女午夜一区二区三区| 黑人巨大精品欧美一区二区mp4| 亚洲国产精品一区二区三区在线| 韩国av一区二区三区四区| 岛国毛片在线播放| 两个人看的免费小视频| 两个人免费观看高清视频| e午夜精品久久久久久久| 丝袜在线中文字幕| 十八禁人妻一区二区| 午夜激情av网站| 国产一区二区三区综合在线观看| 9色porny在线观看| 精品乱码久久久久久99久播| 最新美女视频免费是黄的| 久久久精品免费免费高清| 精品欧美一区二区三区在线| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 午夜两性在线视频| 老鸭窝网址在线观看| 中文字幕最新亚洲高清| 免费少妇av软件| 亚洲人成伊人成综合网2020| 纯流量卡能插随身wifi吗| 91国产中文字幕| 欧美成人午夜精品| 最近最新免费中文字幕在线| 免费日韩欧美在线观看| 俄罗斯特黄特色一大片| 大码成人一级视频| 99国产极品粉嫩在线观看| 99热国产这里只有精品6| 身体一侧抽搐| 久久午夜亚洲精品久久| 一区二区三区激情视频| 电影成人av| 亚洲色图av天堂| 精品免费久久久久久久清纯 | 啦啦啦 在线观看视频| 黄片播放在线免费| 1024香蕉在线观看| 国内久久婷婷六月综合欲色啪| 日韩精品免费视频一区二区三区| 老司机福利观看| videos熟女内射| aaaaa片日本免费| 欧美+亚洲+日韩+国产| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 成年人黄色毛片网站| 建设人人有责人人尽责人人享有的| 国产精品久久久久久人妻精品电影| 99国产精品一区二区三区| 香蕉丝袜av| 香蕉久久夜色| 国内毛片毛片毛片毛片毛片| 亚洲自偷自拍图片 自拍| 露出奶头的视频| 免费一级毛片在线播放高清视频 | 香蕉久久夜色| 99国产综合亚洲精品| 亚洲av片天天在线观看| 老司机影院毛片| 亚洲国产欧美网| 亚洲av电影在线进入| 美女国产高潮福利片在线看| 中文欧美无线码| 国产在线一区二区三区精| 欧美日韩亚洲国产一区二区在线观看 | 少妇裸体淫交视频免费看高清 | 日本五十路高清| 色综合欧美亚洲国产小说| 亚洲第一青青草原| 色综合婷婷激情| 高清黄色对白视频在线免费看| 天堂俺去俺来也www色官网| 交换朋友夫妻互换小说| 国产精品乱码一区二三区的特点 | 变态另类成人亚洲欧美熟女 | 精品电影一区二区在线| 三级毛片av免费| 99久久人妻综合| 色婷婷av一区二区三区视频| 无遮挡黄片免费观看| av片东京热男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| av网站在线播放免费| 丁香欧美五月| 法律面前人人平等表现在哪些方面| 久久精品熟女亚洲av麻豆精品| 欧美另类亚洲清纯唯美| 久久精品国产清高在天天线| 精品久久久久久电影网| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频| 精品亚洲成a人片在线观看| 夜夜夜夜夜久久久久| 涩涩av久久男人的天堂| 精品午夜福利视频在线观看一区| 热re99久久精品国产66热6| 中文欧美无线码| 建设人人有责人人尽责人人享有的| 久久午夜亚洲精品久久| 成人av一区二区三区在线看| 久久久国产成人免费| 免费黄频网站在线观看国产| 久久影院123| 国产精品一区二区在线观看99| 午夜91福利影院| 欧美日韩乱码在线| 国产在视频线精品| 精品福利永久在线观看| 午夜激情av网站| 中国美女看黄片| 一区二区三区激情视频| 欧美人与性动交α欧美精品济南到| 亚洲 国产 在线| 日本撒尿小便嘘嘘汇集6| 丁香欧美五月| 亚洲国产中文字幕在线视频| 他把我摸到了高潮在线观看| 亚洲精品国产一区二区精华液| 在线天堂中文资源库| 亚洲国产欧美网| 一夜夜www| 欧美日韩av久久| 免费女性裸体啪啪无遮挡网站| 黄色a级毛片大全视频| 美女高潮到喷水免费观看| 成人精品一区二区免费| 久久精品国产清高在天天线| 搡老乐熟女国产| 亚洲成av片中文字幕在线观看| 亚洲在线自拍视频| 啦啦啦 在线观看视频| 成人18禁高潮啪啪吃奶动态图| 国产精品香港三级国产av潘金莲| 黑人猛操日本美女一级片| 亚洲久久久国产精品| 热re99久久国产66热| 狠狠狠狠99中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 男人的好看免费观看在线视频 | √禁漫天堂资源中文www| 免费在线观看完整版高清| 精品少妇久久久久久888优播| 亚洲精品中文字幕一二三四区| 亚洲专区国产一区二区| 两性夫妻黄色片| 动漫黄色视频在线观看| 精品久久蜜臀av无| 欧美午夜高清在线| 久久青草综合色| 国产精品久久久久久人妻精品电影| 亚洲欧美激情在线| 69精品国产乱码久久久| 久久国产乱子伦精品免费另类| 国产激情久久老熟女| 国产91精品成人一区二区三区| 日日爽夜夜爽网站| 国产精品av久久久久免费| 国产99白浆流出| 日韩一卡2卡3卡4卡2021年| 亚洲视频免费观看视频| 日日爽夜夜爽网站| 午夜亚洲福利在线播放| 国产亚洲av高清不卡| 午夜精品久久久久久毛片777| 亚洲伊人色综图| 国产男女内射视频| 亚洲第一青青草原| 丰满迷人的少妇在线观看| а√天堂www在线а√下载 | 国产一区二区三区在线臀色熟女 | 9191精品国产免费久久| 中文字幕人妻丝袜一区二区| 一区二区三区国产精品乱码| 91成年电影在线观看| 久久久精品区二区三区| 国产成人一区二区三区免费视频网站| 国产在线观看jvid| 国产高清国产精品国产三级| 久久香蕉国产精品| 亚洲自偷自拍图片 自拍| 中国美女看黄片| 亚洲专区中文字幕在线| 色综合欧美亚洲国产小说| a级片在线免费高清观看视频| 日日夜夜操网爽| 亚洲中文av在线| 久久精品亚洲精品国产色婷小说| 99国产精品一区二区蜜桃av | 国产欧美日韩一区二区三| 久久国产精品人妻蜜桃| 丁香欧美五月| 久久国产精品人妻蜜桃| 在线永久观看黄色视频| 亚洲午夜理论影院| 母亲3免费完整高清在线观看| 欧美 日韩 精品 国产| 亚洲成国产人片在线观看| 亚洲视频免费观看视频| 一级毛片高清免费大全| 男女免费视频国产| 在线观看www视频免费| 夜夜夜夜夜久久久久| 国产不卡av网站在线观看|