• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      2016年高考數(shù)學(xué)模擬試卷

      2016-05-30 10:48:04鄭一平
      中學(xué)生理科應(yīng)試 2016年1期
      關(guān)鍵詞:切線實(shí)數(shù)小題

      鄭一平

      本試卷分為第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分.本卷滿分150分,考試時(shí)間為120分鐘.

      第Ⅰ卷(選擇題 共60分)

      一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題意要求的.

      1.已知全集U={1,2,3,4,5}, 集合M={3,4,5},N={1,2,5}, 則集合{1,2}可以表示為( ).

      A.M∩N B.(

      2.已知i為虛數(shù)單位,a∈R,若2-ia+i為純虛數(shù),則復(fù)數(shù)z=(2a+1)+2i的模為( ).

      A.2 B.3 C.6 D. 11

      3.已知平面向量a,b夾角為π6,且a·(a+b)=6,|a|=3,則|b|等于( ).

      A.3 B.23 C.233 D. 2

      4.已知等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a1,12a3,2a2成等差數(shù)列,則a9+a10a7+a8=( ).

      A.2 B.3-22 C.3+22 D. 3

      5.等比數(shù)列{an}中,a1=2,a8=4,函數(shù)f(x)=x(x-a1)(x-a2)…(x-a8),則f ′(0)=( ).

      A.26 B.29 C.212 D.215

      6.已知一個(gè)算法的程序框圖如圖1所示,當(dāng)輸出的結(jié)果為0時(shí),輸入的x的值為( ).

      圖1

      A.-1或1

      B.-1或0

      C.-2或0

      D.-2或1

      7.已知某錐體的正視圖和側(cè)視圖如圖2,其體積為233,則該錐體的俯視圖可以是( ).

      圖28.已知圓(x+1)2+y2=4的圓心為C,點(diǎn)P是直線l:mx-y-5m+4=0上的點(diǎn),若該圓上存在點(diǎn)Q使得∠CPQ=30°,則實(shí)數(shù)m的取值范圍為( ).

      A.[-1,1] B.[-2,2]

      C.[3-34,3+34]D. [0,125]

      9.已知變量x,y滿足條件x-y≤0

      3x-y-2≥0

      x+y-6≥0,則目標(biāo)函數(shù)z=2x+y( ).

      A.有最小值3,最大值9

      B.有最小值9,無(wú)最大值

      C.有最小值8,無(wú)最大值

      D.有最小值3,最大值8

      10.已知函數(shù)f(x)是R上的偶函數(shù),且f(1-x)=f(1+x),當(dāng)x∈[0,1]時(shí),f(x)=x2,則函數(shù)y=f(x)-log5x的零點(diǎn)個(gè)數(shù)是( ).

      A.3 B.4 C.5 D.6

      11.已知函數(shù)f(x)=2x (x≥2)

      (x-1)3(x<2)若關(guān)于x的方程f(x)=k有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是( ).

      A.(0,1) B.(1,+∞)

      C.(-1,0) D.(-∞,-1)

      12.在平面直角坐標(biāo)系中,把橫、縱坐標(biāo)均為有理數(shù)的點(diǎn)稱(chēng)為有理點(diǎn).若a為無(wú)理數(shù),則在過(guò)點(diǎn)P(a,-1/2)的所有直線中( ).

      A.有無(wú)窮多條直線,每條直線上至少存在兩個(gè)有理點(diǎn)

      B.恰有n(n≥2)條直線,每條直線上至少存在兩個(gè)有理點(diǎn)

      C.有且僅有一條直線至少過(guò)兩個(gè)有理點(diǎn)

      D.每條直線至多過(guò)一個(gè)有理點(diǎn)

      第Ⅱ卷(非選擇題,共90分)

      本卷包括必考題和選考題兩部分.第13題~21題為必考題,每個(gè)試題考生都必須做答.第22題~24題為選考題,考生根據(jù)要求做答.

      二、填空題(本大題共4小題,每小題5分,共20分.把答案填在題中橫線上)

      13.已知函數(shù)f(x)=2xx-1,則在點(diǎn)(2,f(2))處的切線方程為.

      14. 已知圓C的圓心是直線x-y+1=0與y軸的交點(diǎn),且圓C與直線x+y+3=0相切,則圓的標(biāo)準(zhǔn)方程為.

      15.已知數(shù)列{an}滿足an+2-2an+1+an=0(n∈N*),且a2=6,a6=-2,則數(shù)列{an}的前9項(xiàng)和S9=

      16.在△ABC中,若角A為銳角,且AB=(2,3),AC=(3,m),則實(shí)數(shù)m的取值范圍是

      三、解答題(解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)

      17.(本小題滿分12分)已知a,b,c分別是△ABC的角A,B,C所對(duì)的邊,且c=2,C=π3.

      (Ⅰ) 若△ABC的面積等于3,求a,b;

      (Ⅱ) 若sinC+sin(B-A)=2sin2A,求A的值.

      18.(本小題滿分12分)某班50名學(xué)生在一次數(shù)學(xué)測(cè)試中,成績(jī)?nèi)拷橛?0與100之間,將測(cè)試結(jié)果按如下方式分成五組:第一組[50,60),第二組[60,70),…,第五組[90,100].圖3是按上述分組方法得到的頻率分布直方圖.

      圖3(Ⅰ)若成績(jī)大于或等于60且小于80,認(rèn)為合格,求該班在這次數(shù)學(xué)測(cè)試中成績(jī)合格的人數(shù);

      (Ⅱ)從測(cè)試成績(jī)?cè)赱50,60)∪[90,100]內(nèi)的所有學(xué)生中隨機(jī)抽取兩名同學(xué),設(shè)其測(cè)試成績(jī)分別為m、n,求事件“|m-n|>10”的概率.

      圖419.(本小題滿分12分)如圖4,正方形ABCD所在平面與三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=3,AB=6.

      (1)求證:AB⊥平面ADE;

      (2)求凸多面體ABCDE的體積.

      20.(本小題滿分12分)已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,它的頂點(diǎn)構(gòu)成的四邊形面積為4.過(guò)點(diǎn)(m,0)做x2+y2=b2的切線l交橢圓C于A、B兩點(diǎn).

      (1)求橢圓C的方程;

      (2)設(shè)O為坐標(biāo)原點(diǎn),求△OAB面積的最大值.

      21. (本小題滿分12分)已知a∈R,函數(shù)f(x)=ax+lnx-1,g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).

      (Ⅰ)判斷函數(shù)f(x)在區(qū)間(0,e]上的單調(diào)性;

      (Ⅱ)是否存在實(shí)數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直? 若存在,求出x0的值;若不存在,請(qǐng)說(shuō)明理由.

      請(qǐng)考生在第22、23、24題中任選一題做答,如果多做,則按所做的第一題計(jì)分.做答時(shí)請(qǐng)寫(xiě)清題號(hào).

      圖522.(本小題滿分10分)選修4-1:幾何證明選講 如圖5,已知PA與圓O相切于點(diǎn)A,半徑OB⊥OP,AB交PO于點(diǎn)C.

      (1)求證:PA=PC;

      (2)若圓O的半徑為3,PO=5,求線段AC的長(zhǎng)度.

      23.(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程 在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為:x=t

      y=2+2t (t為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cosθ.

      (1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;

      (2)將曲線C上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的12,再將所得的曲線向左平移1個(gè)單位,得到曲線C1,求曲線C1上的點(diǎn)到直線l的距離的最大值.

      24. (本小題滿分10分)選修4-5:不等式選講

      設(shè)函數(shù)f(x)=|x-a|+1,a∈R

      (1)當(dāng)a=4時(shí),解不等式f(x)<1+|2x+1|

      (2)若f(x)≤2的解集為[0,2],1m+1n=a(m>0,n>0)求證:m+2n≥3+22.

      2016年高考模擬試卷答案

      一、選擇題

      1.B 2.C 3.D 4.C 5.C 6.D 7.C

      8.D 9.C 10.B 11.A 12.C

      二、填空題

      13.y=-2x+8 14.x2+(y-1)2=8

      15.0 16.(-2,92)∪(92,+∞)

      三、解答題

      17. 解 (Ⅰ)根據(jù)三角形面積公式可知:S=3=12absinC=12ab32推得ab=4;

      又根據(jù)余弦定理可知:cosC=12=a2+b2-c22ab=a2+b2-48推得a2+b2=8.

      綜上可得a=b=2.

      (Ⅱ)sinC+sin(B-A)=2sin2A,

      ∴sin(B+A)+sin(B-A)=4sinAcosA

      sinBcosA=2sinAcosA

      當(dāng)cosA=0時(shí),A=π2

      當(dāng)cosA≠0時(shí),sinB=2sinA,由正弦定理得b=2a,

      聯(lián)立a2+b2-ab=4

      b=2a,得a=233,b=433,

      ∴b2=a2+c2,∵C=π3,∴A=π6,

      綜上A=π2或A=π6.

      解二 sinC+sin(B-A)=2sin2A,

      ∴sin(B+A)+sin(B-A)=4sinAcosA

      即sinBcosA=2sinAcosA

      當(dāng)cosA=0時(shí),A=π2

      當(dāng)cosA≠0時(shí),

      2sinA=sinB=sin(23π-A)=32cosA+12sinA,

      ∴32sinA-32cosA=0

      ∴3sin(A-π6)=0,

      ∵0∴A-π6=0即A=π6.

      綜上A=π2或A=π6.

      18. 解 (Ⅰ)由直方圖知,成績(jī)?cè)赱60,80)內(nèi)的人數(shù)為:50×10×(0.018+0.040)=29.

      所以該班在這次數(shù)學(xué)測(cè)試中成績(jī)合格的有29人.

      (Ⅱ)由直方圖知,成績(jī)?cè)赱50,60)內(nèi)的人數(shù)為:50×10×0.004=2,設(shè)成績(jī)?yōu)閤、y,成績(jī)?cè)赱90,100]的人數(shù)為50×10×0.006=3,設(shè)成績(jī)?yōu)閍、b、c,若m,n∈[50,60)時(shí),只有xy一種情況, 若m,n∈[90,100]時(shí),有ab,bc,ac三種情況, 若m,n分別在[50,60)和[90,100]內(nèi)時(shí),有

      共有6種情況,所以基本事件總數(shù)為10種, 事件“|m-n|>10”所包含的基本事件個(gè)數(shù)有6種.

      ∴P(|m-n|>10)=610=35.

      19.解答 (1)證明:∵AE⊥平面CDE,CD平面CDE,∴AE⊥CD.

      在正方形ABCD中,CD⊥AD,∵AD∩AE=A,∴CD⊥平面ADE.

      ∵AB∥CD,∴AB⊥平面ADE.

      (2)解 在Rt△ADE中,AE=3,AD=6,

      ∴DE=AD2-AE2=33.

      過(guò)點(diǎn)E做EF⊥AD于點(diǎn)F,∵AB⊥平面ADE,EF平面ADE,∴EF⊥AB.

      ∵AD∩AB=A,∴EF⊥平面ABCD.

      ∵AD·EF=AE·DE,

      ∴EF=AE·DEAD=3×336=332.

      又正方形ABCD的面積SABCD=36,

      ∴VABCDE=VE-ABCD=13SABCD·EF=13×36×332=183.故所求凸多面體ABCDE的體積為183.

      20. 解 (1)∵e=32,

      ∴e2=c2a2=34,c2=34a2

      又∵它的頂點(diǎn)構(gòu)成的四邊形面積為4,

      ∴12×a×b×4=4,∴ab=2

      由①②解得a2=4,b2=1,∴橢圓方程為x24+y2=1.

      (2)(Ⅱ)由題意知,|m|≥1,當(dāng)m=1時(shí),切線l的方程為x=1,點(diǎn)A、B的坐標(biāo)分別為(1,32),(1,-32),此時(shí)|AB|=3;

      當(dāng)m=-1時(shí),同理可得|AB|=3;

      當(dāng)|m|>1時(shí),設(shè)切線l的方程為y=k(x-m),

      由y=k(x-m)

      x24+y2=1,得(1+4k2)x2-8k2mx+4k2m2-4=0,

      設(shè)A、B兩點(diǎn)的坐標(biāo)分別為(x1,y1)、(x2,y2),

      則x1+x2=8k2m1+4k2,x1x2=4k2m2-41+4k2

      又由l與圓x2+y2=1相切,得|km|k2+1=1,即m2k2=k2+1,

      所以|AB|=(x2-x1)2+(y2-y1)2

      = (1+k2)[64k4m2(1+4k2)2-4(4k2m2-4)1+4k2]=43|m|m2+3

      由于當(dāng)m=±1時(shí),|AB|=3

      所以,|AB|=43|m|m2+3,m∈(-∞,-1]∪[1,+∞)

      因?yàn)閨AB|=43|m|m2+3≤2且m=±3時(shí)|AB|=2,所以|AB|的最大值為2.

      ∴S△OAB的最大值為12×2×1=1.

      21. 解 (1)∵f(x)=ax+lnx-1,∴f ′(x)=-ax2+1x=x-ax2.

      令f ′(x)=0,得x=a.

      ①若a≤0,則f ′(x)>0,f(x)在區(qū)間(0,e]上單調(diào)遞增.

      ②若0

      當(dāng)x∈(a,e]時(shí),f ′(x)>0,函數(shù)f(x)在區(qū)間(a,e]上單調(diào)遞增,

      ③若a≥e,則f ′(x)≤0,函數(shù)f(x)在區(qū)間(0,e]上單調(diào)遞減.

      (2)∵g(x)=(lnx-1)ex+x,x∈(0,e],g′(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=exx+(lnx-1)ex+1=(1x+lnx-1)ex+1.由(1)可知,當(dāng)a=1時(shí),f(x)=1x+lnx-1.

      此時(shí)f(x)在區(qū)間(0,e]上的最小值為ln1=0,即1x+lnx-1≥0.

      當(dāng)x0∈(0,e],ex0>0,1x0+lnx0-1≥0,∴g′(x0)=(1x0+lnx0-1)ex0+1≥1>0.

      曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直等價(jià)于方程g′(x0)=0有實(shí)數(shù)解. 而g′(x0)>0,即方程g′(x0)=0無(wú)實(shí)數(shù)解.

      故不存在x0∈(0,e],使曲線y=g(x)在x=x0處的切線與y軸垂直.

      猜你喜歡
      切線實(shí)數(shù)小題
      “實(shí)數(shù)”實(shí)戰(zhàn)操練
      圓錐曲線的切線方程及其推廣的結(jié)論
      切線在手,函數(shù)無(wú)憂
      認(rèn)識(shí)實(shí)數(shù)
      1.1 實(shí)數(shù)
      過(guò)圓錐曲線上一點(diǎn)作切線的新方法
      比較實(shí)數(shù)的大小
      博湖县| 犍为县| 大丰市| 玉山县| 乐昌市| 泾川县| 正阳县| 耒阳市| 辽源市| 五台县| 当阳市| 平罗县| 云和县| 册亨县| 扎鲁特旗| 自贡市| 承德县| 平远县| 台湾省| 宿州市| 宜州市| 巩留县| 饶阳县| 慈溪市| 周口市| 永顺县| 徐闻县| 贺州市| 南投县| 隆尧县| 聊城市| 曲阜市| 星子县| 虞城县| 湖南省| 岳阳市| 宁远县| 邵阳市| 攀枝花市| 新邵县| 和平县|