張雄 廉艷平 劉巖
摘 要:材料和結(jié)構(gòu)在強(qiáng)沖擊載荷作用下表現(xiàn)出很強(qiáng)的非線性,出現(xiàn)超大變形、斷裂、破碎,甚至出現(xiàn)相變、熔化、氣化等現(xiàn)象,對(duì)數(shù)值模擬分析提出了巨大挑戰(zhàn),有限元法等基于網(wǎng)格的傳統(tǒng)數(shù)值分析方法不易有效地求解此類問題。物質(zhì)點(diǎn)法中使用一組拉格朗日質(zhì)點(diǎn)和一套歐拉背景網(wǎng)格,質(zhì)點(diǎn)用以離散物質(zhì)區(qū)域,攜帶質(zhì)量、速度、應(yīng)力、能量等物理量,背景網(wǎng)格用以計(jì)算空間導(dǎo)數(shù)及求解動(dòng)量方程。物質(zhì)點(diǎn)法兼具拉格朗日格式和歐拉格式的優(yōu)點(diǎn),不會(huì)出現(xiàn)網(wǎng)格畸變問題,易于跟蹤歷史變量和物質(zhì)界面,非常適合求解強(qiáng)沖擊問題。但物質(zhì)點(diǎn)法在小變形問題中的精度和效率均低于顯式有限元法,鋼筋混凝土沖擊等問題中各組成部分的特征尺寸差別較大,也對(duì)物質(zhì)點(diǎn)離散提出了挑戰(zhàn)。該報(bào)告介紹了研究組針對(duì)上述物質(zhì)點(diǎn)法的不足,所發(fā)展的針對(duì)強(qiáng)沖擊問題的物質(zhì)點(diǎn)法與有限元法的貫通結(jié)合方法。該報(bào)告首先扼要介紹了物質(zhì)點(diǎn)法的基本理論,指出物質(zhì)點(diǎn)法與有限元法在理論上的相似性,給出兩者相互結(jié)合的理論基礎(chǔ)。之后依次闡述了耦合物質(zhì)點(diǎn)有限元法、自適應(yīng)物質(zhì)點(diǎn)有限元法和雜交物質(zhì)點(diǎn)有限元法,詳細(xì)論述了這些方法的基本思想和理論,給出了這些方法用于侵徹等強(qiáng)沖擊問題的實(shí)例,顯示出其相對(duì)于標(biāo)準(zhǔn)物質(zhì)點(diǎn)法的精度與效率優(yōu)勢(shì)。耦合物質(zhì)點(diǎn)有限元法的基本思想是采用有限元法離散小變形物體、用物質(zhì)點(diǎn)法離散大變形物體,不同離散區(qū)域之間通過接觸算法相互耦合。報(bào)告詳細(xì)介紹了耦合過程的處理,主要包括接觸探測(cè)、接觸法線計(jì)算、接觸力計(jì)算以及考慮兩者接觸情況下的時(shí)間積分。自適應(yīng)物質(zhì)點(diǎn)有限元法的基本思想是初始時(shí)采用有限元離散全部區(qū)域,在計(jì)算過程中將可能發(fā)生畸變或破壞的單元自動(dòng)轉(zhuǎn)化為物質(zhì)點(diǎn)求解。報(bào)告詳細(xì)介紹了實(shí)現(xiàn)單元到質(zhì)點(diǎn)的自動(dòng)轉(zhuǎn)化的轉(zhuǎn)化算法,包括轉(zhuǎn)化判據(jù)和轉(zhuǎn)化方案,以及不同離散區(qū)域間的相互作用與相互接觸的處理。雜交物質(zhì)點(diǎn)有限元法主要針對(duì)鋼筋混凝土沖擊等問題,其基本思想是采用桿單元離散鋼筋,采用質(zhì)點(diǎn)離散混凝土。報(bào)告詳細(xì)介紹了如何通過背景網(wǎng)格實(shí)現(xiàn)不同離散格式相互作用和變形協(xié)調(diào),討論了鋼筋失效的模擬方案。上述方法充分發(fā)揮了物質(zhì)點(diǎn)法和有限元法各自的優(yōu)勢(shì),克服了其不足,較之標(biāo)準(zhǔn)物質(zhì)點(diǎn)法和傳統(tǒng)有限元法能夠更有效地模擬強(qiáng)沖擊載荷問題。通過這些方法的研究,建立了物質(zhì)點(diǎn)有限元貫通框架,從理論上推動(dòng)了物質(zhì)點(diǎn)法和有限元法的深化研究,為相關(guān)設(shè)計(jì)分析工作提供了強(qiáng)有力的數(shù)值手段,對(duì)工程問題的高效解決具有重要應(yīng)用價(jià)值。
關(guān)鍵詞:強(qiáng)沖擊載荷 物質(zhì)點(diǎn)法 有限元法 耦合 自適應(yīng)轉(zhuǎn)化 鋼筋混凝土
Finite Element Material Point Method for Intensive Impact Loading
Zhang Xiong Lian Yanping Liu Yan
(Tsinghua University)
Abstract:Materials and structures show strong nonlinearities under intensive impact loading, which pose great challenges on numerical analysis. It is not an easy task for mesh-based methods such as finite element method (FEM) to solve such problems effectively. The material point method (MPM) has both the advantages of Lagrangian method and Eulerian method. No mesh distortion exists, and history variables and the material interface can be easily traced in MPM. So MPM is very appropriate for intensive impact problems. But the accuracy and the efficiency of MPM for small deformation problems are lower than those of explicit FEM. The characteristic lengths of different components in the reinforced concrete (RC) problems are very different, which also poses challenges on MPM. The combined finite element material point method, which is proposed by the research group, is introduced in this report. MPM theory is briefly investigated, and the similarity between MPM and FEM is the foundation of the combination methods. The coupled finite element material point method (CFEMP), the adaptive finite element material point method (AFEMP), and the hybrid finite element material point method (HFEMP) are introduced sequentially. The basic ideas and the theories of the above methods are elaborated, and numerical examples of intensive impact problems such as perforation are given. The results show advantages in accuracy and efficiency over standard MPM. CFEMP employs FEM for small deformation objects and MPM for large deformation objects. Different discretization regions are coupled through contact algorithms. The coupling process is explained in detail. AFEMP employs FEM for the whole domain initially and automatically converts the elements before distortion or failure to material points. The conversion algorithm is introduced thoroughly, and interactions and contacts between different discretization regions are stated as well. HFEMP focuses on RC problems. The bar elements are used for the reinforcement and the material points are used for the concrete. The interaction between different discretization and the deformation consistency are realized through the background mesh. The above methods have both the advantages of FEM and MPM and overcome their shortcomings, so they are more effective in simulating intensive impact problems. A unified framework of FEM and MPM is established. The above methods are significant to design and analysis of practical problems.
Key Words:Intensive impact loading; Material point method; Finite element method; Coupling; Adaptive conversion; Reinforced concrete
閱讀全文鏈接(需實(shí)名注冊(cè)):http://www.nstrs.cn/xiangxiBG.aspx?id=51795&flag=1