王秋菊,劉 峰,高中超※,姚春雨,張勁松,常本超,高 盼,張春峰,賈會彬,焦 峰,姜 輝
(1.黑龍江省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所,哈爾濱150086;2.黑龍江省農(nóng)業(yè)科學(xué)院科研處,哈爾濱150086;3.黑龍江省農(nóng)業(yè)科學(xué)院佳木斯分院,佳木斯;4.黑龍江八一農(nóng)墾大學(xué),大慶163319)
心土培肥犁改良瘠薄土壤的效果
王秋菊1,劉 峰2,高中超1※,姚春雨1,張勁松1,常本超1,高 盼1,張春峰3,賈會彬3,焦 峰4,姜 輝2
(1.黑龍江省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所,哈爾濱150086;2.黑龍江省農(nóng)業(yè)科學(xué)院科研處,哈爾濱150086;3.黑龍江省農(nóng)業(yè)科學(xué)院佳木斯分院,佳木斯;4.黑龍江八一農(nóng)墾大學(xué),大慶163319)
研究根據(jù)心土培肥的改土技術(shù)要求研制出心土培肥犁,并分別在瘠薄黑土和碳酸鹽草甸黑鈣土上開展大面積機械改土試驗,明確自主研發(fā)的心土培肥犁改土后對土壤理化性質(zhì)影響及對作物產(chǎn)量的效果,為其廣泛應(yīng)用到低產(chǎn)土壤改良提供機械及技術(shù)支持。試驗設(shè)深松、心土培肥和常規(guī)對照耕作,采用大田對比方法。研究結(jié)果表明:心土培肥和深松在不同類型土壤上對土壤理、化性質(zhì),對作物產(chǎn)量及產(chǎn)量性狀影響后效不完全一致;心土培肥降低土壤抗剪強度后效明顯,碳酸鹽草甸黑鈣土>10~30 cm土層土壤抗剪強度比對照降低6.65~12.16 kPa,黑土比對照降低8.20~11.31 kPa,碳酸鹽草甸黑鈣土改土后效果明顯,黑土改土后效長,心土培肥改土效果優(yōu)于深松;土壤容質(zhì)量和硬度趨勢同上;心土培肥提高土壤透氣系數(shù)為2.78~14.28倍,飽和導(dǎo)水率為2.38~11.62倍;深松和心土培肥可提高下層土水分消耗比例,>30~60 cm土層耗水量為心土培肥區(qū)>深松區(qū)>對照區(qū),心土培肥耗水量比照高10%;心土培肥處理可提高土壤磷含量和供磷強度,>20~30 cm和>30~40 cm土層土壤供磷強度比對照分別提高4.19~5.17倍和4.96~17倍,碳酸鹽草甸黑鈣土高于黑土;心土培肥可提高玉米產(chǎn)量,碳酸鹽草甸黑鈣土上心土培肥增產(chǎn)幅度為6.82%~18.01%,黑土增產(chǎn)幅度為6.45%~11.18%,平均增產(chǎn)效果碳酸鹽草甸黑鈣土>薄層黑土,但黑土持續(xù)增產(chǎn)效果好。
土壤;農(nóng)業(yè)機械;作物;心土培肥犁;碳酸鹽草甸黑鈣土;薄層黑土;理化性質(zhì);效果
王秋菊,劉 峰,高中超,姚春雨,張勁松,常本超,高 盼,張春峰,賈會彬,焦 峰,姜 輝.心土培肥犁改良瘠薄土壤的效果[J].農(nóng)業(yè)工程學(xué)報,2016,32(6):27-33.doi:10.11975/j.issn.1002-6819.2016.06.004 http://www.tcsae.org
Wang Qiuju,Liu Feng,Gao Zhongchao,Yao Chunyu,Zhang Jinsong,Chang Benchao,Gao Pan,Zhang Chunfeng,Jia Huibin,Jiao Feng,Jiang Hui.Subsoil fertilization plow and its effect on improving barren soil[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6):27-33.(in Chinese with English abstract) doi:10.11975/j. issn.1002-6819.2016.06.004 http://www.tcsae.org
耕地質(zhì)量和數(shù)量是確保國家糧食安全的2個最基本要素。為提高耕地質(zhì)量,2013年國務(wù)院提出全國高標準農(nóng)田建設(shè)總體規(guī)劃[1],并在全國實施。黑龍江省是中國重要商品糧生產(chǎn)基地,糧食總產(chǎn)達到624億kg[2],為保障國家糧食安全作出重要貢獻。但黑龍江省低產(chǎn)土壤面積大,土壤類型多,低產(chǎn)原因各異。比如白漿土主要是黑土層薄和白漿層障礙;坡地瘠薄土壤主要存在養(yǎng)分貧瘠和水土流失問題;半干旱風沙土壤主要是養(yǎng)分瘠薄和土壤風蝕;碳酸鹽及其堿化型土壤主要是土壤鹽漬化和養(yǎng)分貧瘠。為此,生產(chǎn)實踐中相繼研究推廣了一系列改土培肥技術(shù),為中國中低產(chǎn)田改造和高標準農(nóng)田建設(shè)提供了可靠的技術(shù)支撐。其中的心土混層和心土培肥改良白漿土技術(shù)[3-4];保護性耕作技術(shù)[5]、震動深松[6]、稻殼深施改良碳酸鹽堿土技術(shù)[7]以及秸稈還田[8-9]等技術(shù)就是眾多現(xiàn)代改土技術(shù)的代表性成果。
關(guān)于心土培肥改良低產(chǎn)土壤研究,日本學(xué)者南松雄[10]認為心土培肥是同時改良白漿土心土層土壤不良物理性質(zhì)和化學(xué)性質(zhì)的一種綜合改土技術(shù),其改土后效持久,屬于半永久型改土技術(shù),對于提高土壤生產(chǎn)潛力具有重要意義;匡恩俊、Gourley等研究明確了心土培肥改良低產(chǎn)白漿土的持續(xù)增產(chǎn)效果[11-12]。但是,心土培肥在不同類型土壤上的應(yīng)用效果尚缺少深入研究,生產(chǎn)上不僅缺乏實用的機械手段,也未構(gòu)建起完整的心土培肥的應(yīng)用技術(shù)體系。為此按照心土培肥的改土技術(shù)要求研制出心土培肥犁,并分別在瘠薄黑土和碳酸鹽草甸黑鈣土上開展大面積機械改土試驗,本文重點研究了該心土培肥犁改良培肥不同土壤的效果,為大面積推廣提供科學(xué)依據(jù)。
1.1 心土培肥犁培肥試驗
1.1.1 試驗地點
試驗分別在安達市碳酸鹽草甸黑鈣土和依安縣典型黑土上進行,土壤基本理化性質(zhì)如表1,土壤肥力依安試驗點明顯高于安達試驗點。安達試驗點設(shè)在黑龍江省安達市羊草鎮(zhèn)新合村(地理坐標為124°53′-125°55′E,46°01′-47°01′N);依安試驗點設(shè)在黑龍江省依安縣農(nóng)業(yè)科技示范園區(qū)(地理坐標為124°50′-125°42′E,47°16′-48°2′N)。2個試驗地點種植制度為1年1熟制,試驗輪作順序為玉米—玉米—玉米。
表1 供試土壤基本性質(zhì)Table 1 Basic properties for tested soil
1.1.2 試驗處理
試驗采用大田對比試驗,設(shè)3個處理,每個處理面積2 000 m2(100 m×20 m)。具體處理如下:
1)對照(CK):采用當?shù)貞T用的常規(guī)耕作法,秋季收獲后用北林萬達田園機械廠IGSZ-140型滅茬機旋耕滅茬,耕深12 cm,破壟夾肥,待翌春播種;
2)深松:采用山東大華機械1S-270深松機深松30~35 cm后,輕耙2次,夾肥起壟,待翌春播種;
3)心土培肥:采用自主研發(fā)的心土培肥犁作業(yè),該犁為上翻下松的作業(yè)模式,上翻20~25 cm,下松20 cm,總深耕40~45 cm。作業(yè)時向下層土施入鈣鎂磷肥750 kg/hm2(其中P2O5質(zhì)量含量>12%、CaO質(zhì)量含量>25%、MgO質(zhì)量含量>5%)。
耕種及施肥概況:安達試驗點每年施基肥氮、磷、鉀用量分別為202、105、105 kg/hm2;依安試驗點每年施基肥氮、磷、鉀施用量分別為178.5、81、67.5 kg/hm2。試驗處理時間為2013年10月12-15日。2014年安達試驗點4月25日播種;依安試驗點5月5日播種;玉米收獲后留茬越冬,2015年春各處理區(qū)統(tǒng)一采用IGSZ-140型滅茬機滅茬、破壟、夾肥、機械播種和田間管理等作業(yè)。播種方法:安達試驗點采用機械開溝—濾水—條播—覆土—鎮(zhèn)壓模式播種;依安試驗點采用機械聯(lián)合播種機播種。供試品種安達試驗點為玖龍14,依安試驗點為吉單27。
1.2 心土培肥犁結(jié)構(gòu)及作業(yè)原理
心土培肥犁的基本結(jié)構(gòu)如圖1中a所示,主要由支架、施肥裝置和3個犁鏵組構(gòu)成。每個犁鏵組均由1個耕幅45 cm的鏵式犁(第1犁)和1個耕幅20 cm的心土犁(第2犁)構(gòu)成,在第2犁后方分別設(shè)置一個排肥口(圖1b)。機械總耕作幅寬為135 cm,總耕深35~40 cm,總牽引阻力3.5~4 N。心土培肥作業(yè)時,第1犁將0~20 cm表層土壤平移反轉(zhuǎn),其后面隨之而來的第2犁再向下耕作心土,同時上方的肥料箱中的培肥物料通過排肥口排出,分布在20~30 cm土層內(nèi),達到培肥心土層的目的。工作原理如圖2所示,其中a為作業(yè)前的土壤,分為表土層和心土層,土層厚度均為20 cm;b為第1犁作業(yè)時將表土層平移反轉(zhuǎn)露出心土層;c為后面的第2犁破碎心土層的同時將培肥物料第2犁后方;d為在耕翻下一幅時,第1犁耕起的表土翻扣在已混合土層上。
圖1 機械構(gòu)造圖及部件Fig.1 Mechanical structure drawing and parts
圖2 作業(yè)原理圖Fig.2 Operation principle graph
1.3 調(diào)查項目與方法
土壤物理性質(zhì)調(diào)查:于2014年秋季在每個處理的縱向約100 m處,橫向中間處各挖1個60 cm×60 cm×60 cm土壤剖面,用100 mL環(huán)刀分層取原狀土樣測定土壤物理性質(zhì),同時取分散樣測定土壤化學(xué)性質(zhì)。取樣層次:0~10、>10~20、>20~30、>30~40 cm土層。3次重復(fù),環(huán)刀樣扣蓋,密封后備用。
土壤容質(zhì)量采用環(huán)刀法測定法[13],土壤抗剪強度采用型號為GEONOR72572土壤剪切儀測定;不同土層土壤容積含水量監(jiān)測采用美國SEC公司生產(chǎn)的MiniTrase2.07高精度土壤水分測量系統(tǒng)監(jiān)測,氣象數(shù)據(jù)由試驗區(qū)氣象站監(jiān)測提供。土壤耗水量監(jiān)測的土壤容積含水量變化計算獲得,公式如下:
式中DW耗為某作物生育期中,單位時期內(nèi)某段土層內(nèi)的作物耗水量,mm;DW始為開始測定時該土層內(nèi)的土壤水分儲量,也稱為初始儲水量,mm;DW終為測定結(jié)束時該土層內(nèi)的土壤水分儲量,也稱為最終儲水量,mm;t為時間,日;θν為體積含水量,%;h為土層厚度,cm。
土壤硬度采用DIK-5521土壤硬度計(圓錐角度30°,底面積2 cm2)測定[13],測定時沿著壟向垂直方向每隔10 cm測1次,共測定10個位點,取平均值繪成曲線;土壤通氣系數(shù)采用DIK-5001土壤透氣性測定儀測定;飽和導(dǎo)水率采用DIK-4012土壤透水性測定儀測定;玉米產(chǎn)量調(diào)查:每區(qū)取3點,每點10 m2,室內(nèi)考種調(diào)查產(chǎn)量及產(chǎn)量性狀。
表2 不同耕作處理土壤物理性質(zhì)Table 2 Soil physical properties of different tillage treatments
1.4 數(shù)據(jù)處理
數(shù)據(jù)處理軟件為EXCEL和DPS(data processing system)。
2.1 對土壤物理性質(zhì)的影響
表2是改土后第1年(2014)和第2年(2015)土壤物理性質(zhì)調(diào)查結(jié)果。從表2、圖3中看出,土壤抗剪強度、容質(zhì)量、通氣性、飽和導(dǎo)水率,0~10 cm表層土壤受耕作影響處理間變化無規(guī)律,>10~30 cm土層呈規(guī)律性變化:改土后第1年,碳酸鹽草甸黑鈣土深松和心土培肥>10~30 cm土壤抗剪強度平均比對照降低7.14、12.16 kPa;容質(zhì)量降低0.06、0.13 g/cm3;第2年平均抗剪強度仍分別比對照低0.68和6.65 kPa;容重低0.05和0.08 g/cm3,表明深松抗剪強度基本恢復(fù)原;但從土壤硬度看(圖4),改土后第2年仍然低于對照。黑土深松和心土培肥區(qū)土壤抗剪強度、容質(zhì)量和硬度變化趨勢與碳酸鹽草甸土一致。土壤透氣性、飽和導(dǎo)水率深松處理在碳酸鹽草甸黑鈣土和黑土變化不規(guī)律,心土培肥處理在2種土壤上均提高了>10~30 cm土層土壤透氣系數(shù)和飽和導(dǎo)水率,心土培肥改良碳酸鹽草甸黑鈣土和黑土通氣透水性效果,改土第1年>10~30 cm土層平均比對照提高2.22和14.28倍,第2年提高4.17和2.78倍;飽和導(dǎo)水率第一年分別比對照提高7.93和6.86倍;第2年提高11.62和2.38倍,深松效果不明顯。
圖3 不同年份碳酸鹽草甸黑鈣土硬度Fig.3 Hardness of carbonate meadow chernozem of different years
2.2 對土壤儲水性的影響
圖5是安達試驗點碳酸鹽草甸黑鈣土和依安試驗點黑土試驗點不同處理土壤耗水量計算結(jié)果。安達試驗點初始時間、終止時間分別為2014年8月3日至8月10日。依安試驗點為2014年8月3日至8月13日,測定時間內(nèi)無大氣降水補給,土壤水分消耗為作物騰發(fā)+土壤蒸發(fā)。圖5a是依安試驗點不同土層耗水量,圖5b為上下土層耗水百分比。從圖5a看出,越下層土耗水量越少;比較不同處理看出,地表下30 cm以內(nèi)土層耗水量,依次為對照區(qū)>深松區(qū)>心土培肥區(qū),30 cm以下土層耗水量,依次為心土培肥區(qū)>深松區(qū)>對照區(qū);深松和心土培肥區(qū)消耗下層土水分比例明顯高于對照(圖5b),說明深耕不僅僅有利于深層儲水,也有利于利用作物有效利用深層土壤的水分。安達調(diào)查結(jié)果也有相同趨勢(圖5c、d)。
圖4 不同年份薄層黑土硬度Fig.4 Hardness of thin layer black soil of different years
圖5 不同類型土壤耗水量及耗水量比例Fig.5 Water consumption and rate of different type soil
2.3 對土壤化學(xué)性質(zhì)影響
考慮到心土培肥處理向心土內(nèi)施入過磷酸鈣(其中P2O5質(zhì)量含量為12%),表3主要列出不同土層土壤磷測定結(jié)果。從表3看出,土壤磷素水平黑土明顯高于碳酸鹽草甸黑鈣土;0~20cm耕層內(nèi)土壤,上下土層之間、處理之間差異不明顯,也無明確規(guī)律性。碳酸鹽草甸黑鈣土>20~30cm心土層土壤全磷和有效磷含量,心土培肥分別比對照提高0.05 g/kg和3.21 mg/kg,>30~40 cm土層提高0.01 g/kg和 1.92 mg/kg,2層土壤供磷強度比對照分別提高5.17倍和17倍;深松與對照相比有效磷含量平均提高1.31 mg/kg,供磷強度提高1.39倍,沒有心土培肥處理效果明顯。黑土在>20~30 cm土層,心土培肥處理土壤全磷和有效磷含量分別比對照提高0.09g/kg和15.05 mg/kg,>30~40cm土層土壤分別提高0.03 g/kg和9.2mg/kg,土壤供磷強度比對照分別提高4.19倍和4.96倍,深松處理對心土層土壤磷含量無明顯影響。說明磷的供應(yīng)強度在缺磷土壤上更明顯。
表3 不同耕作處理土壤磷變化Table 3 Soil phosphorus change of different tillage treatments
2.4 對作物產(chǎn)量影響
從表4中看出,在碳酸鹽草甸黑鈣土上,心土培肥處理和深松處理均可提高玉米的株高、穗長和穗粗,增加玉米穗粒數(shù)和百粒質(zhì)量,提高玉米產(chǎn)量。改土后第一年心土培肥和深松分別比對照增產(chǎn)18.01%和14.28%,第2年分別增產(chǎn)6.82%和2.87%,心土培肥效果好于深松;在碳酸鹽草甸黑鈣土上效果好于黑土,在黑土上分別比對照增產(chǎn)6.45%和1.80%,改土第2年增產(chǎn)11.18%和5.11%。平均增產(chǎn)效果碳酸鹽草甸黑鈣土>黑土。這與土壤肥力基礎(chǔ)有一定關(guān)系。
表4 玉米產(chǎn)量性狀及產(chǎn)量Table 4 Yield and yield properties of corn
耕作的主要作用是改變土壤物理性質(zhì),而深耕則改善下層土物理性質(zhì)的效果明顯。本研究結(jié)果表明,深松和心土培肥與生產(chǎn)慣用的滅茬旋耕技術(shù)比,改善土壤理化性質(zhì)、提高作物產(chǎn)量效果的效果十分明顯。但是尚有幾個問題需要說明:一是試驗結(jié)果表明,不論在碳酸鹽草甸黑鈣土或黑土上,耕層0~10 cm土層不同處理之間的土壤抗剪強度、質(zhì)量等物理性質(zhì)變化無規(guī)律性,表明傳統(tǒng)的旋耕滅茬技術(shù)的耕作深度不超過10 cm,盡管中耕作業(yè)在壟溝處耕深超過20 cm,而實際采樣中在壟臺上取樣避開了松軟的壟溝,這是調(diào)查數(shù)據(jù)與實際情況不一致的重要原因。二是有研究認為土壤剪切力、容質(zhì)量、和硬度均是從不同角度上來衡量土壤的物理質(zhì)量標準,剪切力是抵抗機械切割土壤的阻力的強度、與土壤容質(zhì)量、硬度一起表征土壤物理環(huán)境及狀態(tài)的重要指標[14-16]。但從表1看出,作為表征和評價土壤物理性質(zhì)變化的重要指標,土壤抗剪強度、飽和導(dǎo)水率和土壤硬度尤為重要。特別是在用土壤容質(zhì)量衡量農(nóng)業(yè)機械壓實土壤狀況時,由于一般耕作措施導(dǎo)致土壤容質(zhì)量變化空間很小,且通氣性存在不穩(wěn)定因素,在實際操作中很難把握。三是深松和心土培肥深層土壤耗水量占有比例高于常規(guī)耕作,說明心土培肥和深松處理深層土壤蓄水、保墑、供水能力強,抗旱、防澇能力強。
四是心土培肥和深松在碳酸鹽草甸黑鈣土分別平均增產(chǎn)12.4%和8.5%,黑土增產(chǎn)8.9%和3.5%,碳酸鹽草甸黑鈣土好于黑土,心土培肥好于深松,其差異可能是土壤基礎(chǔ)肥力差異造成的。但第2年增產(chǎn)效果,前者不如后者,可能是由于前者土壤沙粒含量高,有機質(zhì)低,耕松后土壤易復(fù)原[17],因此改土第2年后效果不如黑土保持時間長,但改土第1年效果明顯。
五是心土培肥增加了深層土壤全磷和有效磷含量,提高了土壤供磷強度,在碳酸鹽草甸黑鈣土上效果好于黑土。碳酸鹽草甸黑鈣土土壤pH值高,對作物危害大,深耕促進土壤水分流動,有效降低土壤pH值[18],土壤有效養(yǎng)分活性得到提高[19]。
另外,試驗區(qū)土壤肥力、土層厚度比較均勻一致,因此,在測定剖面土壤物理性質(zhì)時各處理只挖了一個剖面,這對土壤物理性質(zhì)、尤其是耕層土壤物理性質(zhì)準確性可能有一定影響,但是從土壤數(shù)值看出,耕層土壤各處理間各項指標差異較小,而且變化不規(guī)律,主要是由于正常機械田間作業(yè)和采樣誤差導(dǎo)致,而下層土各處理間土壤各項物理指標變化較為規(guī)律,深層土壤受機械擾動少,各處理間差異主要是來源于深耕作業(yè)處理。
心土培肥和深松在不同類型土壤上對土壤理、化性質(zhì),對作物產(chǎn)量及產(chǎn)量性狀影響不一致。
1)心土培肥在改善土壤物理性質(zhì)抗剪強度、容質(zhì)量、硬度、通氣性和透水性方面效果好于深松,改土效果在碳酸鹽草甸黑鈣土效果明顯于在黑土上的效果,但在黑土上改土后持續(xù)效果長,>10~30 cm土層土壤各項指標與對照相比變化幅度明顯。
2)心土培肥和深松可提高深層土壤蓄水、耗水能力,兩類土壤上0~30 cm土層土壤耗水量對照區(qū)>深松區(qū)>心土培肥區(qū);30~60 cm土層耗水量為心土培肥區(qū)>深松區(qū)>對照區(qū),心土培肥深層土壤耗水量可達總耗水量的30%。
3)在對土壤養(yǎng)分影響上,心土培肥可提高土壤磷含量和供磷強度,碳酸鹽草甸黑鈣土土壤供磷強度比對照分別提高5.17~17倍,黑土土壤供磷強度比對照提高4.19~4.96倍,碳酸鹽草甸黑鈣土上土壤供磷強度提高幅度高于黑土土壤供磷強度。
4)在對玉米產(chǎn)量及產(chǎn)量性狀影響上,心土培肥和深松均可增加穗長、穗粗、穗粒數(shù)和百粒重,進而提高玉米產(chǎn)量,碳酸鹽草甸黑鈣土上心土培肥增產(chǎn)幅度為6.82%~18.01%,黑土增產(chǎn)幅度為6.45%~11.18%,平均增產(chǎn)效果碳酸鹽草甸黑鈣土>薄層黑土,但黑土增產(chǎn)后效長。
[1] 薛劍.高標準農(nóng)田標準與建設(shè)路徑研究—以黑龍江省富錦市為例[D].北京:中國農(nóng)業(yè)大學(xué),2014. Xue Jian.Study on the Criteria and Construction Approach for Well-facilitated Farmland:A Case Study in Fujin City, Heilongjiang Province[D].Beijing:China Agricultural University, 2014.(in Chinese with English abstract)
[2]中共黑龍江省委政策研究室.黑龍江省情概況[M].哈爾濱:東北農(nóng)業(yè)大學(xué)出版社,2015. Policy Research Office of the CPC Heilongjiang Provincial Committee.Heilongjiang Situation[M].Haerbin:Northeast Agricultural University Press,2015.(in Chinese with English abstract)
[3] 劉峰,高盼,王秋菊,等.心土層改良研究進展[J].中國土壤與肥料,2015,1:7-10. Liu Feng,Gao Pan,Wang Qiuju,et al.Research progress in improvement of subsoil[J].Soil and Fertilizer Sciences in China, 2015,1:7-10.(in Chinese with English abstract)
[4]Huibin Jia,Zhonghe Yu,Chunfeng Zhang,et al.Three-stage subsoil interval mixing plough for improvement of planosol:Part 1:draught and moment[J].Engineering in Agriculture, Environment and Food,2013,6(4):184-190.
[5]薛建福,趙鑫,Shadrack Batsile Dikgwatlhe,等.保護性耕作對農(nóng)田碳、氮效應(yīng)的影響研究進展[J].生態(tài)學(xué)報,2013,33(19):6007-6010. Xue Jianfu,Zhao Xin,Shadrack Batsile Dikgwatlhe,et al. Advances in effects of conservation tillage on soil organic carbon and nitrogen[J].Acta Ecologica Sinica,2013,33(19):6007-6010.(in Chinese with English abstract)
[6] 張廣英.固定道式震動深松分層施肥免耕播種技術(shù)推廣應(yīng)用[J].時代農(nóng)機,2015,42(7):6-7. Zhang Guangying.A study on promotion and application of controlled traffic,vibrating,subsoiling & sperated layers fertilization and no-till sowing technology[J].Magazine Official Website,2015,42(7):6-7.(in Chinese with English abstract)
[7]高中超,中本和夫,王秋菊,等.稻殼深施對堿土物理性質(zhì)和苜蓿產(chǎn)量的影響[J].土壤通報,2015,45(4):990-994. Gao Zhongchao,Nakamoto Kazuo,Wang Qiuju,et al.Effects of deep application of rice husk on physical properties and alfalfa yield in alkali soil[J].Chinese Journal of Soil Science,2015,45 (4):990-994.(in Chinese with English abstract)
[8]Liang Zheng,Wenliang Wu,Yongping Wei,et al.Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of northern China[J]. Soil and Tillage Research,2015,145:78-86.
[9]Yanfang Gu,Tong Zhang,Hui Che,et al.Influence of returning corn straw to soil on soil nematode communities in winter wheat [J].Acta Ecologica Sinica,2015,35(2):52-56.
[10]南松雄.新時代のつちづくりと土施肥技術(shù)[M].札幌:農(nóng)業(yè)技術(shù)普及協(xié)會,1985:9-37.
[11]匡恩俊,劉峰.心土培肥改良白漿土的研究Ⅰ白漿土心土培肥的效果[J].土壤通報,2008,39(5):1106-1109. Kuang Enjun,Liu Feng.Study on subsoil amendment of baijiang soil[J].Chinese Journal of Soil Science,2008,39(5):1106-1109.(in Chinese with English abstract)
[12]Gourley C J P,Sale P W G.Chemical and physical amelioration of subsoils has limited production benefits for perennial pastures in two contrasting soils[J].Soil and Tillage Research,December 2014,144:41-52.
[13]翁德衡.土壤物理性測定法[M].重慶:科學(xué)技術(shù)文獻出版社重慶分社,1979. Weng Deheng.Soil physical property determination method[M]. Chongqing:Chongqing Branch of Science and Technology Literature Press,1979.(in Chinese with English abstract)
[14]Hossain M F,Chen W,Zhang Y.Bulk density of mineral and organicsoilsin the Canada’sarcticand sub-arctic[J]. Information Processing in Agriculture,2015,2(3-4):183-190.
[15]Mosleh M,Gharahbagh E A,Rostami J.Effects of relative hardness and moisture on tool wear in soil excavation operations [J].Wear,2013,302(1-2):1555-1559.
[16]甘磊,彭新華,謝永雄.放牧對內(nèi)蒙古大針茅草原土壤剪切力空間分布的影響[J].草業(yè)科學(xué),2014,31(2):219-223. Gan Lei,Peng Xinhua,Xie Yongxiong.Effects of grazing on spatial distribution of shear strength in inner mongolia grassland [J].Pratacultural Science,2014,31(2):219-223.(in Chinese with English abstract)
[17]黑龍江省土地管理局,黑龍江省土壤普查辦公室編.黑龍江土壤[M].北京:農(nóng)業(yè)出版社,1992. Department of Land and Resources of Heilongjiang Province, Office of soil survey in heilongjiang province.Heilongjiang Soil [M].Beijing:Agriculture Press,1992.(in Chinese with English abstract)
[18]王秋菊,劉峰,高中超,等.有機物料深耕還田改善石灰性黑鈣土物理性狀[J].農(nóng)業(yè)工程學(xué)報,2015,31(10):161-165. Wang Qiuju,Liu Feng,Gao Zhongchao,et al.Deep tillage with organic materials returning to field improving soil physical characters of calcic chernozem[J].Transactions of the Chinese Society of Agricultural Engineering(Trans.Chin.Soc.Agric.Eng), 2015,31(10):161-165.(in Chinese with English abstract)
[19]王秋菊,高中超,焦峰,等.有機物料深耕還田改善石灰性黑鈣土化學(xué)性質(zhì)提高玉米產(chǎn)量[J].農(nóng)業(yè)工程學(xué)報,2015,31 (14):110-115. Wang Qiuju,Gao Zhongchao,Jiao Feng,et al.Organic materials returning to field and deep tillage improving chemical properties of calcic chernozem and increasing crop yield[J].Transactions of the Chinese Society of Agricultural Engineering(Trans.Chin.Soc. Agric.Eng),2015,31(14):110-115.(in Chinese with English abstract)
Subsoil fertilization plow and its effect on improving barren soil
Wang Qiuju1,Liu Feng2,Gao Zhongchao1※,Yao Chunyu1,Zhang Jinsong1,Chang Benchao1,Gao Pan1, Zhang Chunfeng3,Jia Huibin3,Jiao Feng4,Jiang Hui2
(1.Institute of Soil Fertilizer and Environment Resources,Heilongjiang Academy of Agricultural Sciences,Harbin 150086,China;2.Heilongjiang AcademyofAgriculturalSciences,ScientificResearchDepartment,Harbin150086,China;3.JiamusiBranchofHeilongjiangAcademyof AgriculturalSciences,ScientificResearchDepartment,Jiamusi154007,China;4.HeilongjiangBayiAgriculturalUniversity,Daqing,163319,China)
There is a large area of low productive soil,many soil types,and different low productive reasons in Heilongjiang Province.So improving low productive soil has important significance for agriculture.Subsoil fertilization is a comprehensive soil improvement technology which can improve subsoil′s bad physical and chemical properties.Studying team has done research on improving planosol with subsoil fertilization,and this technology has the effect of continually increasing yield,but there is lack of the research on other soil types,and the practical mechanical tools.In this paper,the subsoil fertilization plow was researched according to the subsoil fertilization technology requirements,and applied on the improvement of carbonate meadow chernozem and thin layer black soil,which was aimed to clarify its soil improvement effect on soil physical and chemical properties and corn yield,and provide the mechanical and technological support for its wide application in low production soil.The field contrast method was applied in this study,and 3 treatments were set which included deep loosing(DL),subsoil fertilization(SF)and control(CK).The result showed that the effects of subsoil fertilization and deep loosing on soil physical and chemical properties,yield characteristics and yield were not consistent. The lasting effect of deep loosing and subsoil fertilization on deceasing soil shear strength was obvious.For carbonate meadow chernozem and thin layer black soil,the soil shear strength was decreased by 7.14 and 5.41 kPa under DL treatment,and by 12.16 and 8.20 kPa under SF treatment respectively compared with that of the CK in the first year after soil improvement;the soil shear strength was decreased by 0.68 and 2.25 kPa under DL treatment,and by 6.65 and 11.31 kPa under SF treatment respectively compared with that of the CK in the second year after soil improvement.The bulk density and hardness were the same as the above change.Subsoil fertilization could improve soil air permeability and saturated hydraulic conductivity;the air permeability coefficient was respectively 3.22 and 15.28 times higher than the CK on the 10-30 cm soil layer of carbonate meadow chernozem and thin layer black soil in the first year after improvement,and 5.17 and 3.78 times after the second year;the saturated hydraulic conductivity was respectively 8.93 and 7.68 times higher than that of the CK after the first year,and respectively 12.62 and 3.38 times after the second year.The effect of deep loosing was not obvious.The DL and SF treatment could improve water consumption of subsoil,and the order of water consumption was CK>DL>SF in 0-30 cm soil layer,and SF>DL>CK in 30-60 cm soil layer.The water consumption in subsoil layer was 30%of total water consumption,and 10%more than the CK.The total phosphorus and available phosphorus were increased by 0.05 g/kg and 3.21 mg/kg under SF treatment compared with the CK in 20-30 cm soil layer of carbonate meadow chernozem,and by 0.01 g/kg and 1.92 mg/kg in 30-40 cm soil layer,and the phosphorus offering intensity of the 2 layers was improved by 5.17 and 17 times compared with the CK;The total phosphorus and available phosphorus were increased by 0.09 g/kg and 15.05 mg/kg under SF treatment compared with the CK in 20-30 cm soil layer of thin layer black soil,and by 4.19 g/kg and 4.96 mg/kg in 30-40 cm soil layer,and the phosphorus offering intensity of the 2 layers was improved by 5.17 and 17 times compared with the CK.Subsoil fertilization and deep loosing could promote the corn growth,increase the length and width of ear,grain number per spike,100-seed weight and yield.The yield was increased respectively by 18.01%and 14.28%under subsoil fertilization and deep loosing in the first year after soil improvement for carbonate meadow chernozem,and respectively by 6.82%and 2.87%in the second year after soil improvement;the increased yield was respectively 6.45%and 1.80%in the first year after soil improvement for thin layer black soil,and respectively 11.18%and 5.11%in the second year.The effect of increasing yield for carbonate meadow chernozem is more obvious than that for thin layer black soil.
soils;agricultural machinery;crops;subsoil fertilization plow;carbonate meadow chernozem;thin layer black soil;physical and chemical properties;effect
10.11975/j.issn.1002-6819.2016.06.004
S223
A
1002-6819(2016)-06-0027-07
2015-12-14
2016-01-21
公益性行業(yè)(農(nóng)業(yè))科研專項(201303126-7),科技支撐(2013BAD07B01),省招標項目(2014BAD11B01-A027)
王秋菊(1978-),女,黑龍江省依蘭人,博士,副研究員,從事土壤改良研究。哈爾濱 黑龍江省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所,150086。Email:bqjwang@126.com
※通信作者:高中超,男,黑龍江綏棱人,副研究員,研究方向為土壤改良。哈爾濱 黑龍江省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所,150086。Email:gaozhongchao0713@163.com