• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Load-noise of a Highly-skewed Propeller behind Subm arine

    2016-05-15 13:24:21ZHANGMingyuLINRuilinWANGYongshengFUJianWEIYingsan
    船舶力學 2016年9期
    關(guān)鍵詞:工程學院螺旋槳軸向

    ZHANG Ming-yu,LIN Rui-lin,WANG Yong-sheng,FU Jian,WEI Ying-san

    (College of Marine Power Engineering,Naval University of Engineering,Wuhan 430033,China)

    Numerical Analysis of Load-noise of a Highly-skewed Propeller behind Subm arine

    ZHANG Ming-yu,LIN Rui-lin,WANG Yong-sheng,FU Jian,WEI Ying-san

    (College of Marine Power Engineering,Naval University of Engineering,Wuhan 430033,China)

    This investigation combined the Computational Fluid Dynamics(CFD)with Boundary Element Method(BEM)to predict the load noise of a highly-skewed propellers behind submarine(SUBOFF)with full appendages.The credibility of CFD was validated by comparing the results derived from steady simulation of the open water propeller with experiment data.The unsteady loading(dipole sound source)on blade surface was calculated by transient simulation of the same propeller fixed after submarine and then was transferred to the sound grid.The integration of the noise source was performed over the true blade surface,which was used to predict the propeller’s low-order blade frequency noise below 1 kHz.The BEM method was used to solve the FW-H equation to get the sound pressure directivity characteristics on the 3D spherical surface enclosed the propeller as well as two planes in the surface of the propeller disc and its perpendicular surface based on theory of acoustic fan source, total sound pressure level on the downstream axial measured points were also calculated.Study shows that the sound pressure directivity on both the propeller disc and its perpendicular plane presented as‘8’,but the directivity is not unique because of the existence of rotation and skew angle of the propeller.The 3D spherical field showed that the radiant surface in the direction of the propeller disc was smaller and radiated weaker than its perpendicular plane.The results of the typical points showed that the 1st order blade frequency SPL exceeded the high-order blade frequency SPL obviously, which accorded well with fact.A good consistency had gotten after comparing with the published literature and reasonable explanation was also given to the difference.Thus,this paper introduced a new method to measure the propeller noise behind submarine in the ship effectively.

    submarine;highly-skewed propeller;CFD;BEM;Acoustic Fan Source

    0 Introduction

    Submarine has been welcomed by navies of all ages because of its good concealment,aggressive characteristics.Submarine underwater radiated noise is one of the key factors affecting the submarine concealment in nature,which includes mechanical vibration noise,propeller noise,fluid induced noise.Propeller noise is the main source of noise,which was first foundby underwater monitor during World War II[1].Propeller cavitation noise is mainly concentrated in the high frequency band and has got improved synchronously under the medium-low speed.However,no-cavitation noise concentrated in the low frequency band performed very obviously.Currently,people began to pay attention to study this kind of noise.Both the submarine’s velocity and the propeller’s rotating speed are small,thus propeller no-cavitation noise brings greater harm.Sound field radiated by propeller mainly consists of the dipole sound noise(load noise)generated by unsteady loads[2-3]in the non-uniform flow without cavitation, so the study on no-cavitation noise of propeller fixed after submarine has a very important significance.

    Zhu,Tang et al[4]had combined the unsteady lifting surface theory and acoustic methods to calculate the low-frequency discrete spectrum-line of non-cavitation noise of different propeller while effect of propellers’geometry parameters(such as propeller diameter,pitch, number of leaves,skewed,arch)to sound pressure level brought in consideration.Zhu and Wu[5]researched a propeller’s load noise characteristics based on unsteady lifting surface theory method and Goldstein theory,a brief introduction to the theoretical results and the numerical analysis method was illuminated.Seol et al[2]made a further exploration on the calculation method for calculating propeller underwater no-cavitation noise of far fields by combining the surface element method and boundary element.Analysis of unsteady propeller forces changing over time was made out and then input the forces to FW-H equation to predict the far-field sound radiation of propeller via plane element method in Ref.[3].Pantle et al[6]calculated the time-domain solution of unsteady flow field of propeller using large eddy simulation and computed its radiated noise under no-cavitation conditions through FW-H integral model.Refs. [7-8]introduced hybrid calculation method,the mutual coupling of the flow field and the sound field using the drop-coupling treatment.Sound source was the unsteady pressure resulting from the large eddy simulation,propeller noise spectrum was derived from the FW-H integral model.

    This paper used large eddy simulations(LES)on the unsteady three-dimensional numerical calculations of‘submarine+propeller’through software CFX and used the boundary element method to calculate the frequency-domain load noise of a highly skewed propeller in the non-uniform flow behind the submarine based on theory for acoustic fan source,its noise distribution was analyzed and the results of the same feature points were taken out,which coincided better with the Ref.[9],the differences were also reasonably explained,studies show that Acoustic Fan Source is a new way to predict propeller noise effectively.

    1 Theoretic analysis

    1.1 Equation and tools

    In 1969,Ffowcs Williams and Hawkings extended Curle equation to bring the impact of the moving solid boundary into consideration via generalized function,which considered prob-lems of objects moving in the fluid,such as propeller’s non-cavitation noise at work,which made the FW-H equation used more commonly[10]and laid the theoretical foundation of flow noise.

    where Maris the projection of Mach number on the observer direction,S(ζ)is the acreage of moving solid.The first item on the right of equation is thickness noise,which is the noise resulting from the drain caused by blade rotation.The second term is the dipole sound source which is also known as the load noise,and is brought in by the pulse on a solid wall,the pulse can be considered only generated by fluid.Load noise plays a major role at low Mach number, this study considered the dipole sound source as the main propeller noise.The third term on the right of above equation is the quadrupole sound source generated by turbulent fluctuations in the fluid and the interaction of shear layers,which is prominent in the high Marand can be ignored when the value is low[11].

    1.2 Theory for Acoustic Fan Source

    There is only rotor with no stator for propeller;the expression for this acoustic field for different fan configurations is summarized as below.

    Axial and tangential contributions of the radiated pressure at frequency mBΩ:

    where m is the harmonic number,B is the number of rotor blades,Ω is the rotation speed,R is the distance from the observer,c0is the speed of sounds,is the Fourier series of the total force on a compact blade segment,M is the rotational Mach number,θ,φ and γ are defined in Fig.1,γ is the number of stator vanes.

    Radial contribution:

    Fig.1 Acoustic fan source

    In the above expressions,the pressure field is computed from the loading force on a reference rotor blade.This force can be computed from the pressure fluctuations in time domain obtained from a CFD(computational fluid dynamic)computation.The computation of this force is done in a new analysis case.

    The resulting loading force is applied at one point of the blade.The representation of thefan by a single fan source is a good approximation when the size of the blades is small compared to the wavelength(compact source approximation).When the size of the blade is very large and the fan cannot be considered as a compact source,the blade can be subdivided into a set of segments where each segment can be replaced by an equivalent source.

    The computation of centers of gravity of segments base nodes is expressed as follows:

    where xikis the k th coordinate of the i th node.The forces acting on the different segments are calculated by using the following equations:

    k th component of the total force on j th segment at the i th time.Pimis the pressure at the i th time step at m th node,nodal_area_vectormkis the k th component of the nodal area vector at m th node.

    2 Com puting model and numerical sim ulation

    This paper used RANs method to carry out CFD calculations.Steady simulation of flow field of open water propeller was executed through solving the control equations based on SST turbulence model.Firstly,SST model combines the advantages of both k-ε model and k-ω model,k-ε model has good convergence for simulating flow in the near wall region while k-ω model has higher computational efficiency where region turbulence is fully developed[12].The three-dimensional unsteady calculations using large eddy(LES)method of the highly skewed propeller fixed behind the submarine was developed after verifying the credibility of numerical calculation,the large eddy simulation’s accuracy and resource requirements are just between DNS and RANS,the application of large-eddy simulation method has gradually expanded along with a continuous improvement of LES theory and the gradual accumulation of experience in application.We can get the propeller’s frequency-domain sound field based on theory for acoustic fan source after calculated the acoustic dipole distribution on propeller surface.

    2.1 Steady state calculation and verification of open water propeller

    Using software ICEM to mesh the 3D geometry of highly skewed propeller with 7 blades drew out by software Ug.The total grid number was 1 360 000,which was specifically shown in Fig.2,settings of the boundary conditions were shown in Fig.3,the number of computational domain grids was 2 100 000 while grid thickness of the first layer near the surface is 0.1 mm,the value of y+satisfied the requirement of the boundary layer turbulence required for simulation.6 working conditions at the speed 20 r/s with J=0.4~0.9 were calculated and axialthrust T and torque Q of propeller were derived through integration on the wall,which were converted into thrust coefficient,torque coefficient and efficiency as follows:

    Fig.2 Geometry and structured grid of the highly skewed propeller

    where D is the propeller diameter,n is the rotational speed,J is the feed ratio.

    Values of thrust coefficient and torque coefficient at 20 r/s with J=0.4~0.9 were made out and curves of both the CFD values and experimental data were shown in Fig.4,the CFD values consisted with the experimental well and the error was less than 3%.

    Fig.3 Computational domain and boundary conditions

    Fig.4 Compared with experimental data

    2.2 Unsteady three-dimensional numerical simulation of the propeller fixed behind submarine SUBOFF

    The length of SUBOFF is 4.356 m,the maximum diameter is 0.508 m,podium length is 0.368 m,four empennages are arranged symmetrically in NACA0020 airfoil.The distance from the bow to propeller plane is 4.26 m.The distance on inflow direction takes a captain while twice on the out flow direction for the entire flow field computational domain whose diameter decuple the maximum boat diameter.All the mesh is hexahedral and the total number is 20 100 000.The velocity of flow was 6 kt,the outlet was set as atmospheric pressure,rotational speed of propeller was 750 r/min,steady-state time step take 0.012 s based on expression 30/(nπ),n is the rotational speed rpm.Transient calculation started on the result of steadystate.The higher sampling frequency obtained higher time resolving power of the data,pulsation amplitude may be underestimated if the sampling frequency is too low[13].This paper takes every time step from rotation time of 1°synthetically,1/(6n)=0.000 022 s.Computational domain and boundary conditions of‘boat+ propeller’were shown in Fig.5,here L is captain,D sub is the maximum diameter of the hull,and the stream lines were shown in Fig.6.

    Fig.5‘Boat+propeller’boundary conditions and computational domain

    3 Sound field calculation of the highly skewed propeller behind submarine

    Fig.6 Streamline

    3.1 Data transfer

    Extracting the propeller surface pressure after the above three-dimensional unsteady calculation was convergent and mapped it onto the sound grid through distance-weighted method. This paper imported the pressure datum of 360 time steps,namely 1 circuit of propeller.λ=c/ f,f≤1 kHz,the wavelength is at least 1.5 m so that there were enough units to describe the sound field within each wavelength even though the size of acoustic grid cell was a little larger.Acoustic Fan Source just takes one blade to calculate sound field and then describe the work of the propeller blades by defining the number of blades and rotational speed.The sound pressure information of a skewed propeller blades to a corresponding sound field grid was transferred by nodes scale 4:1,grids and pressure distribution were shown in Figs.7 and 8.

    Fig.7 Fluid mesh

    sound grid

    Fig.8 Pressure extracted from CFD mapped pressure

    3.2 Acoustic Fan Source settings and number verification of dipole segments

    Dividing the blade into segments after defining the rotating coordinate, each block will be treated as an equivalent dipole sound source.The results of 13 and 34 segments under 1BPF (Blade Passing Frequency)showed that the sound directivity overlapped substantially on both propeller disk and its vertical surface,which verified theindependence of the number of dipole segments.The segments and corresponding results of sound directivity were shown in Fig.9.Rotational speed of propeller is 12.5 r/s,the number of blades is 7,the time domain information is transformed into the frequency domain though Fast Fourier Transform.

    Fig.9 Segments and results

    4 Sound field analyses

    Two panel sound fields,which were on propeller disc and the axial longitudinal section of the highly skewed propeller,and a spherical sound field were established respectively,all of whose center were the geometric center of the propeller and all their diameters were the 10 times of the propeller diameter.This paper analyzed all the sound fields in detail based on fact and corresponding theory.Results of the same feature point with Ref.[9]were calculated and consisted well with Ref.[9].

    4.1 Sound directivity analysis

    Sound directivity is an important item on analyzing the characterization of sound field, this paper analyzed two panel sound field respectively on propeller disc and the axial longitudinal section of the highly skewed propeller.The sound pressure level(SPL)in blade passing frequency and its harmonics were shown in Figs.10 and 11.As can be seen,both the surface sound fields can be observed two strong and weak radiation directions in the shape of‘8’, which was determined by the dipole sound source,but the directivity is not unique because of the existence of rotation and skew angle of propeller.We can also see that the SPL is slightly lower on propeller disc than that of the axial longitudinal section.

    Fig.11 Axial longitudinal section of the sound field directivity

    4.2 Spherical field analysis

    Analysis to the sound field distribution of the spherical field at different frequencies was shown in Fig.12.The SPL is the highest in axial direction of the propeller and gradually decreases along with the increase of axial angle.Sound source area perpendicular to the propagation direction is smaller in the radial direction,which is contrary to the axial direction.So the propeller load noise radiates strongly in the axial direction and weakly on the radial direction,which is consistent with the mechanism of the propeller load noise.

    Fig.12 SPL distributions on spherical field

    4.3 Analysis of feature points

    Three feature points were arranged on a circle,whose distance to the geometric center of the propeller is 10R(R is the radius of the propeller).Their specific position and spectrogram were shown in Fig.13,the point 3 is in the axial direction of propeller,which is the same with the feature point of Ref.[9]. The sound spectrum of feature points also incarnated that SPL is the highest in axial direction of the propeller.

    Fig.13 Feature points’arrangement and sound pressure spectrum

    Tab.1 Results contrast of feature point 3

    Fig.14 Results of feature point3

    5 Conclusions

    The credibility of CFD was validated firstly by comparing the results derived from steady simulation of the open water propeller with experiment data.The unsteady loading(dipole source)on blade surface was calculated by transient simulation of the same propeller fixed after submarine and then was transferred to the acoustical mesh nodes.The BEM method based on Acoustic Fan Source theory was used to solve the FW-H equation to get the sound directivity characteristics on three sound fields.Studies show that:

    (1)Both the surface sound fields can be observed by two strong and two weak radiation directions in the shape of 8,which are determined by the dipole sound source,but the directivity is not unique because of the existence of rotation and skew angle of propeller.We can alsosee that the SPL is slightly lower on propeller disc than that of the axial longitudinal section.

    (2)Sound source area perpendicular to the propagation direction is smaller in the radial direction,which is contrary to the axial direction,so the propeller load noise radiates strongly in the axial direction and weakly in radial direction,which is consistent with the mechanism of the propeller load noise.

    (3)The results of the feature points showed that the SPL value at 1st order blade frequency exceeded SPL value at high-order blade frequency obviously,The SPL value of feature point 3 below 1 kHz is 99.7 dB under J=0.88,rotational speed=12.5 r/s,which consisted well with Ref.[9].

    Studies show that Acoustic Fan Source is a new way of predicting propeller noise effectively.

    [1]Zhong Xiaonan.Propeller noise of vessel[M].Shanghai:Shanghai Jiao Tong University Press,2011:23-27.

    [2]Seol H,Jung B,Suh J C.Prediction of non-cavitation underwater propeller noise[J].Journal of Sound and Vibration 2002, 257(1):131-156.

    [3]Seol H,Suh J C,Lee S.Development of hybrid method for the prediction of underwater propeller noise[J].Journal of Sound and Vibration,2005,288:345-360.

    [4]Zhu Xiqing,Tang Denghai,Sun Hongxing.Study of The low-frequency propeller noise[J].Journal of Ship Mechanics, 2000,4(1):50-55.

    [5]Zhu Xiqing,Wu Wusheng.Prediction of marine propeller loading noise[J].Acta Acustic,1999,24(3):259-268.

    [6]Pantle I,Magagnato F,Gabi M.Numerical noise prediction in fluid machinery[J].Journal of Thermal Science,2005,14 (3):230-235.

    [7]Kato C,Yamade Y,Wang H.Numerical prediction of sound generated from flows with a low mach number[J].Computers&Fluids,2007,36:53-68.

    [8]Wang M,Freund J B,Lele S K.Computation prediction of flow-generated sound[R].New York:Annual Review of Fluid Mech,2006,38:483-512.

    [9]Yang Qiongfang,Wang Yongsheng,Zeng Wende.Calculation of highly-skewed propeller’s load noise using BEM numerical acoustics method in frequency domain[J].Acta Armamentarll,2011,32(9):1118-1125.

    [10]Ffowcs W J E,Hawkinns D L.Sound generation by turbulence and surfaces in arbitrary motion[C]//Proc.Rov.Soc.London:Roy.Soc.1969,264A:321-342.

    [11]ANSYS CFX User’s Guide.Aerodynamic noise analysis[K].ANSYS Inc,2006.

    [12]Jin Shuanbao,Wang yongsheng,Yang Qiongfang.Integrative design of waterjet axial pump based on numerical experimentation[J].Shipbuilding of China,2010,51(3):39-45.

    [13]Shi Weidong,Yao Jie,Zhang Desheng.Influence of sampling frequency and time on pressure fluctuation characteristics of axial-flow pump[J].Journal of Drainage and Irrigation Machinery Engineering,2013,31(3):190-195.

    [14]Ye Jinm ing,Xiong Ying,Gao Xiaopeng.Prediction method of low-order blade frequency noise of non-cavitation propeller in time domain[J].Journal of Harbin Engineering University,2013,34(1):1-6.

    艇后大側(cè)斜螺旋槳負載噪聲數(shù)值分析

    張明宇,林瑞霖,王永生,付建,魏應三

    (海軍工程大學動力工程學院,武漢430033)

    為研究艇后非均勻流場中大側(cè)斜螺旋槳無空泡負載噪聲的分布規(guī)律,文章采用“CFD+BEM”法,以SUBOFF潛艇后某大側(cè)斜槳為研究對象,首先穩(wěn)態(tài)計算均勻進流下螺旋槳敞水特性,模擬系數(shù)值與實驗誤差在3%以內(nèi),驗證了CFD數(shù)值計算的可信性。然后采用大渦(LES)模擬,對“艇+槳”進行三維非定常數(shù)值模擬,計算得到槳表面聲偶極子數(shù)據(jù)后,通過距離加權(quán)平均法映射到聲網(wǎng)格節(jié)點上,將噪聲源直接分布在槳葉表面上進行積分來預報螺旋槳的低頻線譜噪聲。采用邊界元法基于扇聲源理論通過FW-H聲類比方程分別在1 kHz以內(nèi)對槳盤面、軸向縱剖面及10倍槳半徑球場的噪聲進行頻域求解。研究表明:槳盤面和軸向縱剖面上聲指向均呈8字形,但受螺旋槳自身旋轉(zhuǎn)及大側(cè)斜的存在,指向性不唯一;球場聲場顯示,軸向聲輻射面較大,聲輻射強,徑向輻射面小且輻射較弱;特征點的計算結(jié)果顯示,高階葉頻聲壓級明顯比一階葉頻低,這與物理現(xiàn)象相符,將特征點處結(jié)果與已發(fā)表文獻進行對比,吻合性良好,并對存在的差異作出了合理的物理解釋。該文為螺旋槳噪聲預報介紹了一種可行的新方法。

    潛艇;大側(cè)斜螺旋槳;計算流體力學;邊界元法;扇聲源理論

    U664.33

    A

    國家自然科學基金資助項目(51009144)

    張明宇(1989-),男,海軍工程大學動力工程學院博士研究生,E-mail:yijianmingyu@163.com;林瑞霖(1955-),男,博士,海軍工程大學動力工程學院教授,博士生導師;王永生(1955-),男,海軍工程大學動力工程學院教授,博士生導師;付建(1985-),男,海軍工程大學動力工程學院博士;魏應三(1984-),男,海軍工程大學動力工程學院講師。

    U664.33

    A

    10.3969/j.issn.1007-7294.2016.09.010

    1007-7294(2016)09-1190-11

    Received date:2016-01-17

    Foundation item:Supported by National Nature Science Foundation of China(51009144)

    Biography:Zhang Ming-yu(1989-),male,Ph.D.candidate,E-mail:yijianmingyu@163.com; LIN Rui-lin(1957-),male,professor/tutor.

    猜你喜歡
    工程學院螺旋槳軸向
    福建工程學院
    福建工程學院
    大型立式單級引黃離心泵軸向力平衡的研究
    基于CFD的螺旋槳拉力確定方法
    福建工程學院
    荒銑加工軸向切深識別方法
    福建工程學院
    微小型薄底零件的軸向車銑實驗研究
    3800DWT加油船螺旋槳諧鳴分析及消除方法
    廣東造船(2015年6期)2015-02-27 10:52:46
    螺旋槳轂帽鰭節(jié)能性能的數(shù)值模擬
    黑丝袜美女国产一区| 最近最新中文字幕大全电影3 | 王馨瑶露胸无遮挡在线观看| 亚洲国产欧美网| 国产亚洲精品一区二区www | 日韩免费高清中文字幕av| 无限看片的www在线观看| 一本大道久久a久久精品| 精品福利观看| 亚洲中文字幕日韩| 极品少妇高潮喷水抽搐| 国产成人精品在线电影| 欧美人与性动交α欧美精品济南到| 久久国产精品人妻蜜桃| 亚洲五月色婷婷综合| 日韩精品免费视频一区二区三区| a级毛片在线看网站| 久久久国产一区二区| 无限看片的www在线观看| 97在线人人人人妻| 中文字幕人妻丝袜制服| 亚洲综合色网址| 中文字幕精品免费在线观看视频| 亚洲第一av免费看| 最近最新免费中文字幕在线| 制服人妻中文乱码| 建设人人有责人人尽责人人享有的| 国产免费av片在线观看野外av| 高清黄色对白视频在线免费看| 成人国产av品久久久| 在线永久观看黄色视频| 国产成人精品久久二区二区91| 国产精品亚洲av一区麻豆| 黑人操中国人逼视频| 三上悠亚av全集在线观看| 亚洲成av片中文字幕在线观看| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 丝袜在线中文字幕| 99精品欧美一区二区三区四区| 又大又爽又粗| 黄色a级毛片大全视频| 妹子高潮喷水视频| 亚洲久久久国产精品| 日韩欧美免费精品| 亚洲七黄色美女视频| 午夜福利免费观看在线| 老司机午夜福利在线观看视频 | 亚洲精品国产一区二区精华液| 丝袜人妻中文字幕| 1024视频免费在线观看| 成人手机av| 正在播放国产对白刺激| 国产视频一区二区在线看| 一进一出好大好爽视频| 久久午夜亚洲精品久久| 国产免费视频播放在线视频| www.自偷自拍.com| 天天添夜夜摸| 777米奇影视久久| 亚洲va日本ⅴa欧美va伊人久久| 国产野战对白在线观看| 国产精品自产拍在线观看55亚洲 | 亚洲国产欧美网| 女人高潮潮喷娇喘18禁视频| 天堂中文最新版在线下载| 成人国产av品久久久| 久久中文字幕一级| 午夜久久久在线观看| 色婷婷久久久亚洲欧美| 蜜桃在线观看..| 99riav亚洲国产免费| 国产aⅴ精品一区二区三区波| 成人特级黄色片久久久久久久 | 多毛熟女@视频| 岛国在线观看网站| 亚洲,欧美精品.| 中文欧美无线码| 色视频在线一区二区三区| 丝袜在线中文字幕| 国产一区二区三区在线臀色熟女 | 欧美亚洲 丝袜 人妻 在线| 正在播放国产对白刺激| 老熟妇仑乱视频hdxx| av有码第一页| 中文字幕色久视频| 女同久久另类99精品国产91| 岛国毛片在线播放| 狂野欧美激情性xxxx| 两性午夜刺激爽爽歪歪视频在线观看 | 久久午夜综合久久蜜桃| 丝袜在线中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利视频精品| 久久国产精品男人的天堂亚洲| 免费观看av网站的网址| 国产精品美女特级片免费视频播放器 | 男女高潮啪啪啪动态图| 法律面前人人平等表现在哪些方面| 久久影院123| 亚洲精品国产区一区二| 国产av精品麻豆| 少妇的丰满在线观看| 美女国产高潮福利片在线看| 国产在线视频一区二区| 18禁裸乳无遮挡动漫免费视频| 老司机亚洲免费影院| 日韩精品免费视频一区二区三区| 成年人黄色毛片网站| 国产av国产精品国产| 自线自在国产av| 欧美激情高清一区二区三区| 国产高清国产精品国产三级| 久久人人97超碰香蕉20202| 国产精品自产拍在线观看55亚洲 | 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久av美女十八| 国产精品成人在线| 香蕉久久夜色| 欧美午夜高清在线| 精品国产一区二区久久| 又黄又粗又硬又大视频| 成年动漫av网址| 1024视频免费在线观看| 午夜日韩欧美国产| 欧美变态另类bdsm刘玥| 成人黄色视频免费在线看| 啦啦啦在线免费观看视频4| 老熟女久久久| 亚洲精华国产精华精| 久久久久久久久免费视频了| 天天躁夜夜躁狠狠躁躁| 亚洲av第一区精品v没综合| 国产成人啪精品午夜网站| 日韩中文字幕欧美一区二区| 久久中文字幕人妻熟女| 在线播放国产精品三级| 欧美日韩黄片免| 90打野战视频偷拍视频| 成人18禁在线播放| 丝瓜视频免费看黄片| 一夜夜www| 丰满人妻熟妇乱又伦精品不卡| 国产日韩欧美视频二区| 亚洲精品国产精品久久久不卡| 亚洲成a人片在线一区二区| a级毛片黄视频| 久久av网站| 一区二区av电影网| 亚洲专区国产一区二区| 国产一区二区三区在线臀色熟女 | 国产精品亚洲av一区麻豆| 午夜激情av网站| 亚洲精品美女久久久久99蜜臀| 99久久精品国产亚洲精品| 成年人午夜在线观看视频| 国产不卡av网站在线观看| 一区在线观看完整版| 热re99久久国产66热| 久久久久久久国产电影| 男人舔女人的私密视频| 日韩视频在线欧美| 精品人妻熟女毛片av久久网站| 久久中文字幕一级| 亚洲一区二区三区欧美精品| 亚洲男人天堂网一区| 美女高潮喷水抽搐中文字幕| 国产三级黄色录像| 天堂中文最新版在线下载| www.熟女人妻精品国产| 国产深夜福利视频在线观看| 亚洲av国产av综合av卡| 欧美人与性动交α欧美软件| 亚洲第一青青草原| 精品欧美一区二区三区在线| 9热在线视频观看99| 中文字幕人妻丝袜一区二区| 熟女少妇亚洲综合色aaa.| 精品一区二区三区视频在线观看免费 | 一本久久精品| 亚洲精品美女久久久久99蜜臀| 十分钟在线观看高清视频www| 九色亚洲精品在线播放| 日韩视频一区二区在线观看| 性少妇av在线| 一本综合久久免费| 黄色视频不卡| 视频区图区小说| 亚洲色图综合在线观看| 国产欧美日韩一区二区三| 国产成人一区二区三区免费视频网站| 国产日韩欧美视频二区| 亚洲七黄色美女视频| 国产在线精品亚洲第一网站| 日韩视频在线欧美| 亚洲国产av新网站| 日本黄色视频三级网站网址 | 最新在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 叶爱在线成人免费视频播放| 国产99久久九九免费精品| 丁香欧美五月| 人人妻人人澡人人看| 岛国在线观看网站| 黄色视频不卡| 国产片内射在线| av天堂在线播放| 一级片免费观看大全| 国产免费视频播放在线视频| 亚洲av美国av| 国产单亲对白刺激| 国产欧美日韩一区二区三区在线| 亚洲精华国产精华精| 色综合婷婷激情| 一进一出好大好爽视频| 亚洲成国产人片在线观看| 动漫黄色视频在线观看| 精品免费久久久久久久清纯 | 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美一区二区综合| 大片免费播放器 马上看| 两个人免费观看高清视频| 午夜老司机福利片| 建设人人有责人人尽责人人享有的| 国产av精品麻豆| 久久久久精品国产欧美久久久| 黄网站色视频无遮挡免费观看| 国产在线观看jvid| 蜜桃在线观看..| 一个人免费在线观看的高清视频| a在线观看视频网站| 男人操女人黄网站| 亚洲免费av在线视频| 亚洲国产中文字幕在线视频| 亚洲av片天天在线观看| 建设人人有责人人尽责人人享有的| kizo精华| a在线观看视频网站| 成人18禁高潮啪啪吃奶动态图| 下体分泌物呈黄色| 久久亚洲精品不卡| 欧美在线一区亚洲| 国产男女内射视频| 亚洲五月色婷婷综合| 久久av网站| 欧美一级毛片孕妇| www.自偷自拍.com| 最黄视频免费看| 久热爱精品视频在线9| 美女高潮到喷水免费观看| 色尼玛亚洲综合影院| 亚洲少妇的诱惑av| 日本一区二区免费在线视频| 国产亚洲av高清不卡| 少妇裸体淫交视频免费看高清 | 一区在线观看完整版| 色婷婷久久久亚洲欧美| 日韩欧美免费精品| 精品国产国语对白av| 天堂动漫精品| av天堂久久9| 久久国产精品男人的天堂亚洲| 18禁黄网站禁片午夜丰满| 亚洲专区国产一区二区| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区久久| 亚洲精品粉嫩美女一区| 怎么达到女性高潮| 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 亚洲伊人色综图| 成年人黄色毛片网站| 黄色视频在线播放观看不卡| 大型av网站在线播放| 国产成人精品久久二区二区免费| 啦啦啦 在线观看视频| 国产人伦9x9x在线观看| 在线观看免费视频网站a站| 国产精品秋霞免费鲁丝片| www日本在线高清视频| 蜜桃在线观看..| 日韩一卡2卡3卡4卡2021年| 美国免费a级毛片| 国产高清激情床上av| av网站免费在线观看视频| 黄片播放在线免费| 1024香蕉在线观看| 在线播放国产精品三级| 考比视频在线观看| 欧美另类亚洲清纯唯美| 亚洲第一av免费看| 大码成人一级视频| 一个人免费看片子| 两人在一起打扑克的视频| 亚洲国产成人一精品久久久| 亚洲天堂av无毛| 一边摸一边做爽爽视频免费| 中亚洲国语对白在线视频| 不卡av一区二区三区| 国产一区二区三区综合在线观看| 欧美中文综合在线视频| 精品国产亚洲在线| 99精品欧美一区二区三区四区| 国产伦人伦偷精品视频| 极品人妻少妇av视频| 中文字幕av电影在线播放| 激情视频va一区二区三区| 天堂俺去俺来也www色官网| 久久人人97超碰香蕉20202| kizo精华| 国产黄频视频在线观看| 国产日韩一区二区三区精品不卡| 久久久水蜜桃国产精品网| 三级毛片av免费| 高清欧美精品videossex| 波多野结衣av一区二区av| 国产成人精品无人区| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 成人亚洲精品一区在线观看| 精品欧美一区二区三区在线| 美国免费a级毛片| 精品乱码久久久久久99久播| 黑人欧美特级aaaaaa片| 日韩欧美三级三区| 久久人人爽av亚洲精品天堂| 高清视频免费观看一区二区| 欧美久久黑人一区二区| 亚洲,欧美精品.| 亚洲欧洲精品一区二区精品久久久| 国产xxxxx性猛交| 国产97色在线日韩免费| tube8黄色片| 日韩一卡2卡3卡4卡2021年| 狠狠精品人妻久久久久久综合| 两性夫妻黄色片| 女同久久另类99精品国产91| 日韩大码丰满熟妇| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 欧美成人午夜精品| 两性夫妻黄色片| 建设人人有责人人尽责人人享有的| a级毛片在线看网站| 久久久久网色| 啪啪无遮挡十八禁网站| 少妇 在线观看| 亚洲国产欧美一区二区综合| 亚洲精品成人av观看孕妇| 国产精品久久久久久人妻精品电影 | 欧美激情 高清一区二区三区| www.熟女人妻精品国产| 国产91精品成人一区二区三区 | 成人亚洲精品一区在线观看| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美网| 国产亚洲欧美在线一区二区| 在线观看免费高清a一片| 国产一区二区三区综合在线观看| 国产成人免费无遮挡视频| 黄色视频不卡| 五月开心婷婷网| 精品少妇久久久久久888优播| www.999成人在线观看| 久久久久久久久免费视频了| 在线天堂中文资源库| 国精品久久久久久国模美| 久久久久精品人妻al黑| 亚洲 欧美一区二区三区| 在线天堂中文资源库| av国产精品久久久久影院| 国产精品二区激情视频| 一级毛片精品| 国产在线免费精品| 午夜91福利影院| 国产精品av久久久久免费| av电影中文网址| 午夜福利在线免费观看网站| 制服人妻中文乱码| 国产日韩欧美在线精品| 国产色视频综合| 成年人午夜在线观看视频| 黑丝袜美女国产一区| 丝袜美足系列| 免费观看人在逋| 亚洲va日本ⅴa欧美va伊人久久| 亚洲七黄色美女视频| 久久久久网色| 久久精品91无色码中文字幕| 亚洲熟女毛片儿| 国产精品偷伦视频观看了| 亚洲精品在线美女| 国产极品粉嫩免费观看在线| 精品亚洲乱码少妇综合久久| 国产成人影院久久av| 欧美激情久久久久久爽电影 | 视频区图区小说| 亚洲成人免费电影在线观看| 免费女性裸体啪啪无遮挡网站| 免费一级毛片在线播放高清视频 | 一区在线观看完整版| 一级黄色大片毛片| 叶爱在线成人免费视频播放| 久久99热这里只频精品6学生| 亚洲精品美女久久av网站| 日日爽夜夜爽网站| 大陆偷拍与自拍| 亚洲av成人一区二区三| 精品乱码久久久久久99久播| 午夜成年电影在线免费观看| 亚洲精品国产区一区二| 少妇裸体淫交视频免费看高清 | 国产精品亚洲av一区麻豆| 欧美av亚洲av综合av国产av| svipshipincom国产片| 1024香蕉在线观看| 国产av国产精品国产| 90打野战视频偷拍视频| 一本久久精品| 老鸭窝网址在线观看| 水蜜桃什么品种好| 日本av免费视频播放| 18禁观看日本| 成年女人毛片免费观看观看9 | 国产在线视频一区二区| 99九九在线精品视频| 亚洲欧美一区二区三区黑人| 亚洲专区国产一区二区| 国产欧美日韩一区二区精品| 国产深夜福利视频在线观看| 亚洲国产欧美在线一区| 亚洲精品一二三| 看免费av毛片| 国产精品自产拍在线观看55亚洲 | 亚洲精品久久成人aⅴ小说| 搡老乐熟女国产| 99精品欧美一区二区三区四区| 丁香六月欧美| 天堂中文最新版在线下载| 欧美精品亚洲一区二区| 亚洲人成电影观看| 三上悠亚av全集在线观看| 国产av一区二区精品久久| 美女扒开内裤让男人捅视频| 男女床上黄色一级片免费看| 午夜福利视频精品| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 欧美日韩福利视频一区二区| 免费黄频网站在线观看国产| 免费av中文字幕在线| a级片在线免费高清观看视频| 黄色a级毛片大全视频| 成人亚洲精品一区在线观看| 欧美激情久久久久久爽电影 | av免费在线观看网站| 黄频高清免费视频| 国产成人免费无遮挡视频| 日韩欧美三级三区| 国产亚洲午夜精品一区二区久久| 一个人免费看片子| 成年人黄色毛片网站| 97人妻天天添夜夜摸| 亚洲性夜色夜夜综合| 黑人欧美特级aaaaaa片| 啦啦啦免费观看视频1| 亚洲天堂av无毛| 中文亚洲av片在线观看爽 | 亚洲情色 制服丝袜| 欧美日韩中文字幕国产精品一区二区三区 | 国产一卡二卡三卡精品| 国产精品电影一区二区三区 | 首页视频小说图片口味搜索| 国产免费av片在线观看野外av| www.精华液| 国产高清激情床上av| 国产亚洲午夜精品一区二区久久| 女人精品久久久久毛片| 亚洲成人手机| 日本精品一区二区三区蜜桃| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 国产日韩一区二区三区精品不卡| 免费在线观看完整版高清| 青青草视频在线视频观看| 欧美黑人欧美精品刺激| 久久人妻av系列| 亚洲精品一二三| 国产高清videossex| 久久亚洲精品不卡| 欧美中文综合在线视频| 亚洲精品久久成人aⅴ小说| 欧美国产精品一级二级三级| 亚洲,欧美精品.| 丰满迷人的少妇在线观看| 99国产精品免费福利视频| 久久 成人 亚洲| 精品久久久久久久毛片微露脸| 一区二区三区国产精品乱码| 久久精品人人爽人人爽视色| 少妇猛男粗大的猛烈进出视频| 国产亚洲欧美在线一区二区| 中文字幕av电影在线播放| 中文字幕人妻丝袜一区二区| 国产精品一区二区免费欧美| 美女高潮喷水抽搐中文字幕| 成人18禁高潮啪啪吃奶动态图| 国产精品免费一区二区三区在线 | 最近最新免费中文字幕在线| 亚洲三区欧美一区| 久久午夜亚洲精品久久| 国产无遮挡羞羞视频在线观看| 后天国语完整版免费观看| 亚洲国产欧美日韩在线播放| 中文字幕人妻熟女乱码| 91字幕亚洲| 女警被强在线播放| 大型黄色视频在线免费观看| 18禁黄网站禁片午夜丰满| 嫩草影视91久久| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 精品国产乱码久久久久久小说| www.自偷自拍.com| 亚洲精品乱久久久久久| 欧美黑人欧美精品刺激| 中文字幕精品免费在线观看视频| 国产黄频视频在线观看| 免费看a级黄色片| 国产亚洲午夜精品一区二区久久| 亚洲熟妇熟女久久| 香蕉久久夜色| 亚洲国产欧美一区二区综合| 老熟女久久久| 久久影院123| 日韩欧美免费精品| 蜜桃国产av成人99| 一级片'在线观看视频| 国产在线视频一区二区| 下体分泌物呈黄色| 久久久精品国产亚洲av高清涩受| 蜜桃在线观看..| 国产亚洲精品一区二区www | 欧美日韩福利视频一区二区| 久久精品国产综合久久久| 亚洲国产成人一精品久久久| 国产欧美日韩一区二区精品| 不卡一级毛片| 麻豆国产av国片精品| 一级a爱视频在线免费观看| 99国产精品一区二区蜜桃av | 操出白浆在线播放| 黑人巨大精品欧美一区二区mp4| 男女边摸边吃奶| 在线观看免费视频日本深夜| 桃花免费在线播放| 免费在线观看完整版高清| 亚洲自偷自拍图片 自拍| 国产欧美日韩一区二区精品| 成年动漫av网址| 精品高清国产在线一区| 这个男人来自地球电影免费观看| 国产日韩欧美亚洲二区| 久久国产精品人妻蜜桃| 亚洲七黄色美女视频| 老熟妇仑乱视频hdxx| 色尼玛亚洲综合影院| 国产av精品麻豆| 国产一区二区三区视频了| 大片电影免费在线观看免费| 久久精品人人爽人人爽视色| 午夜两性在线视频| 久久久久国产一级毛片高清牌| 国产精品九九99| 亚洲专区国产一区二区| 日韩大片免费观看网站| 在线天堂中文资源库| 黄色成人免费大全| 精品国产一区二区久久| 久久av网站| 国产精品国产高清国产av | 精品国内亚洲2022精品成人 | 亚洲精品自拍成人| 色在线成人网| 国产av国产精品国产| 视频在线观看一区二区三区| 日韩成人在线观看一区二区三区| 久久99热这里只频精品6学生| a级毛片在线看网站| 99国产极品粉嫩在线观看| 淫妇啪啪啪对白视频| 国产成人精品久久二区二区91| 黑人巨大精品欧美一区二区蜜桃| 欧美久久黑人一区二区| cao死你这个sao货| 黑人巨大精品欧美一区二区蜜桃| 成人18禁高潮啪啪吃奶动态图| 满18在线观看网站| 国产在线一区二区三区精| 黄片播放在线免费| 老鸭窝网址在线观看| 亚洲美女黄片视频| 国产av国产精品国产| 日韩大码丰满熟妇| 精品国产一区二区三区四区第35| 亚洲成人手机| 亚洲色图 男人天堂 中文字幕| 精品人妻在线不人妻| 又黄又粗又硬又大视频| 日本一区二区免费在线视频| 日韩欧美三级三区| 下体分泌物呈黄色| 在线av久久热| 久久久国产精品麻豆|