• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Inertia Relief in the Prediction of W elding Deformation for Large Complex Structures

    2016-05-15 13:24:15WANGYangLUOYuCHENZhenXUEJian
    船舶力學(xué) 2016年9期
    關(guān)鍵詞:王陽(yáng)上海交通大學(xué)慣性

    WANG Yang,LUO Yu,CHEN Zhen,XUE Jian

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2.Jiangsu Newyangzi Shipbuilding Co.,Ltd,Wuxi 214532,China)

    Application of Inertia Relief in the Prediction of W elding Deformation for Large Complex Structures

    WANG Yang1,LUO Yu1,CHEN Zhen1,XUE Jian2

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2.Jiangsu Newyangzi Shipbuilding Co.,Ltd,Wuxi 214532,China)

    Rigid-body motion boundary condition during computational welding mechanics,of which at least 6 degrees of freedom of welded structure will be fixed,is widely used to predict the welding distortion.However,because of the large scale and complexity of some structures,it is not advisable to consider the constraint for the unsupported welded structure during the computation.In this study, inertia relief method,the inertia force of the unconstrained structure is relieved to balance the external force,is proposed to investigate the welding deformation.Two methods are compared by predicting the welding deformation of a butt welded joint.Then,a hull block is taken as an example,simulations based on inherent deformation are conducted considering the inertia relief and rigid-body motion boundary conditions.By comparing the deformation of measured point,the computational results by using inertia relief are the most approximate to measurement results compared to other cases,and it is more convenient to set the boundary condition using the proposed method which provides an effective choice for the industrial application of welding structure deformation prediction.

    inertia relief;rigid-body motion;inherent deformation;boundary condition; large complex structures;welding deformation

    0 Introduction

    As a high productive and practical joining method,welding is widely used in constructing and manufacturing industries such as shipbuilding,automobiles,passenger trains,bridges and pressure vessels industries[1].And the assembly process in these field essentially involves the joining of large structures.In order to predict the welding-induced distortions on large structures practically,many researchers have devoted much efforts to this topic up to now.

    Generally,there are two main ways to predict the welding distortion of welded structures: thermal elastic-plastic finite element method and the elastic finite element method.The formerone can be effectively used to predict welding residual stress and distortion for small or medium welded structures,but this method is inapplicable to simulate the welding distortion for large welded structures for the considerable time consuming[2-5].The later one,using shell FE models with elements much larger than those required in thermal elastic plastic FE analysis can effectively predict the welding distortion of large structures[6-8].

    In all above works,researchers mainly concern the optimum of computational methods and FE models.During the state of cooling down,an unconstrained welded structure is assumed to be under balanced external forces,and it can move as a rigid body.Before the finite element analysis,a series of constraints are required to eliminate the rigid body motion due to the singular stiffness matrix of the model.In order to precisely predict welding deformation especially for large welded structures,the effect of constraint should be taken into account.As large structures sometimes are complex,it is not advisable to consider the constraint for the unsupported welded structure during the computation,even though,in general,at least 6 degrees of freedom of welded structure will be fixed.Therefore,in this study an effective method of constraining the finite model is proposed to predict distortion during welding for large structures.

    The technique of inertia relief,the inertia force of the unconstrained structure is relieved to balance the external force,has been a well-known approach for the analysis of unsupported systems including air vehicles in flight,automotives in motion,or satellites in space[9-11].In present method,inertia relief is introduced into the finite element analysis in order to replace the rigid-body motion boundary condition.In this study,in order to verify the practicality of inertia relief,rigid-body motion boundary condition and inertia relief are adopted to compare the welding deformation of a butt welded joint.Then,computation based on inherent deformation is conducted,and a hull block is investigated as an example.This method can be applied in elastic finite element analysis.

    1 Theory of inertia relief

    In the process of analyzing unconstrained structure by FEM,the stiffness matrix[K] is singular and therefore the flexibility matrix[G]=[K]-1does not exist.The motion as a rigid body will be eliminated and a new set of applied loads(relative forces)will be used to analyze the elastic behavior of the unconstrained system[12].

    1.1 Relative motion

    For a unconstrained moving dynamic system,the total displacement vector{x} may be expressed in a pure rigid motion displacement vector {xr}and a relative elastic displacement vector{xe},and considering{x}=[Φ]{η},thus:

    The undamped equation of motion of a dynamic system loaded with the dynamic force{F}is:

    With the introduction of Eq.(1)into Eq.(2)and knowing that[K][Φr]=[0],we obtain:

    1.2 Relative forces

    The uncoupled equations of motion of the dynamic system,exposed to the force vectorand expressed in the generalized coordinates{η}can be written as

    As shown in Fig.1,the relative elastic forcesare defined as

    with

    1.3 Flexibility matrix

    Fig.1 Constrained structure loaded with relative forces

    We want to calculate the elastic displacement{xe,A}of the constrained structure,due to the relative elastic force{Fe},with respect to point A.The displacementis

    The displacement and rotations of point A are zero

    The real relative elastic deformationis a summation of the relative elastic deformation and fractions of rigid body motion.Thus the relative elastic deformationis

    We will remove the fraction of rigid body motion and force the displacement vectorto be mass orthogonal with the rigid body modes[Φr],thus

    This means that the vector of generalized coordinatesis equal to

    The relative elastic deformationfinally becomes

    Fig.2 Calculation procedure of inertia relief

    The calculation procedure is shown in Fig.2.

    2 Com parison of two methods

    As a simple example,a butt welded joint is examined to predict welding deformation based on inherent strain theory using rigid-body motion and inertia relief.A serial computations employing ABAQUS based on inherent strain theory,in which the same magnitude of inherent deformations and different boundary conditions are used,is carried out to show the difference between two kinds of boundary conditions.

    2.1 Finite element model of butt welded joint

    A rectangular plate with a length of 2 000 mm,a width of 1 000 mm,and a thickness of 18.5 mm is selected as a test specimen.The welding deformation behavior of butt welded joint is computed using FE elastic analysis based on ABAQUS code.The finite model is shown in Fig.3.The size of element is 20 mm×40 mm.The number of nodes is 2 601,and that of elements is 2 500.The element type is S4R.According to the theory of inherent deformation[13],the distributions of inherent strain remain in a narrow area near the welding line as shown in Fig.3.

    In order to calculate the welding deformation caused by inherent strain,the thermal expansion coefficient of the element in inherent strain zone is set to be different from basic plate zone.Fig.4 shows the transverse section of the region where the equivalent inherent strain distributes. The width of the area where the equivalent inherent strain distributes is b.The strain components to be considered are in the transverse and the longitudinal directions.The component of the equivalent inherent strain in the transverse direction εy*forms the transverse shrinkage and the angular distortion.These components are assumed to distribute in two layers with the same thickness.The equivalent inherent strains distribute uniformly in each layer but the valuesandare different.According to the definition of the equivalent inherent strain,these are given by the following equations:

    Fig.3 Shell element model of butt welded joint

    Fig.4 Distribution of inherent strain

    In the computation using ABAQUS,these inherent strains are given as the thermal strain under the temperature change of ΔT i.e.,

    The values of thermal expansion coefficient used in this model is listed in Tab.1.Then, Elastic FE analysis is carried out by changing the thermal boundary conditions of the model.

    Tab.1 Expansion coefficient values in inherent strain zone

    2.2 Comparison between different computation results

    Firstly,the rigid-body motion,in which 6 degrees of freedom are fixed,is employed as boundary condition for a normal case.Fig.5(a)shows the computational deformation in Z direction of the joint.The undeformed shape is shown as black lines in Fig.5(a).Then,an elastic analysis using inertia relief and same magnitude of expansion coefficient values is carried out to predict welding deformation.Computational result is shown in Fig.5(b),where the good agreement of two contours between the computational results with different boundary condition shown in Fig.5(a)and(b)can be observed.For the quantitative comparison between two cases,the deflection along line 1 defined in Fig.3 between two cases are plotted in Fig.6.As wecan see from this figure,the distribution of deflection in two cases are the same.The deformed model using rigid-body motion can be changed into the one using inertia relief by translating coordinate axis(0.031 mm in positive direction of X coordinate,0.117 3 mm in positive direction of Y coordinate and 0.785 3 mm in positive direction of Z coordinate).

    Fig.5 Computational welding deformation by elastic analysis with different boundary conditions

    Fig.6 Deflection along line 1

    3 App lication

    Based on the result of predicting the welding deformation in the beam by using inertia relief,the reliability of using inertia relief to simulate the welding deformation of large structure is discussed in this chapter.In the first section,a series of computations of the welding deformation of typical hull structure employing Weld-Sta(developed by Structure Mechanics Research Institute of Shanghai jiaotong University and Joining and Welding Research Institute of Osaka University)based on elastic analysis,in which the same magnitude of inherent deformations and different boundary conditions(three kinds of rigid-body motion boundary condition(fixed in X plane,Y plane and Z plane,respectively)and inertia relief method)are used,is carried out.Then the in-plane(in X direction and Y direction)and out-of-plane(in Z direction)welding deformations of four cases are compared.Results show that the welding deformation in X direction is similar,while the one in Y direction and Z direction is different. By comparing the out-of-plane deformation of measured point,the computed results by using inertia relief are mostly approximate to measurement results compared to other cases.

    3.1 FEM model

    The hull block which is taken as an example is a part of the second cargo hold in 4 250 TEU container ship.The finite model of this hull block is meshed in the commercial software(Hypermesh)and imported into Weld-Sta as shown in Fig.7.The length,width and height of this block are 8 200 mm,27 622 mm and 4 600 mm,respectively.The computational model is made with 2D shell element including three nodes and four nodes,and the number of node and element are 6 082 and 5 254,respectively.The X direction,the Y direction and the Z direction are along the ship length,the ship width and the ship depth,respectively.Thename of each part and its thickness of the hull block are shown in Tab.2.

    Fig.7 FE model of a typical hull block

    Tab.2 Shell element attributes of the model

    3.2 Welding lines of FEM model

    In this model,all members are tack welded,and 168 fillet joints are added on the finite model as shown in Fig.8.The material is made of shipbuilding steels A32.Tab.3 gives the chemical composition and mechanical properties of A32.Welding method is CO2gas metal arc welding,and the filler metal is flux cored wire.By importing the welding parameters of each welded joint including the basic material,the welding method,the number of welding passes,the size of joint(the thickness of web and flange)and groove and welding conditions(current,voltage,velocity and efficiency),the inherent deformation(longitudinal inherent shrinkage,transverse inherent shrinkage and angular distortion)of each fillet joint can be calculated by inherent deformation database of Weld-sta.

    Fig.8 Weldlines of the typical ship block

    Tab.3 Chem ical com positions and mechanical properties of shipbuilding steel A32

    3.3 Results and discussion

    In order to compare the influence of different boundary conditions on the prediction of welding deformation in the large structure,three kinds of rigid-body motion boundary conditions are proposed in this study.Six nodes(A(0,12 186,4 574),B(8 049,13 829,4 574),C (8 049,-13 829,4 574),D(8 200,0,0),E(7 100,0,4 304),F(900,0,2 370))are selected as fixed points in the elastic FE analysis.The detailed boundary condition of each case is shown in Tab.4.In this study,inertia relief method is used in case 4,where no rigid-body motion is applied in this case.

    Tab.4 Rigid-body motion boundary conditions of different cases

    Fig.9 shows the welding deformation of case 1.As it can be seen from Fig.9(a),the shrinkage in Z direction of the structure is concentrated in the bottom plate due to three nodes(node A,node B and node C)of this part are constrained in the direction of ship depth.Fig.9(b)shows the top view of the deformed model after welding.One can see that the shrinkage in Y direction is concentrated in the one side of the structure.The reason is that the constraint in Y direction(node A and node B)is focus on the other side of the block.Also, the whole structure can deform freely in X direction because only one node (node A)is fixed in this direction.

    The welding deformation of case 2 is shown in Fig.10.Fig.10(a)shows the isometric view of the deformed model after welding.From this figure, it can been seen that the shrinkage in Z direction is concentrated in the bottom plate due to the constraint in the direction of ship depth of two nodes (node B and node C).Furthermore,because three nodes(node B,node C and node D)are constrained on the side near the stern in the direction of ship length,the shrinkage in X direction of the structure shown in Fig.10(b)is concentrated in the other side of the structure.Finally,the whole structure can deform freely in Y direction because only one node(node B)is fixedin this direction.

    Fig.9 Welding deformation of case 1

    Fig.10 Welding deformation of case 2

    Fig.11 shows the welding deformation of case 3.In this case,the shrinkage in Z direction is found in both platform deck and bottom plate due to the constraint of two nodes(node D and node F)in this direction as shown in Fig.11(a).Fig.11(b)shows the top view of the deformed model after welding.The shrinkage in Y direction of the structure can be found in both sides of the bottom plate because three nodes(node D,node E and node F)is constrained in the middle part of the block.The whole structure can deform freely in X direction because only one node(node D)is fixed in this direction.

    Fig.12 shows the welding deformation of case 4.As it can be seen from this figure,the whole structure shrinks towards the center of the mass. And this phenomenon is ordinary in production of hull block.Moreover,the constraining anti-forces of constraint nodes are large by using rigid-body motion boundary condition.Unreasonable rigid-body boundary condition in FE analysis will lead to false results. Therefore,it is important to design reasonable boundary condition for computation.

    Fig.13 compares the welding deformation in X direction among four cases.From this figure,one can observe that the welding deformations in X direction of four cases are similar in spite of the welding deformation of case 2 is slightly different from other cases in the one end and the middle part of block.

    Fig.11 Welding deformation of case 3

    Fig.12 Welding deformation of case 4

    Fig.14 shows the welding deformation in Y direction of the above four cases.It is clear that the difference among four cases is obvious near the position where X equals to 0 mm, while the difference becomes smaller when the value of X coordinate is larger than 2 000 mm. Furthermore,the welding deformation of case 1 is different compared to other cases in the po-sition where X approximately equals to 8 049 mm.This implies that the boundary condition of case 3 has a similar effect with that of case 4 in Y direction.And the constraint of node B in Y direction will cause different welding deformation in this direction compared to cases without constraining this node.Comparing the symmetry of the structure in X direction of that in Y direction,this block is more asymmetric in X direction.And different boundary condition may have great influence on the deformation of this structure.

    Fig.13 Welding deformation in X direction

    Fig.14 Welding deformation in Y direction

    Fig.15 Welding deformation in Z direction along line 1

    Fig.16 Welding deformation in Z direction along line 2

    Fig.17 Welding deformation in Z direction along line 3

    Figs.15 and 16 show the welding deformation in Z direction along line 1 and line 2,respectively.From these two figures,it can be seen that the welding deformation in Z direction of case 4 is the largest,and that of case 2 and case 3 is similar.In this figure,the measured results along line 1 are also plotted.It is clear that the welding deformation along line 1 predicted by case 4 is the closest to the experimental value among four cases.Fig.17 shows the welding deformation in Z direction along line 3.The simulated results of fourcases are similar in the middle part of the block within the range-4 420 mm

    4 Conclusions

    A practical computational approach applying boundary condition(inertia relief method)to predict welding deformation was proposed.The following conclusions can be drawn:

    (1)It is more convenient to apply boundary condition for predicting welding deformation of large structure by using inertia relief method than body-rigid motion method;

    (2)There is no difference between the deformed model calculated by two methods based on inherent strain theory for simple structures;

    (3)Complicated rigid-body motion boundary conditions are required in predicting the welding deformation of large complicated structures.The good agreement between computed results using inertia relief and measured ones shows that the computation using inertia relief can obtain reliable results in predicting the welding deformation of large complicated structure.

    Acknow ledgements

    This research is technically supported by Jiangsu Newyangzi Co.,Ltd and is financially supported by Science and Technology Department of Jiangsu Province(Grant No.BE2010172).

    [1]Satoh K,Ueda Y,and Fujimoto J.Welding distortion and residual stresses[M].Sampo Publications,Tokyo,1979.

    [2]Wang J,Ueda Y,Murakawa H,et al.Improvement in numerical accuracy and stability of 3-D FEM analysis in welding [J].Welding Journal,1996,75(4):129-134.

    [3]Deng D,Luo Y,Serizawa H,et al.Numerical simulation of residual stress and deformation considering phase transformation effect[J].Trans.JWRI,2003,23:325-333.

    [4]Deng D,Murakawa H.Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J].Computational Material Science,2006,37:269-277.

    [5]Teng T L,Fung C P,et al.Analysis of residual stresses and distortions in T-Joint fillet welds[J].Pressure Vessel and Piping,2001,78(8):523-538.

    [6]Brown S B,Song H.Implications of three-dimensional numerical simulations of welding of large structures[J].Welding Journal,1992,71(2):55-62.

    [7]Wang J H,Luo H.Prediction of welding deformation by FEM based on inherent strains[J].Journal of Shanghai Jiaotong University(English Editorial Board),2000,5(2):83-87.

    [8]Luo Y,Deng D,Xie L,Murakawa H.Prediction of deformation for large welded structures based on inherent strain[J]. Transactions of JWRI,2004,33:65-70.

    [9]Bisplinghoff R L,Ashley H,Halfman R L.Aeroelasticity[M].Addison-Wesley Publishing Company,Inc.Boston,1955.

    [10]Nelson M F,Wolf J A.Use of inertia relief to estimate impact loads[C].Proceedings of International Conference on Vehicle.Structural Mechanics,1977:149-155.

    [11]Harry G S.MSC/NASTRAN Primer static and normal modes analysis[M].Shaeffer Analysis,Inc,1979.

    [12]Wijker J J.Mechanical vibrations in spacecraft design[M].Springer,2004:303-312.

    [13]Luo Y,Ishiyama M,Murakawa H.Welding deformation of plates with longitudinal curvature[J].JWRI Transaction,1999, 28:57-65.

    慣性釋放法在大型復(fù)雜結(jié)構(gòu)焊接變形預(yù)測(cè)中的應(yīng)用

    王陽(yáng)1,羅宇1,陳震1,薛健2

    (1.上海交通大學(xué)海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200240;2.江蘇新?lián)P子造船有限公司,江蘇無(wú)錫214532)

    在進(jìn)行大型結(jié)構(gòu)焊接變形有限元分析時(shí),為了固定整體結(jié)構(gòu)剛體位移必須施加不少于6個(gè)自由度的約束,但對(duì)于自由狀態(tài)下的結(jié)構(gòu)而言,如何施加這6個(gè)最少約束是非常的困難,長(zhǎng)期以來(lái)是困擾研究人員的難題,也是焊接結(jié)構(gòu)有限元分析在工業(yè)現(xiàn)場(chǎng)應(yīng)用的一個(gè)瓶頸。所謂慣性釋放法就是可以在不加約束的情況下模擬自由結(jié)構(gòu)的變形。該文將在航海航空領(lǐng)域得到廣泛應(yīng)用的慣性釋放法引入大型焊接結(jié)構(gòu)變形分析,解決了自由狀態(tài)下結(jié)構(gòu)必須施加約束的問(wèn)題。首先以典型的對(duì)接接頭為例,比較了兩種不同的約束方法之間的差別。然后通過(guò)一個(gè)典型的船體焊接變形預(yù)測(cè)的實(shí)例,驗(yàn)證了慣性釋放法在大型結(jié)構(gòu)中應(yīng)用的可行性,為焊接結(jié)構(gòu)變形分析在工業(yè)生產(chǎn)中廣泛應(yīng)用提供了一個(gè)有效的方法。

    慣性釋放;剛體位移;固有變形;邊界條件;大型復(fù)雜結(jié)構(gòu);焊接變形

    TG404

    A

    王陽(yáng)(1986-),男,上海交通大學(xué)博士研究生,通訊作者;羅宇(1971-),男,博士,上海交通大學(xué)教授;陳震(1976-),男,博士,上海交通大學(xué)副教授;薛?。?967-),男,高級(jí)工程師。

    TG404

    A

    10.3969/j.issn.1007-7294.2016.09.006

    1007-7294(2016)09-1147-13

    Received date:2016-05-22

    Foundation item:Supported by Science and Technology Department of Jiangsu Province(Grant No.E2010172)

    Biography:WANG Yang(1986-),male,Ph.D.student of Shanghai Jiao Tong University,E-mail:maible@sjtu.edu.cn; LUO Yu(1961-),male,Ph.D.,professor; CHEN Zhen(1976-),male,Ph.D.,associate professor of Shanghai Jiao Tong University; XUE Jian(1967-),male,senior engineer.

    猜你喜歡
    王陽(yáng)上海交通大學(xué)慣性
    你真的了解慣性嗎
    上海交通大學(xué)
    “音”差陽(yáng)錯(cuò)
    華聲(2022年6期)2022-05-30 10:48:04
    沖破『慣性』 看慣性
    Digital synthesis of programmable photonic integrated circuits
    女哥們概述
    山花(2020年11期)2020-11-30 09:14:44
    音差陽(yáng)錯(cuò)
    上海交通大學(xué)參加機(jī)器人比賽
    無(wú)處不在的慣性
    普遍存在的慣性
    插逼视频在线观看| 免费观看的影片在线观看| 久久久国产成人精品二区| 精品国内亚洲2022精品成人| 国产精品一区二区性色av| 精品国产三级普通话版| 精品免费久久久久久久清纯| 国产中年淑女户外野战色| 十八禁国产超污无遮挡网站| av天堂中文字幕网| 香蕉av资源在线| 一夜夜www| 99久久久亚洲精品蜜臀av| 国产成人91sexporn| 狠狠狠狠99中文字幕| 97超级碰碰碰精品色视频在线观看| 可以在线观看毛片的网站| 成人亚洲欧美一区二区av| 3wmmmm亚洲av在线观看| 欧美在线一区亚洲| 亚洲图色成人| 人妻制服诱惑在线中文字幕| 在线观看一区二区三区| 国产精品久久久久久av不卡| 99久久成人亚洲精品观看| 色综合色国产| 男人舔女人下体高潮全视频| 天天躁日日操中文字幕| 精品人妻一区二区三区麻豆 | 亚洲精品一区av在线观看| 九色成人免费人妻av| 1024手机看黄色片| 国产激情偷乱视频一区二区| 久久欧美精品欧美久久欧美| 俄罗斯特黄特色一大片| 免费在线观看成人毛片| 成人欧美大片| 日韩一本色道免费dvd| 国产国拍精品亚洲av在线观看| 男人的好看免费观看在线视频| 国产精品永久免费网站| 欧美日韩一区二区视频在线观看视频在线 | 亚洲人成网站在线播放欧美日韩| 免费不卡的大黄色大毛片视频在线观看 | 日韩一区二区视频免费看| 免费观看在线日韩| 国产黄a三级三级三级人| 久久午夜亚洲精品久久| 99久久精品一区二区三区| 国产免费一级a男人的天堂| 精品乱码久久久久久99久播| 精品一区二区三区视频在线| 精品国内亚洲2022精品成人| 成人av一区二区三区在线看| 国产一区二区三区在线臀色熟女| 欧美中文日本在线观看视频| av天堂中文字幕网| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| av专区在线播放| 91久久精品电影网| 国产一区二区三区在线臀色熟女| 成熟少妇高潮喷水视频| av福利片在线观看| 国产高清视频在线观看网站| 狂野欧美白嫩少妇大欣赏| 免费av观看视频| 波多野结衣高清无吗| 欧美性猛交黑人性爽| 久99久视频精品免费| 欧美最黄视频在线播放免费| 久久人人精品亚洲av| 深爱激情五月婷婷| 九九爱精品视频在线观看| 国产黄片美女视频| АⅤ资源中文在线天堂| 欧美色欧美亚洲另类二区| 亚洲欧美成人精品一区二区| 日本与韩国留学比较| 18禁在线播放成人免费| 老司机午夜福利在线观看视频| 特级一级黄色大片| 婷婷色综合大香蕉| 一本久久中文字幕| 亚洲av中文字字幕乱码综合| 大型黄色视频在线免费观看| 综合色丁香网| 久久久久精品国产欧美久久久| 国产精品1区2区在线观看.| 久久精品久久久久久噜噜老黄 | 日韩欧美免费精品| 国产久久久一区二区三区| 亚洲专区国产一区二区| 国产一区二区在线av高清观看| 乱系列少妇在线播放| 一级毛片aaaaaa免费看小| 国内少妇人妻偷人精品xxx网站| 国国产精品蜜臀av免费| 国产麻豆成人av免费视频| 精品久久久久久久人妻蜜臀av| 又粗又爽又猛毛片免费看| 亚洲性夜色夜夜综合| 成年免费大片在线观看| 又黄又爽又免费观看的视频| 亚洲av美国av| 久久精品国产亚洲网站| 网址你懂的国产日韩在线| www.色视频.com| 亚洲欧美清纯卡通| 日韩欧美在线乱码| 久久精品久久久久久噜噜老黄 | 国产高清有码在线观看视频| 久久久精品大字幕| 最好的美女福利视频网| 一区二区三区免费毛片| 国产在线精品亚洲第一网站| 日本五十路高清| 观看美女的网站| 欧美另类亚洲清纯唯美| av在线蜜桃| 国产一区二区亚洲精品在线观看| 一级av片app| 国产毛片a区久久久久| 最新中文字幕久久久久| 97热精品久久久久久| 国产色爽女视频免费观看| 国产精品综合久久久久久久免费| 久久综合国产亚洲精品| 国产高清三级在线| 日韩人妻高清精品专区| 深爱激情五月婷婷| 久久久久久久亚洲中文字幕| 欧美又色又爽又黄视频| 六月丁香七月| 在线国产一区二区在线| 少妇丰满av| av在线播放精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品自产自拍| 欧美一区二区亚洲| 国产 一区 欧美 日韩| 精品一区二区三区人妻视频| 国产精品精品国产色婷婷| 中文字幕免费在线视频6| 在线a可以看的网站| 国产一区亚洲一区在线观看| 少妇熟女欧美另类| 国产午夜精品论理片| 一级a爱片免费观看的视频| 毛片一级片免费看久久久久| 亚洲三级黄色毛片| 美女免费视频网站| 国产精华一区二区三区| 美女被艹到高潮喷水动态| 亚洲精品一区av在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲中文字幕日韩| 免费观看人在逋| 精品午夜福利视频在线观看一区| av福利片在线观看| 精品久久久久久久久av| 国产亚洲欧美98| 欧美不卡视频在线免费观看| 亚洲精品粉嫩美女一区| 成人鲁丝片一二三区免费| 国产黄片美女视频| 亚洲av.av天堂| 免费大片18禁| 十八禁国产超污无遮挡网站| 亚洲中文字幕日韩| 国产国拍精品亚洲av在线观看| 久久久国产成人精品二区| 日本成人三级电影网站| 丰满乱子伦码专区| 亚洲国产精品国产精品| 神马国产精品三级电影在线观看| 欧美成人a在线观看| 黄色欧美视频在线观看| 看非洲黑人一级黄片| 高清毛片免费观看视频网站| 尾随美女入室| 日韩三级伦理在线观看| 蜜桃亚洲精品一区二区三区| 亚洲成人久久性| 18禁在线播放成人免费| 国产在视频线在精品| 22中文网久久字幕| 日韩高清综合在线| 看黄色毛片网站| 少妇丰满av| 国产欧美日韩一区二区精品| 亚洲性久久影院| 九九久久精品国产亚洲av麻豆| 国产欧美日韩一区二区精品| 伊人久久精品亚洲午夜| 天堂√8在线中文| 成人鲁丝片一二三区免费| 亚洲人成网站在线播放欧美日韩| 日韩强制内射视频| 亚洲在线观看片| 深夜a级毛片| 久久九九热精品免费| 中国美白少妇内射xxxbb| 草草在线视频免费看| 国产片特级美女逼逼视频| 成人高潮视频无遮挡免费网站| 在线免费观看的www视频| 精品无人区乱码1区二区| 国产白丝娇喘喷水9色精品| 久久人人爽人人爽人人片va| 免费黄网站久久成人精品| 两个人的视频大全免费| 亚洲五月天丁香| 看黄色毛片网站| 99久久精品热视频| 亚洲人与动物交配视频| 国产一级毛片七仙女欲春2| 久久综合国产亚洲精品| 亚洲av中文字字幕乱码综合| 深夜精品福利| 欧美高清性xxxxhd video| 欧美+亚洲+日韩+国产| av卡一久久| 日韩欧美在线乱码| 欧美精品国产亚洲| 久久久久久久久久久丰满| 午夜福利在线在线| 亚洲欧美中文字幕日韩二区| 精品不卡国产一区二区三区| 欧美zozozo另类| 99精品在免费线老司机午夜| 久久久久久伊人网av| 美女高潮的动态| 亚洲国产高清在线一区二区三| 久久综合国产亚洲精品| 亚洲人成网站在线观看播放| 欧美精品国产亚洲| 观看免费一级毛片| 男女下面进入的视频免费午夜| 欧美xxxx性猛交bbbb| 黄色日韩在线| 嫩草影院新地址| 人妻丰满熟妇av一区二区三区| 美女免费视频网站| 中文字幕精品亚洲无线码一区| 变态另类成人亚洲欧美熟女| 69人妻影院| 99热精品在线国产| 色综合亚洲欧美另类图片| 热99re8久久精品国产| 免费av不卡在线播放| 狂野欧美激情性xxxx在线观看| 国产av一区在线观看免费| 日韩精品青青久久久久久| 欧美激情在线99| 在线国产一区二区在线| 国产精品三级大全| 亚洲av成人精品一区久久| 国产不卡一卡二| 熟女人妻精品中文字幕| 女同久久另类99精品国产91| 日韩欧美免费精品| 国产成人a区在线观看| 久久人人精品亚洲av| 久久国内精品自在自线图片| 国产黄片美女视频| 丝袜美腿在线中文| 国产免费男女视频| 国国产精品蜜臀av免费| 欧美一级a爱片免费观看看| 少妇被粗大猛烈的视频| 免费看av在线观看网站| 国产精品久久久久久亚洲av鲁大| 欧美成人a在线观看| 日韩欧美在线乱码| 丰满乱子伦码专区| 亚洲av中文字字幕乱码综合| 国产黄a三级三级三级人| 亚洲精品乱码久久久v下载方式| 久久精品人妻少妇| 99久国产av精品国产电影| 国产黄片美女视频| 日日摸夜夜添夜夜爱| 尾随美女入室| 听说在线观看完整版免费高清| 成人美女网站在线观看视频| 亚洲av美国av| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 欧美高清性xxxxhd video| 亚洲自拍偷在线| av女优亚洲男人天堂| 国产亚洲精品久久久久久毛片| 男女之事视频高清在线观看| 搡老熟女国产l中国老女人| 国产亚洲91精品色在线| 丝袜喷水一区| 香蕉av资源在线| 欧美极品一区二区三区四区| 国产 一区精品| 欧美色欧美亚洲另类二区| ponron亚洲| 美女内射精品一级片tv| 婷婷亚洲欧美| 亚洲七黄色美女视频| 日韩在线高清观看一区二区三区| 久久久久久久午夜电影| 秋霞在线观看毛片| 成人毛片a级毛片在线播放| 在线观看午夜福利视频| 精品福利观看| 狠狠狠狠99中文字幕| av在线亚洲专区| 男女边吃奶边做爰视频| 99精品在免费线老司机午夜| 精品久久久久久久久av| a级一级毛片免费在线观看| 五月玫瑰六月丁香| 欧美一级a爱片免费观看看| 高清日韩中文字幕在线| 日本在线视频免费播放| 久久久成人免费电影| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一区av在线观看| 午夜爱爱视频在线播放| 天天躁夜夜躁狠狠久久av| 欧美色视频一区免费| 黄色日韩在线| 97热精品久久久久久| 白带黄色成豆腐渣| 嫩草影院新地址| 国产成人一区二区在线| 午夜亚洲福利在线播放| 亚洲,欧美,日韩| 91久久精品国产一区二区三区| 成人综合一区亚洲| 有码 亚洲区| 联通29元200g的流量卡| 国产国拍精品亚洲av在线观看| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| 女的被弄到高潮叫床怎么办| 亚洲精品成人久久久久久| 夜夜夜夜夜久久久久| 国产精品综合久久久久久久免费| 久久国内精品自在自线图片| 国产亚洲精品久久久久久毛片| 性插视频无遮挡在线免费观看| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 日韩精品中文字幕看吧| 99久久无色码亚洲精品果冻| 国产毛片a区久久久久| 两个人视频免费观看高清| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品综合一区二区三区| 免费av观看视频| 日韩强制内射视频| 伦精品一区二区三区| 中国国产av一级| 国产亚洲精品av在线| 我要看日韩黄色一级片| 久久久久免费精品人妻一区二区| 在线观看美女被高潮喷水网站| 少妇的逼水好多| 床上黄色一级片| 国产色婷婷99| 国产成人福利小说| 中文字幕av在线有码专区| 色综合站精品国产| 成人精品一区二区免费| 久久精品综合一区二区三区| 中文资源天堂在线| 91在线精品国自产拍蜜月| 日韩,欧美,国产一区二区三区 | 国产精品三级大全| 欧美高清成人免费视频www| 成人特级av手机在线观看| 日日摸夜夜添夜夜添小说| 国产高清视频在线观看网站| 欧美最黄视频在线播放免费| 国产精品三级大全| 搡老熟女国产l中国老女人| 综合色av麻豆| 久久久欧美国产精品| 成人特级av手机在线观看| 人人妻人人看人人澡| 色综合站精品国产| 欧美+日韩+精品| 亚洲av一区综合| 伦精品一区二区三区| 天美传媒精品一区二区| 大香蕉久久网| 中国美女看黄片| 一级黄色大片毛片| 国产精华一区二区三区| 久久久久久九九精品二区国产| 国产真实乱freesex| 12—13女人毛片做爰片一| 男人和女人高潮做爰伦理| 国内精品美女久久久久久| 国产人妻一区二区三区在| 老熟妇仑乱视频hdxx| 少妇人妻精品综合一区二区 | 成人国产麻豆网| 色尼玛亚洲综合影院| 久久99热这里只有精品18| 国内久久婷婷六月综合欲色啪| 精品一区二区免费观看| 国内精品久久久久精免费| 长腿黑丝高跟| 亚洲欧美成人精品一区二区| av在线播放精品| 人人妻人人澡人人爽人人夜夜 | 欧美+日韩+精品| 日本爱情动作片www.在线观看 | 99在线视频只有这里精品首页| 午夜福利高清视频| 欧美色欧美亚洲另类二区| 亚洲国产精品sss在线观看| 中出人妻视频一区二区| 男女做爰动态图高潮gif福利片| 久久精品国产亚洲av天美| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩高清在线视频| 欧美一区二区国产精品久久精品| 内射极品少妇av片p| 国产高清有码在线观看视频| 插逼视频在线观看| 国产成人aa在线观看| 国产精品久久久久久亚洲av鲁大| 欧美成人精品欧美一级黄| 国产精品av视频在线免费观看| 国产aⅴ精品一区二区三区波| 免费高清视频大片| 日日摸夜夜添夜夜添av毛片| 岛国在线免费视频观看| 欧美日韩一区二区视频在线观看视频在线 | av视频在线观看入口| 亚洲av五月六月丁香网| 亚洲四区av| 老熟妇仑乱视频hdxx| 国产视频内射| 久久国产乱子免费精品| 午夜久久久久精精品| 日本精品一区二区三区蜜桃| 麻豆一二三区av精品| 我要搜黄色片| 一个人看的www免费观看视频| 日韩精品有码人妻一区| 九九爱精品视频在线观看| 97超视频在线观看视频| 国产激情偷乱视频一区二区| 日本a在线网址| 亚洲经典国产精华液单| 国产欧美日韩一区二区精品| 免费看a级黄色片| 国产91av在线免费观看| 丰满人妻一区二区三区视频av| 可以在线观看毛片的网站| 久久综合国产亚洲精品| 波野结衣二区三区在线| 国产精品一区www在线观看| 日日啪夜夜撸| 午夜福利成人在线免费观看| 亚洲18禁久久av| 日韩在线高清观看一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产av不卡久久| 中文资源天堂在线| 午夜福利在线观看吧| 永久网站在线| 桃色一区二区三区在线观看| 久久久成人免费电影| 啦啦啦韩国在线观看视频| 免费大片18禁| 中文亚洲av片在线观看爽| 国产真实乱freesex| 国产午夜精品久久久久久一区二区三区 | 少妇高潮的动态图| 在现免费观看毛片| 亚洲欧美日韩无卡精品| 老女人水多毛片| 国产一区二区激情短视频| 国产成人一区二区在线| 亚洲精品久久国产高清桃花| 日韩精品青青久久久久久| 午夜精品国产一区二区电影 | 婷婷亚洲欧美| 1024手机看黄色片| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 国产 一区精品| 欧美中文日本在线观看视频| 精品久久久久久久久亚洲| 欧美高清性xxxxhd video| 免费av毛片视频| 精品久久久久久久久久免费视频| 久久精品影院6| 赤兔流量卡办理| 淫秽高清视频在线观看| 日韩成人伦理影院| 一级毛片久久久久久久久女| 伦精品一区二区三区| 69av精品久久久久久| 免费看光身美女| 亚洲高清免费不卡视频| 夜夜看夜夜爽夜夜摸| 99久国产av精品国产电影| 身体一侧抽搐| 乱系列少妇在线播放| 亚洲色图av天堂| 久久午夜福利片| 成人亚洲欧美一区二区av| 久久久久九九精品影院| 小说图片视频综合网站| 国产成人影院久久av| 精品熟女少妇av免费看| 麻豆成人午夜福利视频| 久久热精品热| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 在线免费观看不下载黄p国产| 日本免费一区二区三区高清不卡| 国产欧美日韩精品亚洲av| 秋霞在线观看毛片| 亚洲激情五月婷婷啪啪| 免费搜索国产男女视频| 国产麻豆成人av免费视频| 精品一区二区三区人妻视频| 亚洲精品国产av成人精品 | 欧美日韩国产亚洲二区| 精品久久久久久久久亚洲| 精品99又大又爽又粗少妇毛片| 男女下面进入的视频免费午夜| 国产91av在线免费观看| 日韩三级伦理在线观看| 国产探花极品一区二区| 国产片特级美女逼逼视频| www日本黄色视频网| 国产探花在线观看一区二区| 欧美激情在线99| 22中文网久久字幕| 久久精品国产亚洲av天美| 亚洲无线在线观看| 免费av不卡在线播放| 久久人人爽人人片av| 日日撸夜夜添| 欧美+日韩+精品| av卡一久久| 免费在线观看影片大全网站| 亚洲av电影不卡..在线观看| 国国产精品蜜臀av免费| 日本成人三级电影网站| 国产69精品久久久久777片| 我的女老师完整版在线观看| 国产伦在线观看视频一区| 深爱激情五月婷婷| 国产精品一区二区三区四区免费观看 | 欧美高清性xxxxhd video| 久久精品夜夜夜夜夜久久蜜豆| 国内久久婷婷六月综合欲色啪| 狂野欧美激情性xxxx在线观看| 九九在线视频观看精品| 99热6这里只有精品| 欧美又色又爽又黄视频| 桃色一区二区三区在线观看| 3wmmmm亚洲av在线观看| 精品久久久久久成人av| 最新中文字幕久久久久| 国内久久婷婷六月综合欲色啪| 热99在线观看视频| 老师上课跳d突然被开到最大视频| 草草在线视频免费看| 久久人妻av系列| www.色视频.com| 午夜久久久久精精品| 精品乱码久久久久久99久播| 又黄又爽又刺激的免费视频.| 色吧在线观看| 如何舔出高潮| 国产精品av视频在线免费观看| 级片在线观看| 欧美精品国产亚洲| 亚洲精华国产精华液的使用体验 | 国产男人的电影天堂91| 国产成人一区二区在线| 一本久久中文字幕| 国产乱人视频| 最近2019中文字幕mv第一页| 欧美+亚洲+日韩+国产| 中文字幕免费在线视频6| 我的女老师完整版在线观看| 小蜜桃在线观看免费完整版高清| 亚洲国产精品成人综合色| 亚洲中文字幕一区二区三区有码在线看| 久久久国产成人免费| 日本与韩国留学比较| 99久国产av精品| 国产精品国产三级国产av玫瑰| 亚洲无线观看免费| 欧美xxxx黑人xx丫x性爽| 国产一级毛片七仙女欲春2| 最近2019中文字幕mv第一页| 一区福利在线观看| 丝袜喷水一区| 国产精品女同一区二区软件| 免费av不卡在线播放| 最近2019中文字幕mv第一页| 最新中文字幕久久久久| 免费一级毛片在线播放高清视频| а√天堂www在线а√下载| 人人妻人人澡人人爽人人夜夜 | 久久国内精品自在自线图片| 午夜福利在线在线|