• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vorticity Dynamics and Control of Self-PropelledFlying of a Three-Dimensional Bird

    2016-05-12 06:03:08LinlinZhuHuiGuanChuijieWu
    關(guān)鍵詞:大連理工大學(xué)遼寧翅膀

    Linlin Zhu, Hui Guan, Chuijie Wu,*

    (1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian Liaoning 116024, China 2. Dalian University of Technology, Dalian Liaoning 116024, China 3. PLA University of Science and Technology, Nanjing Jiangsu 211101, China)

    ?

    Vorticity Dynamics and Control of Self-PropelledFlying of a Three-Dimensional Bird

    Linlin Zhu1,2, Hui Guan3, Chuijie Wu1,2,*

    (1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian Liaoning 116024, China 2. Dalian University of Technology, Dalian Liaoning 116024, China 3. PLA University of Science and Technology, Nanjing Jiangsu 211101, China)

    Birds are propelled and lifted by wings’ flapping and rotating motion. In this study, the rotation amplitude and rotation time interval of wings were studied, the self-propelled flying motion of a three-dimentional(3D) bionic bird in a viscous flow is investigated numerically with a 3D computational fluid dynamics (CFD) package. The package includes the immersed boundary method (IBM), the volume of fluid (VOF) method, the adaptive multi-grid finite volume method, and the swimming and flying control strategy. It is suggested that the bird can fly faster forward or upward with an appropriate rotation amplitude and rotation time interval.

    Self-propelled, Bird flying, Numerical simulation, Three-dimensional, Rotation angle

    0 Introduction

    Flight has fascinated humans for many centuries [1]. Many animals have better movement per-formance than man-made vehicles, they can reduce drag force, suppress the turbulence and produce much more lift than our understanding. Birds are one of the efficient flyers in the nature, and their flapping flight is more complicated and efficient than the flight with fixed wings, as its dynamics is determined not only by its deformation but also by its wing motion aspects, such as flapping, rotation, and the specific relationship between flapping and rotation. Understanding of the dynamic interaction between the fluid and the wing may lead to a better

    micro air vehicles (MAV) design[1].

    Flapping flight has attracted global attention recently, and much work has been done using both experimental and computational methods (e.g. Ellington et al.

    [2], Dickinson et al.

    [3], Sane and Dickinson [4], Liu et al.

    [5], Sun and Tang [6, 7], Usherwood and Ellington [8], Wang et al.

    [9]), also a considerable understanding of the aerodynamic force generation mechanism has been achieved. However, in most of these studies, the flight was fixed and the body couldn’t move or rotate freely when is subjected to the action of the pressure, the viscous force and the gravity. Will the flapping flight with unfixed body and freely wings

    be the same? Study of a 3D bird’s self-propelled flying is more difficult but more similar to a real flyer in the nature.

    In the present study, numerical simulation of 3D bionic bird is used as a convenient tool. This is achieved by a CFD software package for 3D moving boundary problems, which combines the adaptive mesh refinement method, the immersed boundary method (IBM) and the volume of fluid (VOF) method, which is described in[12,13].

    1 Numerical Approaches

    In this study, the incompressible unsteady Navier-Stokes equations are solved using the finite volume method. The Cartesian adaptive mesh refinement technique is used to compute the flows with minimum overload. The computational domain is spatially discretized by a cubic finite volumes organized hierarchically as an octree. The projection and the multi-levels methods are used to solve the Poisson equation of pressure. The convective terms are discretized by the second order Godunov type scheme. The diffusion terms are discretized with the implicit Crank-Nicolson scheme, which can eliminate the viscous stability constraint. The details of the numerical algorithms refer to [14].

    The study of bird self-propelled flying is a moving boundaries problem involving complex geometry. The computing methods of moving boundaries problem are usually classified into the body-fitted moving mesh method and IBM for computational fluid dynamics. The boundary conditions can be simply and accurately set using body-fitted moving mesh method, but the grid generation is a difficult and time-consuming task. IBM requires significantly less computation than other methods without sacrificing the accuracy. In the present study, moving boundaries are treated with ghost-cell IBM, which employs discrete forcing where the forcing is either implicitly or explicitly applied to the discretized Navier-Stokes equations. The technique of adaptive multi-grids is used and the adaptive refinement criteria are both vorticity andT, whereTis a tracer of VOF. This ensures that the meshes intersecting with the moving body boundaries are the finest and accurate representation of moving boundaries is achieved [3].

    2 Motion Equations and Flying Parameters

    2.1 Motion Equations

    The dynamics governing equations for a 3D self-propelled bionic bird are

    (1)

    (2)

    wheremis the mass of the bionic bird,uis the translational velocity vector,Mis the moment andLis the moment of momentum,Iis the inertia tensor andΩis the rotation angular velocity vector.Fis the external force acting on the bird, including external forces due to local flow structures and the gravity acting on the bird, the external force due to local flow structures is defined by

    Ff=-∫?B(-pn+μω×n)ds

    (3)

    where?Bis the surface of the 3D bionic bird,nis the unit normal vector pointing out of the surface;μandωare the shear viscosity and vorticity, respectively. Equation (3) is a classical force formula derived directly from the momentum balance.

    2.2 Flapping Rule and Kinematic Parameters

    In this paper, the computational domain is 4×3×3(length×width×height), the dimensionless bird’s wingspan is 0.94, the density ratio of bird body to air is 20, the gravitational acceleration is 9.8, and the kinematics viscosity coefficient of the fluid isν=15.7×10-6.

    The bird body consists of four parts, the body trunk, the tail and a pair of flapping wings, which is shown in Figure 1(a) and (b). Figure 2 shows the 3D structures due to bird’s self-propelled flying, which is observed from the side and above.

    The flapping motion of the wings contains two steps, rotation and flapping. The first step, both wings rotate along theyaxis (see Figure 1(c)), the rotation angleα2(t) is shown in Equation (5). The second step, both wings rotate along two straight lines parallel to thexaxis, the two lines contain the points (xp,yp,zp) and (xp, -yp,zp), respectively, which are intersection point of the bird body and each of the wings (see Figure 1(b)); the flapping angle of the right wing is always reversed to the left one. In this study, the flapping angle of the left wingα1(t) is defined as the major one, which is shown in Equation (4).

    In the study, the bird body coordinates (xl,yl,zl) and the global coordinates (x,y,z) are used, which can be converted to each other. In the bird body coordinate system, the flapping angleα1(t) and the rotation angleα2(t) in the first period can be written as:

    (4)

    α2(t)=

    (5)

    wheretis the time,αmandαnare the flapping amplitude and the rotation amplitude of the wings, respectively;Tis the flapping period,T1is the total rotation time interval of the wings in one flapping period.

    (a) Side view of the bird body

    (b) Top view of the bird body

    (c) Outline of the wingFig.1 3D profile of the bird body.

    (a) Side view of the 3D vortex structure

    (b) Top view of the 3D vortex structure

    Fig.2 3D vortex structure around the flying bird.

    The Equation (4) is presented by the red real line with “▲” in Figure 3(a), which is part of a cosine function with the maximum valueαmand the minimum value -αm. The Equation (5) is presented by the blue real line with “○” in Figure 3(a), more details are presented in Figure 3(b). The first equation is presented by the left black dashed line, which is a part of the sinusoidal function, where 0 andαnare the minimum and the maximum value of the line, andT1/4 is the maximumxaxis value. The second equation is presented by the left red real line, which is a straight line with a constant valueαn. The third equation is presented by the dark blue dash dot line, which is a part of a sinusoidal function, whereαnand -αnare the maximum and the minimum values of the line. The forth equation is presented by the right red real line, which is a straight line with a constant value -αn. The fifth equation is presented by the right black dashed line, which is a part of the sinusoidal function, where -αnand 0 are the minimum and the maximum value of the line. In Fig.3,αm=40°,αn=35°,T= 0.02,T1= 0.4T= 0.008.

    (a) Flapping angle and rotation angle

    (b) Rotation angleFig.3 Angles of the flapping wings in one period.

    The flapping motion of the wings contains both downstroke and upstroke in one period. Downstroke consists of four parts: when 0≤t

    Especially, whenT1=T, both downstroke and upstroke only consist the first and the forth parts, which is shown in Figure 14 withK1= 1.0.

    2.3 Boundary and Initial Conditions

    All boundaries of the computational region are set to be nonslip boundary conditions, i.e.

    ub=vb=wb= 0.

    Thus, the computational region is like a flume without inflow nor outflow.

    The bionic bird is stationary at the beginning, so the initial condition is

    u=v=w= 0.

    The immersed boundary conditions on the bird’s body surface are as follows. The body surface velocity of every point consists of the following three components.

    (1)The velocityV0arose from the aerodynamic force.

    (2)The linear velocityVrarose from the rotation.

    (3)The velocityVfarose from the flapping motion, which contains flapping and rotation.

    In the global coordinate system, the velocity of the bird surface generated by the flapping wings is:

    3 Results and Analysis

    In this study, the body trunk, the tail and two flapping wings are rigid body, respectively. At the beginning, the body trunk is fixed, we control the wings’ flapping and rotation, which is shown in Figure 3, so we can calculate the velocity of every point on the bird’s body surface, which we used as immersed boundary condition; then we can use the Navier-Stokes solver to compute the viscous force and the pressure force with the immersed boundary condition and the computational region boundary condition. Base on all above, the resultant force and moments due to the gravity, viscous force and pressure force can be achieved, so do the translation velocity and rotation angular velocity. In the end, we achieve the new flight position (at the beginning, the flight position is fixed; and after a critical time, which isT/4 in this study, the position is changed) including the translation and rotation from the last position. The next step is to use this translation velocity and rotation angular velocity getting the velocity of every point on the bird’s body surface as new immersed boundary condition.

    3.1 Different Rotation Amplitude Compared

    In this present study, five rotation amplitudes, i. e.,αn=15°, 25°, 35°, 45°, 55° were studied (Figure 4). The flapping periodT=0.02.

    In Figure 4, we found that, whent/T=0, 0.5, 1.0, the rotation angleα2changes dramatically with the increase of the rotation amplitudeαn, so the velocity arisen from the wings’ rotation become larger. Whent/T=0, 1.0, the flapping wings are at the beginning of downstroke; and whent/T=0.5, the flapping wings are at the end of downstroke.

    Fig.4 Different rotation amplitudes.

    Figure 5 shows the pressure distribution on the upper surface at the beginning of downstroke, the pressure in the region near the trailing edge on the upper surface is increased with the increase ofαn. Figure 6 shows the pressure distribution on the lower surface at the beginning of downstroke, the pressure in the region near the trailing edge on the lower surface is decreased with the increase ofαn. So the downward pressure on the wings’ surface is increased and the lift is decreased with the increase ofαnat the beginning of downstroke, which is shown in Figure 9.

    Figure 7 shows the pressure distribution on the upper surface at the end of downstroke, the pressure in the region near the trailing edge on the upper surface is decreased with the increase ofαn. Figure 8 shows the pressure distribution on the lower surface at the end of downstroke, the pressure in the region near the trailing edge on the lower surface is increased with the increase ofαn. So the upward pressure on the wings’ surface is increased and the lift is increased with the increase ofαnat the end of downstroke, which is shown in Figure 9.

    (a) αn = 15°(b) αn=25°(c) αn = 35°(d) αn=45°(e) αn=55°Fig.5 Pressure distribution on the upper surface when t = 0.04.

    (a) αn = 15°(b) αn=25°(c) αn = 35°(d) αn=45°(e) αn=55°Fig.6 Pressure distribution on the lower surface when t = 0.04.

    (a) αn = 15°(b) αn=25°(c) αn = 35°(d) αn=45°(e) αn=55°Fig.7 Pressure distribution on the upper surface when t = 0.05.

    (a) αn = 15°(b) αn=25°(c) αn = 35°(d) αn=45°(e) αn=55°Fig.8 Pressure distribution on the lower surface when t = 0.05.

    Fig.9 Lift of different rotation amplitudes.

    Fig.10 Velocity w of different rotation amplitudes.

    Figures 9(a)-(e) shows that the liftFzchanges periodically, here the period isT. One can see that, at the beginning and the end of the strokeFzincreases dramatically with the increase of the rotation amplitudeαn, which is confirmed by the pressure distribution on the wings. But in the other part of the stroke,Fzis closer to zero with the increase ofαn. Figure 9(f) showsFzin one period whenαn=15°, 35°, 55°, where flapping is at the beginning and the end of the downstroke whent=0.08 and 0.09, respectively. We found that, with the increase ofαn, when 0.08≤t≤0.088 and 0.098 ≤t≤0.1,Fzis decreased, when 0.088 ≤t≤0.098,Fzis increased. Figure 10 shows that the velocity of the body along thezaxis is increased whenαnincreases from 15° to 45°, but later decreased whenαnincreases from 45° to 55°. Figure 11 shows that the displacement of the body along thezaxis is increased whenαnincreases from 15° to 45°, but later decreased whenαnincreases from 45° to 55°, which is well-matched in the velocity.

    Fig.11 Displacement z of different rotation amplitudes.

    Figs.12 (a)-(e) shows that the thrustFxchanges periodically. Patently, near the beginning and the end of the stroke,Fxchanges dramatically with the increase of the rotation amplitudeαn,Fxbecomes higher a short interval just before the beginning and the end of the stroke, andFxbecomes lower a short interval just after the beginning and the end of the stroke. But in the other part of the strokeFxis closer to zero with the increase ofαn. Fig.12(f) showsFxin one period whenαn=15°, 35°, 55°. We found that, with the increase ofαn, when 0.08≤t≤0.088 and 0.09≤t≤0.094,Fxis decreased, when 0.088≤t≤0.09 and 0.098≤t≤0.1,Fxis increased. Fig.13(a) shows that the velocity of the body along thexaxis is increased whenαnincreases from 15° to 25°, but later is decreased whenαnincreases from 25° to 55°. Fig.13(b) shows that the displacement of the body along thexaxis is increased whenαnincreases from 15° to 25°, but later is decreased whenαnincreases from 25° to 55°, which is well-matched in the velocity.

    Both the velocity and the displacement of the bird along thezaxis are increased when the rotation amplitudeαnincreases up to a critical valueαnz, which is 45° in this study, after the critical value both are decreased. The velocity and the displacement of the bird along thexaxis both are increased whenαnincreases up to a critical valueαnx, which is 25° in this study, after the critical value both are decreased. The flight height of flying path in thex-zplane is increased faster whenαnincreases up to a critical valueαnk, which is 45° in this study, after the critical value that is increased slower, which is shown in Fig.13(c). The critical valueαnkdepends on bothαnzandαnx.

    Fig.12 Thrust of different rotation amplitudes.

    Fig.13 Velocity u, displacement x and the path of different rotation amplitudes.

    3.2 Different Rotation Time Interval Compared

    In this present study, different rotation time interval was studied. DefineK1=T1/T, whereTis the flapping period,T1is the total rotation time interval of the wings in one flapping period. In this study,T=0.02,K1=1.0, 0.7, 0.4, 0.2, 0.15, which is shown in Fig.14.

    In Fig.14 we found that, whent/T= 0, 0.5, 1.0, the rotation angleα2changes dramatically with the decrease of the rotation time intervalT1, so the velocity arisen from the wings’ rotation become larger.

    Fig.15 shows the pressure distribution on the upper surface at the beginning of downstroke, and the pressure in the region near the trailing edge on the upper surface is increased with the decrease ofT1. Fig.16 shows the pressure distribution on the lower surface at the beginning of downstroke, and the pressure in the region near the trailing edge on the lower surface is decreased with the decrease ofT1. So the downward pressure on the wings’ surface is increased and the lift is decreased with the decrease ofT1at the beginning of downstroke, which is shown in Fig.19.

    Fig.14 Different rotation time intervals.

    (a) K1 = 1.0(b) K1 = 0.7(c) K1 = 0.4(d) K1 = 0.2(e) K1 = 0.15Fig.15 Pressure distribution on the upper surface when t = 0.04.

    (a) K1 = 1.0(b) K1 = 0.7(c) K1 = 0.4(d) K1 = 0.2(e) K1 = 0.15Fig.16 Pressure distribution on the lower surface when t = 0.04.

    (a) K1 = 1.0(b) K1 = 0.7(c) K1 = 0.4(d) K1 = 0.2(e) K1 = 0.15Fig.17 Pressure distribution on the upper surface when t = 0.05.

    (a) K1 = 1.0(b) K1 = 0.7(c) K1 = 0.4(d) K1 = 0.2(e) K1 = 0.15Fig.18 Pressure distribution on the lower surface when t = 0.05.

    Fig.19 Lift of different rotation time interval.

    Fig.17 shows the pressure distribution on the upper surface at the end of downstroke, and the pressure in the region near the trailing edge on the upper surface is decreased with the decrease ofT1. Figure 18 shows the pressure distribution on the lower surface at the end of downstroke, and the pressure in the region near the trailing edge on the lower surface is increased with the decrease ofT1. So the upward pressure on the wings’ surface is increased and the lift is increased with the decrease ofT1at the end of downstroke, which is shown in Fig.19.

    Figs.19(a)-(e) shows that the liftFzchanges periodically. One can see that, at the beginning and the end of the strokeFzincreases dramatically with the decrease of the rotation time intervalT1, which is confirmed by the pressure distribution on the wings. But in the other part of the stroke,F(xiàn)zis closer to zero with the decrease ofT1. Figure 19(f) showsFzin one period whenT1=0.7T, 0.4T, 0.2T, where flapping is at the beginning and the end of the downstroke whent=0.08 and 0.09, respectively. We found that, with the decrease ofT1, when 0.08≤t≤0.081, 0.085≤t≤0.089, 0.092≤t≤0.096 and 0.099 ≤t≤0.1,Fzis decreased, when 0.082≤t≤0.083, 0.089≤t≤0.091 and 0.098≤t≤0.099,Fzis increased. Figure 20(a) shows that the velocity of the body along thezaxis is increased indistinctively whenT1decreases fromTto 0.4T, but later is decreased obviously whenT1decreases from 0.4Tto 0.15T. Fig.20(b) shows that the displacement of the body along thezaxis is increased whenT1decreases fromTto 0.4T, but later is decreased whenT1decreases from 0.4Tto 0.15T, which is well-matched with the velocity.

    Figs.21 (a)-(e) shows that the thrustFxchanges periodically. Patently,Fxchanges dramatically with the decrease of the rotation time intervalT1near the beginning and the end of the stroke. But in the other part of the stroke,Fxis closer to zero with the decrease.

    (a) w~t

    (b) z~tFig.20 Velocity w and the displacement z of different rotation time intervals.

    Fig.21 Thrust of different rotation time intervals.

    Fig.22 Velocity u, the displacement x, and the path of different rotation time intervals.

    ofT1. Figs.21(f) showsFxin one period whenT1=0.7T, 0.4T, 0.2T. We found that, with the decrease ofT1, when 0.08≤t≤0.081, 0.084≤t≤0.086, 0.087≤t≤0.088, 0.09≤t≤0.091 and 0.095≤t≤0.98,Fxis decreased, when 0.082≤t≤0.083, 0.089≤t≤0.09, 0.092≤t≤0.094 and 0.099≤t≤0.1,Fxis increased. Figure 22(a) shows that the velocity of the body along thexaxis is changed indistinctively whenT1decreases from 1.0Tto 0.4T, but later is increased whenT1decreases from 0.4Tto 0.15T. Figure 22(b) shows that the displacement of the body along thexaxis is decreased whenT1decreases from 1.0Tto 0.15T.

    Both the velocity and the displacement of the bird along thezaxis are increased when the rotation time intervalT1decreases down to a critical valueTnz, which is 0.4Tin this study, after the critical value both are decreased. The displacement of the bird along thexaxis is increased with the decrease ofT1. The flight height of flying path in thex-zplane is increased faster whenT1decreases down to a critical valueTnk, which is 0.4Tin this study, after the critical value that is decreased obviously, which is shown in Figure 22(c). The critical valueTnkdepends onTnz.

    4 Conclusion

    Wings’ rotation plays an important role in the bird’s flying motion, both lift and thrust are produced by the wing’s flapping motion, which contains flapping and rotation. Vorticity dynamics of a 3D bionic bird’s self-propelled flying in a viscous flow were investigated numerically. Different rotation amplitude and different rotation time interval were studied, where both the lift and the thrust are changed consequently with.

    Both the velocity and the displacement of the bird along thezaxis will reach the maximum value, when the rotation amplitudeαnis equal to a critical valueαnz. Both the velocity and the displacement of the bird along thexaxis will reach the maximum value, whenαnis equal to another critical valueαnx. The fastest increase of the flight height of flying path in thex-zplane can be reached, whenαnis equal to the third critical valueαnk, which depends on bothαnzandαnx.

    Both the velocity and the displacement of the bird along thezaxis will reach the maximum value, when the rotation time intervalT1is equal to a critical valueTnz. The displacement of the bird along thexaxis is increased with the decrease ofT1. The flight height of flying path in thex-zplane will increase fastest, whenT1is equal to another critical valueTnk, which depends onTnz.

    Base on all above, with appropriate rotation amplitudeαnand rotation time intervalT1, the bird will fly faster forward or upward.

    [1]Shyy W, Lian Y, Tang J, et al. Aerodynamics of low Reynolds number flyers[M]. New York: Cambridge Univ. Press, 2008.

    [2]Ellington C P, Van Den Berg C, Willmott A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384: 626-630, 1996.

    [3]Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science,1999, 284:1954-1960.

    [4]Sane S P, Dickinson M H. The control of flight force by a flapping wing: lift and drag production[J]. J. Exp. Biol., 2001, 204:2607-2626.

    [5]Liu H, Ellington C P, Kawachi K, C.et al. A computational fluid dynamic study of hawkmoth hovering[J]. J. Exp. Biol., 1998, 201: 461-477.

    [6]Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. J. Exp. Biol., 2002, 205:55-70.

    [7]Sun M, Tang J. Lift and power requirements of hovering flight in Drosophila virilis[J]. J. Exp. Biol., 2002, 205: 2413-2427.

    [8]Usherwood J R, Ellington C P. The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail[J]. J. Exp. Biol., 2002, 205: 1565-1576.

    [9]Wang Z J, Birch J M, Dickinson M H. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments[J]. J. Exp. Biol., 2004, 207: 449-460.

    [10]Pennycuick C J. Wingbeat frequency of birds in steady cruising flight: New data and improved predictions[J]. J. Exp. Biol., 1996, 199: 1613-1618.

    [12]Wang L, Wu C J. An adaptive version of ghost-cell immersed boundary method for incompressible flows with complex stationary and moving boundaries[J]. Sci. China Phys. Mech. Astron., 2010, 53(5):923-932.

    [13]Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[J]. J. Comput. Phys., 2003, 190:572-600.

    [14]Wu C J, Wang L. Numerical simulations of self-propelled swimming of 3D bionic fish school[J]. Sci. China Ser. E-Tech. Sci., 2009, 52(3): 658-669.

    0258-1825(2016)02-0204-10

    三維機(jī)器鳥自主飛行的渦動(dòng)力學(xué)分析與控制

    朱霖霖1,2, 關(guān) 暉3, 吳錘結(jié)1,2,*

    (1. 工業(yè)裝備結(jié)構(gòu)分析國(guó)家重點(diǎn)實(shí)驗(yàn)室, 遼寧 大連 116024; 2. 大連理工大學(xué), 遼寧 大連 116024; 3. 中國(guó)人民解放軍理工大學(xué), 江蘇 南京 211101)

    鳥類通過翅膀的拍動(dòng)和旋轉(zhuǎn)運(yùn)動(dòng)提供飛行的驅(qū)動(dòng)力和升力。本文研究了機(jī)器鳥翅膀的旋轉(zhuǎn)幅度和旋轉(zhuǎn)時(shí)間對(duì)飛行的狀態(tài)影響,發(fā)現(xiàn)適當(dāng)?shù)剡x取這兩個(gè)參數(shù)可以控制機(jī)器鳥在水平方向和豎直方向上的速度。本研究主要使用了兩個(gè)工具:在不可壓粘性流體中自主飛行的三維機(jī)器鳥和一個(gè)三維計(jì)算流體力學(xué)軟件包,后者包含了浸入邊界法(IBM)、體積函數(shù)法(VOF)、自適應(yīng)多重網(wǎng)格有限體積法和游動(dòng)與飛行的控制機(jī)制。

    自主飛行;鳥的飛行;數(shù)值模擬;三維;旋轉(zhuǎn)角度

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0007

    *Professor, School of Aeronautics and Astronautics; cjwudut@dlut.edu.cn

    format: Zhu L L, Guan H, Wu C J. Vorticity dynamics and control of self-propelled flying of a three-dimensional bird[J]. Acta Aerodynamica Sinica, 2016, 34(2): 204-213.

    10.7638/kqdlxxb-2016.0007. 朱霖霖,關(guān)暉,吳錘結(jié). 三維機(jī)器鳥自主飛行的渦動(dòng)力學(xué)分析與控制(英文)[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 2016, 34(2): 204-213.

    Received: 2015-12-15; Revised:2016-01-10

    Supported by the National Natural Science Foundation (No.11072053, 11372068)

    猜你喜歡
    大連理工大學(xué)遼寧翅膀
    遼寧之光
    新少年(2022年3期)2022-03-17 07:06:38
    讀遼寧 愛遼寧
    沒有翅膀也要飛向遠(yuǎn)方
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    『無腳鳥』枕著翅膀睡覺
    遼寧艦
    學(xué)與玩(2018年5期)2019-01-21 02:13:08
    偽隨機(jī)碼掩蔽的擴(kuò)頻信息隱藏
    01海上遼寧
    今日遼寧(2015年11期)2015-04-13 05:35:46
    因?yàn)槲覜]有折斷她的翅膀
    中泰化學(xué)與大連理工大學(xué)簽署戰(zhàn)略合作框架協(xié)議
    高清在线国产一区| 无人区码免费观看不卡| 久久久久久久午夜电影| 嫩草影院精品99| 香蕉国产在线看| 免费在线观看成人毛片| 中文字幕久久专区| 亚洲 欧美 日韩 在线 免费| 亚洲精品久久成人aⅴ小说| 99在线人妻在线中文字幕| 亚洲激情在线av| 国内揄拍国产精品人妻在线| 动漫黄色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 色综合亚洲欧美另类图片| 亚洲精品色激情综合| 99热只有精品国产| 久久亚洲精品不卡| 12—13女人毛片做爰片一| 亚洲精品在线美女| 身体一侧抽搐| 在线国产一区二区在线| 国产av一区在线观看免费| 亚洲熟妇熟女久久| 欧美黑人精品巨大| 亚洲男人天堂网一区| 母亲3免费完整高清在线观看| 免费看日本二区| 亚洲成av人片在线播放无| 国产高清视频在线播放一区| 午夜免费成人在线视频| 国产精品综合久久久久久久免费| 成人高潮视频无遮挡免费网站| 啦啦啦韩国在线观看视频| 久久久精品大字幕| 国产精品 欧美亚洲| 午夜久久久久精精品| 搡老熟女国产l中国老女人| 好男人电影高清在线观看| 天堂√8在线中文| 禁无遮挡网站| 久久午夜综合久久蜜桃| 久久久久久免费高清国产稀缺| 国产91精品成人一区二区三区| 母亲3免费完整高清在线观看| 亚洲色图 男人天堂 中文字幕| 一个人免费在线观看电影 | 一区二区三区国产精品乱码| 淫妇啪啪啪对白视频| 亚洲精品av麻豆狂野| 国产精品一区二区三区四区免费观看 | 99在线视频只有这里精品首页| 两个人看的免费小视频| 99久久久亚洲精品蜜臀av| 国产精品一区二区三区四区久久| 狂野欧美白嫩少妇大欣赏| 日日爽夜夜爽网站| 国产男靠女视频免费网站| 久久久久久大精品| 久久草成人影院| 欧美乱色亚洲激情| 亚洲美女黄片视频| 日韩av在线大香蕉| 91大片在线观看| 亚洲人成网站在线播放欧美日韩| 久久中文看片网| 一边摸一边抽搐一进一小说| 亚洲欧美日韩高清在线视频| 欧美三级亚洲精品| 久久精品综合一区二区三区| 精品无人区乱码1区二区| 丁香六月欧美| 天天躁夜夜躁狠狠躁躁| 国产精品自产拍在线观看55亚洲| 首页视频小说图片口味搜索| 亚洲av五月六月丁香网| 99久久精品热视频| 禁无遮挡网站| 在线国产一区二区在线| 国产又色又爽无遮挡免费看| 日本一二三区视频观看| 成人精品一区二区免费| www.自偷自拍.com| 久久这里只有精品中国| 欧美午夜高清在线| 久久婷婷人人爽人人干人人爱| 国产欧美日韩一区二区三| 男女做爰动态图高潮gif福利片| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人性av电影在线观看| 日本在线视频免费播放| 免费在线观看影片大全网站| 黄色视频,在线免费观看| av片东京热男人的天堂| 在线十欧美十亚洲十日本专区| 男人舔女人下体高潮全视频| 一本一本综合久久| 黑人操中国人逼视频| 国产三级在线视频| 亚洲精品美女久久av网站| 亚洲精品美女久久久久99蜜臀| 亚洲熟妇熟女久久| 俄罗斯特黄特色一大片| 长腿黑丝高跟| 91麻豆精品激情在线观看国产| 国产精品,欧美在线| 欧美一区二区国产精品久久精品 | 777久久人妻少妇嫩草av网站| 久久这里只有精品中国| 后天国语完整版免费观看| 国产激情欧美一区二区| 男女午夜视频在线观看| 在线观看午夜福利视频| 一区二区三区国产精品乱码| 国内揄拍国产精品人妻在线| 后天国语完整版免费观看| 亚洲欧洲精品一区二区精品久久久| 国产日本99.免费观看| 久久久水蜜桃国产精品网| 日本a在线网址| 一进一出抽搐动态| 校园春色视频在线观看| 亚洲人成网站高清观看| 欧美日韩国产亚洲二区| 成人国产综合亚洲| 亚洲av成人av| 欧美黄色淫秽网站| 一区二区三区激情视频| 黄色视频,在线免费观看| 91麻豆av在线| 国产午夜福利久久久久久| 女生性感内裤真人,穿戴方法视频| 最新在线观看一区二区三区| 午夜精品久久久久久毛片777| 日本三级黄在线观看| 欧美成人午夜精品| 国产精品自产拍在线观看55亚洲| 日本三级黄在线观看| 身体一侧抽搐| 香蕉丝袜av| 亚洲av电影不卡..在线观看| 亚洲国产高清在线一区二区三| 国产一区二区在线av高清观看| 两人在一起打扑克的视频| 看免费av毛片| 日韩有码中文字幕| 亚洲精品美女久久久久99蜜臀| 视频区欧美日本亚洲| 亚洲精品中文字幕一二三四区| 国产精华一区二区三区| 国模一区二区三区四区视频 | 一个人免费在线观看的高清视频| 1024视频免费在线观看| 色av中文字幕| 999精品在线视频| 欧美性猛交黑人性爽| 91麻豆av在线| 日韩免费av在线播放| 亚洲性夜色夜夜综合| 日本一区二区免费在线视频| 国产69精品久久久久777片 | 久久久久久亚洲精品国产蜜桃av| 国产单亲对白刺激| 老司机午夜福利在线观看视频| svipshipincom国产片| 国产成+人综合+亚洲专区| 黄色女人牲交| 操出白浆在线播放| 亚洲欧美精品综合一区二区三区| 久久久国产精品麻豆| 两人在一起打扑克的视频| 天天一区二区日本电影三级| 欧美又色又爽又黄视频| 丁香欧美五月| 久久天堂一区二区三区四区| 一进一出好大好爽视频| 极品教师在线免费播放| 国产精品一及| 午夜福利免费观看在线| 两个人视频免费观看高清| 欧美色欧美亚洲另类二区| 久久久久国产精品人妻aⅴ院| 18禁国产床啪视频网站| 亚洲一区高清亚洲精品| 色哟哟哟哟哟哟| 免费观看人在逋| 成人18禁高潮啪啪吃奶动态图| 精品电影一区二区在线| 亚洲精品粉嫩美女一区| 国产视频一区二区在线看| 国内精品久久久久精免费| 黑人操中国人逼视频| ponron亚洲| av国产免费在线观看| 天堂动漫精品| 国产精品久久久久久人妻精品电影| 一进一出抽搐动态| 亚洲一区二区三区不卡视频| 亚洲成人国产一区在线观看| 色综合欧美亚洲国产小说| 999精品在线视频| 亚洲欧美一区二区三区黑人| 99国产精品99久久久久| 亚洲片人在线观看| 精品熟女少妇八av免费久了| 精品不卡国产一区二区三区| 性色av乱码一区二区三区2| 亚洲av成人精品一区久久| 亚洲美女黄片视频| 欧美乱妇无乱码| 免费在线观看视频国产中文字幕亚洲| avwww免费| 制服诱惑二区| 欧美性长视频在线观看| 免费高清视频大片| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 两个人免费观看高清视频| 色综合婷婷激情| 精品国产亚洲在线| 美女免费视频网站| 俄罗斯特黄特色一大片| 精品欧美国产一区二区三| 欧美成人免费av一区二区三区| 黄色丝袜av网址大全| 超碰成人久久| 亚洲 国产 在线| videosex国产| 国产aⅴ精品一区二区三区波| 免费看a级黄色片| 18禁裸乳无遮挡免费网站照片| 91九色精品人成在线观看| av在线播放免费不卡| 欧美日韩乱码在线| 日韩有码中文字幕| 欧美国产日韩亚洲一区| 搞女人的毛片| ponron亚洲| 国产欧美日韩精品亚洲av| 俺也久久电影网| 50天的宝宝边吃奶边哭怎么回事| 97人妻精品一区二区三区麻豆| 国产av又大| 成人高潮视频无遮挡免费网站| 亚洲精品粉嫩美女一区| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一区av在线观看| 日本 欧美在线| xxx96com| 成人永久免费在线观看视频| 欧美三级亚洲精品| 国产精品,欧美在线| 日韩有码中文字幕| 国产一区二区三区视频了| 人成视频在线观看免费观看| 中文资源天堂在线| 亚洲av日韩精品久久久久久密| 国产片内射在线| 天天躁狠狠躁夜夜躁狠狠躁| bbb黄色大片| 熟妇人妻久久中文字幕3abv| 久久欧美精品欧美久久欧美| 国产精品av久久久久免费| 日本在线视频免费播放| 亚洲国产看品久久| ponron亚洲| а√天堂www在线а√下载| 国产精品一区二区免费欧美| 老汉色∧v一级毛片| 18禁黄网站禁片免费观看直播| 黄频高清免费视频| 香蕉国产在线看| 亚洲精品国产一区二区精华液| 少妇熟女aⅴ在线视频| 国产蜜桃级精品一区二区三区| 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 叶爱在线成人免费视频播放| 91在线观看av| 亚洲av电影在线进入| 国产在线精品亚洲第一网站| 久久精品国产清高在天天线| 欧美国产日韩亚洲一区| 欧美黑人精品巨大| 亚洲avbb在线观看| 搡老岳熟女国产| 好男人在线观看高清免费视频| 岛国在线观看网站| 黄频高清免费视频| 国产在线精品亚洲第一网站| 亚洲成人免费电影在线观看| 日韩欧美三级三区| 在线观看午夜福利视频| 久久热在线av| 特级一级黄色大片| 日韩精品免费视频一区二区三区| 一级片免费观看大全| 男女那种视频在线观看| 99久久精品热视频| 日韩欧美在线二视频| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器 | 一区二区三区国产精品乱码| 国产一区二区激情短视频| 制服人妻中文乱码| 他把我摸到了高潮在线观看| 国产片内射在线| 色噜噜av男人的天堂激情| 亚洲一区高清亚洲精品| 亚洲成人精品中文字幕电影| 美女 人体艺术 gogo| 99国产精品一区二区三区| 最好的美女福利视频网| 一二三四社区在线视频社区8| 一本一本综合久久| 免费一级毛片在线播放高清视频| 日本黄色视频三级网站网址| 国产精品一及| 亚洲成av人片免费观看| 九色国产91popny在线| 精品国产亚洲在线| 国产黄a三级三级三级人| 国产97色在线日韩免费| 国产亚洲精品第一综合不卡| 制服诱惑二区| 悠悠久久av| 毛片女人毛片| 人妻夜夜爽99麻豆av| 久久久久国内视频| 国产精品久久久久久久电影 | 国产精品免费视频内射| 国产又色又爽无遮挡免费看| 国产精品久久久久久人妻精品电影| 欧美大码av| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av香蕉五月| 丝袜人妻中文字幕| 亚洲在线自拍视频| 国产精品,欧美在线| 亚洲第一电影网av| 91麻豆精品激情在线观看国产| 色尼玛亚洲综合影院| 国产真人三级小视频在线观看| e午夜精品久久久久久久| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 天天躁夜夜躁狠狠躁躁| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影| www国产在线视频色| 免费看a级黄色片| 亚洲欧美激情综合另类| 午夜福利在线在线| 黄片大片在线免费观看| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 国产aⅴ精品一区二区三区波| 在线a可以看的网站| 色综合亚洲欧美另类图片| 成人手机av| 精品高清国产在线一区| 久久精品人妻少妇| 久久人妻福利社区极品人妻图片| e午夜精品久久久久久久| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 久久国产精品影院| a在线观看视频网站| 中文亚洲av片在线观看爽| 日韩高清综合在线| 夜夜看夜夜爽夜夜摸| 黄片大片在线免费观看| 麻豆久久精品国产亚洲av| 国产精华一区二区三区| 一进一出抽搐gif免费好疼| 亚洲欧美日韩高清专用| 国产爱豆传媒在线观看 | 2021天堂中文幕一二区在线观| 国产视频内射| 啦啦啦免费观看视频1| xxxwww97欧美| 国产精品亚洲一级av第二区| 欧美激情久久久久久爽电影| 日韩欧美精品v在线| 亚洲成av人片免费观看| 国产亚洲精品av在线| 草草在线视频免费看| 美女 人体艺术 gogo| 亚洲人成网站在线播放欧美日韩| 视频区欧美日本亚洲| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 一个人免费在线观看电影 | 国产久久久一区二区三区| 亚洲美女视频黄频| 黄色丝袜av网址大全| 国产欧美日韩一区二区三| 精品久久久久久久久久久久久| 久久婷婷人人爽人人干人人爱| 级片在线观看| 亚洲精品美女久久av网站| 国产1区2区3区精品| 中文字幕熟女人妻在线| 亚洲自偷自拍图片 自拍| 岛国在线免费视频观看| 黄色成人免费大全| 一本一本综合久久| 久久欧美精品欧美久久欧美| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 欧美中文综合在线视频| 国产精品,欧美在线| 高潮久久久久久久久久久不卡| 黄色视频不卡| 香蕉久久夜色| 国产精品久久久久久人妻精品电影| 在线观看66精品国产| 这个男人来自地球电影免费观看| 每晚都被弄得嗷嗷叫到高潮| av片东京热男人的天堂| 日韩精品免费视频一区二区三区| 久久热在线av| 久久久久久大精品| 少妇熟女aⅴ在线视频| 国产精品 国内视频| 精品不卡国产一区二区三区| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人不卡在线观看播放网| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 日本三级黄在线观看| www日本黄色视频网| 色av中文字幕| 美女高潮喷水抽搐中文字幕| 国产精品野战在线观看| 午夜亚洲福利在线播放| 国产精品99久久99久久久不卡| 桃红色精品国产亚洲av| 天天躁夜夜躁狠狠躁躁| 可以免费在线观看a视频的电影网站| 久久亚洲精品不卡| 中文字幕久久专区| 丝袜美腿诱惑在线| av免费在线观看网站| 黄片大片在线免费观看| 嫩草影视91久久| 成年女人毛片免费观看观看9| 久久久久久九九精品二区国产 | 久久久久久久久中文| 特级一级黄色大片| 久久久水蜜桃国产精品网| bbb黄色大片| 日本黄色视频三级网站网址| 18禁黄网站禁片午夜丰满| 亚洲真实伦在线观看| 国产精品美女特级片免费视频播放器 | 99久久精品国产亚洲精品| 精品一区二区三区视频在线观看免费| 一进一出抽搐动态| 五月伊人婷婷丁香| 欧美大码av| 亚洲熟妇中文字幕五十中出| 国产亚洲精品一区二区www| 成人午夜高清在线视频| 变态另类成人亚洲欧美熟女| 一个人观看的视频www高清免费观看 | 嫩草影院精品99| 久久这里只有精品19| 欧美丝袜亚洲另类 | 久久这里只有精品19| 不卡一级毛片| 在线看三级毛片| av欧美777| 久久久精品大字幕| 在线观看美女被高潮喷水网站 | 午夜精品一区二区三区免费看| 亚洲精品国产精品久久久不卡| 9191精品国产免费久久| 欧美黑人巨大hd| 妹子高潮喷水视频| 国产视频内射| 香蕉av资源在线| 精品久久久久久久人妻蜜臀av| 日本a在线网址| 国产亚洲精品久久久久久毛片| 在线观看日韩欧美| 精华霜和精华液先用哪个| 国产aⅴ精品一区二区三区波| 亚洲av日韩精品久久久久久密| 不卡av一区二区三区| 十八禁人妻一区二区| 97碰自拍视频| 国产精品 欧美亚洲| 日韩三级视频一区二区三区| 老司机深夜福利视频在线观看| www.www免费av| 欧美+亚洲+日韩+国产| 老司机福利观看| 国产高清视频在线观看网站| 一本大道久久a久久精品| 十八禁人妻一区二区| 此物有八面人人有两片| 日本在线视频免费播放| 视频区欧美日本亚洲| 少妇熟女aⅴ在线视频| 免费搜索国产男女视频| 国产精品国产高清国产av| 大型av网站在线播放| 国产免费男女视频| 亚洲精品中文字幕一二三四区| 不卡av一区二区三区| 免费搜索国产男女视频| 国内精品一区二区在线观看| av视频在线观看入口| 国产乱人伦免费视频| 精品少妇一区二区三区视频日本电影| 午夜a级毛片| 久久久久久久久免费视频了| 夜夜看夜夜爽夜夜摸| 欧美人与性动交α欧美精品济南到| 亚洲一区二区三区色噜噜| av福利片在线| 午夜免费成人在线视频| 免费在线观看黄色视频的| 97碰自拍视频| 夜夜夜夜夜久久久久| 人人妻人人澡欧美一区二区| 最新在线观看一区二区三区| 一级a爱片免费观看的视频| 欧美极品一区二区三区四区| 中文字幕人成人乱码亚洲影| 国产精品永久免费网站| 18禁国产床啪视频网站| 久久久精品大字幕| 亚洲中文av在线| 9191精品国产免费久久| 日韩欧美免费精品| 无限看片的www在线观看| 性色av乱码一区二区三区2| 成人高潮视频无遮挡免费网站| 日韩av在线大香蕉| 婷婷精品国产亚洲av| a级毛片在线看网站| 国产精品1区2区在线观看.| www.www免费av| 久久国产精品影院| 禁无遮挡网站| 久久久久久人人人人人| 无人区码免费观看不卡| 精品人妻1区二区| 国产v大片淫在线免费观看| 国产不卡一卡二| 级片在线观看| 国产欧美日韩精品亚洲av| 中文字幕久久专区| 亚洲av日韩精品久久久久久密| 韩国av一区二区三区四区| 国产高清有码在线观看视频 | 亚洲中文字幕一区二区三区有码在线看 | 十八禁网站免费在线| 可以在线观看毛片的网站| 91成年电影在线观看| 亚洲国产日韩欧美精品在线观看 | 一区二区三区高清视频在线| 欧美日韩福利视频一区二区| 久久久久久九九精品二区国产 | 日韩中文字幕欧美一区二区| 日本一二三区视频观看| 少妇粗大呻吟视频| 老司机午夜十八禁免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品欧美一区二区三区在线| 亚洲精品久久成人aⅴ小说| 国产成人啪精品午夜网站| 91麻豆精品激情在线观看国产| 男女那种视频在线观看| 长腿黑丝高跟| 人人妻人人看人人澡| 亚洲精品中文字幕一二三四区| 三级男女做爰猛烈吃奶摸视频| 国产av又大| 欧美日本亚洲视频在线播放| 精品午夜福利视频在线观看一区| 99久久精品热视频| 高潮久久久久久久久久久不卡| 麻豆国产97在线/欧美 | avwww免费| 国产又黄又爽又无遮挡在线| 久久久久久久久久黄片| 国产成人啪精品午夜网站| 男人舔女人下体高潮全视频| 色尼玛亚洲综合影院| 久久中文看片网| 精品一区二区三区av网在线观看| 久久久久久久午夜电影| 亚洲欧美日韩东京热| 久久九九热精品免费| 日韩欧美 国产精品| 三级毛片av免费| 亚洲欧美日韩无卡精品| 亚洲男人的天堂狠狠| 免费在线观看完整版高清| 国产99久久九九免费精品| 99在线人妻在线中文字幕| 国产精品野战在线观看| 最近视频中文字幕2019在线8| 亚洲av成人一区二区三| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色视频,在线免费观看| 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 欧美精品亚洲一区二区| 久久久久九九精品影院| 亚洲中文字幕一区二区三区有码在线看 |