• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Insensitive Energetic Compound 5,7-Diamino-4,6-dinitrobenzotriazol-3-ium-1-oxide: Synthesis, Characterization and Performances

    2016-05-08 13:18:55HUOHuanWANGBozhouZHAILianjieBIFuqiangDONGJunLIANPeng
    含能材料 2016年9期

    HUO Huan, WANG Bo-zhou, ZHAI Lian-jie, BI Fu-qiang, DONG-Jun, LIAN Peng

    (Xi′an Modern Chemistry Research Institute, Xi′an 710065)

    1 Introduction

    In the late decade, efforts to improve the safety and survivability of munitions led to the concept of insensitive munitions. Recently, 1,2,3-triazole becomes an interesting structural framework found in all kinds of energetic materials and medicament[1-4]. In addition,N-oxides have been widely studied in the field of energetic materials. The introduction of N-oxides to the energetic heterocyclic compounds has been paid much more attentions owing to their unique characteristics, such as high crystal density and low sensitivities[5-6]. For example, 5,7-diamino-4,6-dinitrobenzotriazol-3-ium-oxide was identified as a kind of the potential high-performance insensitive explosive and has some desirable traits, including a high density (1.76 g·cm-3), a low impact sensitivity (20 J), and a low friction sensitivity (>360 N). So it can be used as a main insensitive energetic component of explosives and propellants to substitute TATB, RDX or HMX[7].

    In the literature [7] , using 1,1,1-trimethylhydrazinium iodide (THMI) as a vicarious nucleophilic substitution (VNS) reagent, 5,7-diamino-4,6-dinitrobenzotriazol-3-ium-1-oxide(2) was synthesized from 4,6-dinitrobenzotriazol-3-ium-1-oxide (1) with a yield of 64% in dimethylsulfoxide. Because THMI decomposes easily, it requires being prepared from two expensive reagents unsymmetric dimethylhydrazine and iodomethane. So that VNS reaction process was firstly improved in this paper. Using cheaper NH2OH·HCl as a substitute for THMI, the title compound 2 was synthesized with a similar yield (63.2%) in water, which brought on a lower reaction cost. In addition, the cyclization mechanism of the picryl chloride and hydrazine hydrate was discussed. The detonation performances, thermal behaviors, electrostatic potential (ESP), and molecular orbital of the compound 2 were studied.

    2 Experimental

    2.1 Materials and Instruments

    Picryl chloride was prepared and purified by Xi'an Modern Chemistry Research Institute, and other reagents were purchased from the commercial sources.1H NMR and13C NMR were obtained in DMSO-d6on a Bruker AV500 NMR spectrometer. Infrared spectra were obtained from KBr pellets on a Nicolet NEXUS870 Infrared spectrometer in the range of 4000-400 cm-1. Elemental analyses (C, H and N) were performed on a VARI-El-3 elemental analyzer.

    2.2 Synthesis and Characterization

    According to the reference [7], using a cheaper VNS reagent NH2OH·HCl as a substitute for the expensive THMI, the title compound 2 was synthesized via cyclization and VNS with picryl chloride and hydrazine hydrate as the starting materials (Scheme 1). Total yield is 31.0%.

    Scheme 1 Synthetic route for the title compound

    2.2.1 Synthesis of Compound 1

    Hydrazine hydrate (0.75 mL, 15.46 mmol) and 80 mL 5% aqueous sodium hydrogen carbonate solution were mixed in a three-necked round-bottomed flask with a stirrer at 0 ℃. To the reaction mixture, picryl chloride (0.738 g, 2.98 mmol) was added in one portion. The solution was stirred for 20 min at 0 ℃ and then for 2 h at ambient temperature. After heating for 1 h at 60 ℃, activated charcoal (1 g) was added to the hot solution. It was filtered hot, cooled to 0 ℃ and acidified to pH 2 with conc. hydrochloric acid. Then the solvent was removed in vacuo and the residue was adequately dissolved with acetic ester. The solvent was filtered and the filtrate was concentrated in vacuum. The 0.4 g orange precipitate was obtained with a yield of 55.3% and a purity of 98.7% (HPLC). DSC (10 ℃· min-1):Tdec=201.3 ℃. IR(KBr,ν/ cm-1):3105(NH), 2654,2296, 2230, 2142, 1783, 1703, 1641, 1434(triazole), 1557, 1368(NO2),1542,1506, 1434, 1383, 1337, 1278, 1245, 1189, 1184,1176, 1156, 1055, 982, 934, 916, 895, 884, 827, 805, 769, 752, 734, 723, 704.1H NMR (DMSO-d6, 500 MHz): 9.103 (d,J=2 Hz, 1H, CH), 8.885 (d,J=2 Hz,1H, CH).13C NMR (DMSO-d6, 125 MHz): 144.983, 137.457, 136.783, 130.207, 117.539(CH), 115.188 (CH). Anal.Calcd. for C6H3N5O5(%): C 32.01, H 1.34, N 31.11; Found: C 32.12, H 1.48, N 31.06.

    2.2.2 Synthesis of compound 2

    Sodium hydrogen carbonate (1.11 g, 13.3 mmmol), compound 1 (0.6 g,2.66 mmol) and 40 mL water were mixed in a three-necked round-bottomed flask with a stirrer. To the reaction mixture, hydrochloric hydroxylamine (0.74 g, 10.64 mmol) was added in one portion. The solution was stirred for 5 h at 20 ℃. Then cooled to 0 ℃ and 12 mL 4 N sodium hydroxide solution was added dropwise. After stirring for 2 h at 0 ℃, the solution was acidified to pH 2 by 2 N hydrochloric acid. The orange precipitate was filtered and 0.43 g solid was obtained with a yield of 63.2% and a purity of 98.7% (HPLC). DSC: (10 ℃·min-1):Tdec=248.5 ℃. IR (KBr,ν/cm-1): 3414, 3363 (NH2), 3245(NH), 1611, 1445(triazole), 1544, 1384(NO2), 1290, 1258, 1235, 1194, 1165, 1105, 974, 883, 817, 773, 728, 691, 669;1H NMR(DMSO-d6, 500 MHz):9.784-10.358(m, 4H, NH2);13C NMR(DMSO-d6, 125 MHz):149.73, 145.686, 144.32, 132.00, 115.28, 111.37; Anal.Calcd. for C6H5N7O5(%): C 28.24, H 1.98, N 38.43; Found C 28.33, H 2.00, N 38.04.

    3 Results and Discussion

    3.1 Mechanism of Triazol-3-ium-1-oxide Cyclization

    One reasonable and possible mechanism is brought forward in Scheme 2. Firstly, the bond C—Cl on picryl chloride was activated by the adjacent nitro groups, and the C atom was attacked by hydrazine hydrate to form the intermediate Ⅰ. Then it is proposed that the intermediate Ⅱ was formed via base-promoted intramolecular amino-nitro nucleophilic addition with the elimination of a H2O molecular. This intermediate undergoes an electron shift to produce intermediate Ⅲ, followed by formation of the NN bond. Finally, the target compound 5,7-diamino-4,6-dinitrobenzotriazol-3-ium-oxide was obtained by acidified with the hydrochloric acid.

    Scheme 2 Mechanism of triazol-3-ium-1-oxide

    3.2 VNS Reaction

    THMI is an expensive VNS reagent and decomposes easily, so we look forward to find another VNS reagent to substitute THMI. We discussed the effect on reaction of the different VNS reagents, such as NH2OH·HCl, THMI and 3-amino-1,2,4-triazole(ATA). The result shows that using NH2OH·HCl as VNS reagent, the yield was 63.2%, and consistent with that of using THMI (64%). NH2OH·HCl is cheaper than THMI very much, so that the cost of synthesis could be greatly decreased. Furthermore, the effect of reaction time on yield was discussed, and the best reaction time at room temperature was 5 h. The results are listed in Table 1.

    Table 1 VNS reaction with different reagents

    VNSreagenttime/hyield/%purity1)/%NH2OH·HCl234.595.4NH2OH·HCl460.196.7NH2OH·HCl563.298.7NH2OH·HCl663.498.7THMI1264.095.4ATA12--

    Note: 1) the purity characterized by HPLC.

    3.3 Properties of Compounds 1 and 2

    The decomposition temperatures were obtained by the DSC, and the other performances were obtained by calculation, such as density and the enthalpy of formation were calculated by Gaussian 09 program[8], its detonation velocity and detonation pressure were calculated by VLW method[9]. It was found that the title compound 2 and its intermediate compound 1 had better performances, some main properties of the title compound 2 were obtained by calculation or test as follows: density is 1.76 g·cm-3, detonation velocity is 7396.7 m·s-1, enthalpy of formation is 4750 kJ·kg-1and its decomposition point is 248.5 ℃. Due to the presence of hydrogen bonds and the addition of two amino groups by VNS method, compared with compound 1, the title compound 2 exhibited a higher density and a better thermal stability, while the alternating amino and nitro groups should ensure stability and insensitivity. The physicochemical and detonation properties of compounds 1 and 2 were listed in Table 2.

    Table 2 Properties of compounds 1 and 2

    compoundnitrogencontent/%density/g·cm-3decompositiontemperature/℃detonationvelocity/m·s-1detonationpressure/GPaenthalpyofformation/kJ·kg-1131.111.73(1.691))201.37371.1(76221))24.0(23.71))5476238.431.76(1.781))248.57396.7(80221))24.4(26.21))4750

    Note: 1) reference [7], detonation parameters were calculated using the EXPLO5 6.01 code.

    3.4 Thermal Behaviors

    The DSC curve of compound 1 in Fig.1 indicated a melting point,Tmax, at 86.7 ℃, and one thermal decomposition peak at 201.3 ℃. The TG-DTG curve of compound 1 in Fig.2 showed two main mass loss stages. The first stage amounts to 7.33% in the temperature range of 64.9-90.6 ℃, it is mainly attributed to the part of crystal water. The second stage begins at 184.1 ℃ and ends at 214.37 ℃, accompanied with 24.17% mass loss, corresponding to the mass of residual triazol-3-ium-oxide, and 34.71% residue at 491.23 ℃. The result indicates that there are a few remains at the end of the decomposition.

    The DSC curve of compound 2 in Fig.3 exhibited one thermal decomposition peak at 248.5 ℃, according to the one obvious mass-loss stage in the TG-DTG curve in Fig.4, which can be confirmed by the mass-loss stage in the temperature range of 198.24-319.41 ℃ with mass-loss of 60.96%, and 15.28% residue at 447.71 ℃.The result indicates that there are a few remains at the end of the decomposition.

    Fig.1 DSC curve of compound 1

    Above-mentioned DSC results showed that the first decomposition temperatures of compounds 2 and 1 were 248.5 ℃ and 201.3 ℃, respectively. This fact that decomposition temperature of compound 2 was over 240 ℃, showed an excellent thermal stability and potential application for gas-generator or rocket propellants.

    Fig.2 TG-DTG curve of compound 1

    Fig.3 DSC curve of compound 2

    Fig.4 TG-DTG curve of compound 2

    3.5 Electrostatic Potential (ESP) and Molecular Orbital

    To obtainfurther understanding of the chemical and physical properties for target compound, electrostatic potential (ESP) and molecular orbital calculations were performed by the B3LYP/6-31++g (d, p) level of theory based on the optimized structure. Figure 5 shows the ESP for the 0.001 electron/bohr of the electron density evaluated at the B3LYP method. It has recently been found, and is extensively used, that the computed ESP is generally related to the impact sensitivity of the bulk energetic materials[10-13]. Basically a higher charge separation and larger and stronger positive potentials lead to especially higher sensitivity values. In Fig.5, it can be clearly seen that the positive ESP region of the title compound is smaller and also a lower charge separation; this is in good accord with the experimental result of compound 2 (IS=20 J, FS>360 N).

    Fig.5 Calculated electrostatic potential of the title compound( The red regions represent electron rich regions, the blue regions is electron extremely deficient regions. The 3D isosurface of electron density is shown between -0.04 hartree and +0.04 hartree)

    The highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) of compound 2 were shown in Fig.6. It can be seen that one animo group and the imino group mainly occupy the HOMO, whereas the nitro group and the other amino group occupy the LUMO. The results indicate that the group of —NH2make an important difference to some properties of the title compound. Since the gap energy (ΔE) of HOMO and LUMO is an important parameter to measure the stability of the energetic material, the highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELOMO) and their gaps (ΔE=ELOMO-EHOMO) were obtained as -0.00044, 0.01423 and 0.01467 Hartree, respectively. The acceptable ΔElikely explains the reasonable thermal stabilities.

    Fig.6 The highest occupied molecular orbital (HOMO, left) and the lowest unoccupied molecular orbital (LUMO, right) of the title compound

    4 Conclusions

    (1) Using cheap NH2OH·HCl as a substitute for expensive and instable THMI, 5,7-diamino-4,6-dinitrobenzotriazol-3-ium-1-oxide was synthesized via VNS reaction from 4,6-dinitrobenzotriazol-3-ium-1-oxide with a yield of 63.2%. Compared with the literature, the cost of VNS reaction was greatly decreased.

    (2) A possible mechanism of triazol-3-ium-1-oxide cyclization is presented.

    (3) The nitrogen content, density, decomposition temperature, detonation velocity, detonation pressure and enthalpy of formation of the title compound are 38.43%, 1.76 g·cm-3, 248.5 ℃, 7396.7 m·s-1, 24.4 GPa and 4750 kJ·kg-1, respectively.

    (4) The highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELOMO) and their gaps (ΔE=ELOMO-EHOMO) are -0.00044, 0.01423 and 0.01467 Hartree, respectively, revealing that 5,7-diamino-4,6-dinitrobenzotriazol-3-ium-1-oxide possess reasonable thermal stabilities.

    [1] Yan Z Y, Zhao Y B, Fan M J, et al. General synthesis of (1-substituted-1H-1,2,3-triazole-4-ylmethyl)-dialkylamines via a copper(I)- catalyzed three-component reaction in water[J].Tetrahedron, 2005, 61: 9331-9335.

    [2] SHl Hong-gang, Ll Sheng-hua, Ll Yu-chuan, et al.Synthesis of 1-amino-1,2,3-triazole[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2008, 16(6): 676-678.

    [3] DONG Hai-shan, The development and countermeasure of high energy density materials[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2004(Suppl.): 1-12.

    [4] HUO Huan, WANG Bo-zhou, ZHOU Cheng, et al. Synthesis and characterization of 4-amino-5-nitro-1,2,3-trazole[J].ChineseJournalofEnergeticMaterials(HannengCailiao),2008, 16(1): 49-52.

    [6] DippoldA A, Klap?tke T M. A Study of Dinitro-bis-1,2,4-triazole-1,1′-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides[J].JAmChemSoc, 2013, 135: 9931-9938.

    [8] FrischM J, Trucks G W, Schlegel H B, et al. GAUSSIAN 09[CP], Gaussian, Inc, Wallingford C, 2009.

    [9] WU Xiong, LONG Xin-ping, HE Bi, et al. The VLW equation of state for detonation products[J].ScienceinChina, 2008, 38(12):1129-1131.

    [10] FischerD, Klap?tke T M, Stierstorfer J. Synthesis and characterization of diaminobisfuroxane[J].EurJInorgChem, 2014, 34: 5808-5811.

    [11] Zhang J H, Shreeve J M. 3,3′-Dinitroamino-4,4′-azoxyfurazan and its derivatives: an assembly of diverse N—O building blocks for high-performance energetic materials[J].JAmChemSoc, 2014, 136: 4437-4445.

    [12] Klap?tkeT M, Nordheider A, Stierstorfer J. Synthesis and reactivity of an unexpected highly sensitive 1-carboxymethyl-3-diazonio-5-nitrimino-1,2,4-triazole[J].NewJChem, 2012, 36: 1463-1468.

    [13] Hammerl A, Klap?tke T M, N?th H, et al. Synthesis structure, molecular orbital and valence bond calculations for tetrazole azide, CHN7[J].Propellants,Explosives,Pyrotechnics, 2003, 28(4): 165-173.

    老熟女久久久| 搡老熟女国产l中国老女人| 亚洲精品国产色婷婷电影| e午夜精品久久久久久久| 欧美黑人欧美精品刺激| 999久久久精品免费观看国产| 日日摸夜夜添夜夜添小说| 久久久久久久久免费视频了| 夫妻午夜视频| 午夜成年电影在线免费观看| 亚洲情色 制服丝袜| 最近最新中文字幕大全电影3 | 国产精品久久久久久人妻精品电影| 一级,二级,三级黄色视频| 男人的好看免费观看在线视频 | 国产精华一区二区三区| 国产亚洲欧美精品永久| 色老头精品视频在线观看| 欧美+亚洲+日韩+国产| 亚洲精品一二三| 母亲3免费完整高清在线观看| 国产成人免费观看mmmm| 老司机深夜福利视频在线观看| 自线自在国产av| 国产一区二区三区综合在线观看| 99热国产这里只有精品6| 黄色怎么调成土黄色| 一边摸一边做爽爽视频免费| 亚洲视频免费观看视频| 青草久久国产| 黄色怎么调成土黄色| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 大香蕉久久成人网| 国产日韩一区二区三区精品不卡| 一区二区三区激情视频| 中文字幕人妻丝袜一区二区| 亚洲人成电影免费在线| xxx96com| 12—13女人毛片做爰片一| 国产不卡av网站在线观看| 狠狠婷婷综合久久久久久88av| av片东京热男人的天堂| 中文字幕精品免费在线观看视频| 精品国产亚洲在线| 久久精品aⅴ一区二区三区四区| 久久久久久久午夜电影 | 国产激情欧美一区二区| 女人被躁到高潮嗷嗷叫费观| 十八禁网站免费在线| 亚洲五月婷婷丁香| 99精品在免费线老司机午夜| 精品国产亚洲在线| 19禁男女啪啪无遮挡网站| 久久九九热精品免费| 欧美日韩亚洲国产一区二区在线观看 | 女性被躁到高潮视频| 午夜影院日韩av| 国产亚洲欧美在线一区二区| 午夜老司机福利片| 国产精品久久久久成人av| 黑人巨大精品欧美一区二区蜜桃| 国内毛片毛片毛片毛片毛片| 久久精品国产99精品国产亚洲性色 | 一夜夜www| 欧美一级毛片孕妇| 国产精品一区二区精品视频观看| 人妻一区二区av| 日韩人妻精品一区2区三区| av片东京热男人的天堂| 曰老女人黄片| 91麻豆精品激情在线观看国产 | 国产成人啪精品午夜网站| 女性被躁到高潮视频| 国产xxxxx性猛交| 久久99一区二区三区| 欧美成人免费av一区二区三区 | 露出奶头的视频| 成年人黄色毛片网站| 日本撒尿小便嘘嘘汇集6| 黄片大片在线免费观看| 国产欧美亚洲国产| 日本黄色日本黄色录像| 热99久久久久精品小说推荐| 欧美激情 高清一区二区三区| 精品久久久久久久毛片微露脸| 1024视频免费在线观看| x7x7x7水蜜桃| 午夜成年电影在线免费观看| 亚洲av成人一区二区三| 又紧又爽又黄一区二区| 国产精品影院久久| 国产一卡二卡三卡精品| 香蕉丝袜av| 欧美黄色片欧美黄色片| 麻豆国产av国片精品| 精品少妇久久久久久888优播| 妹子高潮喷水视频| 欧美日本中文国产一区发布| 国产极品粉嫩免费观看在线| 欧美国产精品va在线观看不卡| 搡老岳熟女国产| 夜夜爽天天搞| 亚洲 欧美一区二区三区| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人爽人人夜夜| x7x7x7水蜜桃| 亚洲午夜精品一区,二区,三区| 精品人妻在线不人妻| 免费看十八禁软件| 在线观看免费高清a一片| 嫩草影视91久久| 亚洲中文av在线| 制服诱惑二区| 91在线观看av| 91成人精品电影| 免费观看人在逋| 国产男女内射视频| 777久久人妻少妇嫩草av网站| 午夜福利一区二区在线看| 丝袜人妻中文字幕| 99国产精品99久久久久| 久久精品aⅴ一区二区三区四区| 视频在线观看一区二区三区| 黄色怎么调成土黄色| 国产深夜福利视频在线观看| 久久国产精品大桥未久av| 女人精品久久久久毛片| 建设人人有责人人尽责人人享有的| 天堂动漫精品| x7x7x7水蜜桃| 成年人午夜在线观看视频| 另类亚洲欧美激情| 热99re8久久精品国产| 国产亚洲精品一区二区www | av国产精品久久久久影院| 亚洲伊人色综图| 免费观看人在逋| 美女扒开内裤让男人捅视频| 国产精品综合久久久久久久免费 | 99国产极品粉嫩在线观看| 国产有黄有色有爽视频| 搡老乐熟女国产| 每晚都被弄得嗷嗷叫到高潮| 狠狠婷婷综合久久久久久88av| 亚洲avbb在线观看| 中文字幕制服av| 叶爱在线成人免费视频播放| 在线播放国产精品三级| av天堂在线播放| 亚洲精品中文字幕一二三四区| 日韩欧美在线二视频 | 最新在线观看一区二区三区| 在线观看免费视频日本深夜| 国产免费现黄频在线看| 老司机福利观看| 黑人巨大精品欧美一区二区mp4| 十八禁网站免费在线| 两人在一起打扑克的视频| 欧美精品亚洲一区二区| 亚洲av电影在线进入| 精品午夜福利视频在线观看一区| 黄网站色视频无遮挡免费观看| 国产一区二区激情短视频| 中文字幕色久视频| 亚洲五月色婷婷综合| 天堂√8在线中文| 十分钟在线观看高清视频www| 国产乱人伦免费视频| 十八禁网站免费在线| 最新在线观看一区二区三区| 国产成人欧美| 交换朋友夫妻互换小说| 真人做人爱边吃奶动态| 成年动漫av网址| 如日韩欧美国产精品一区二区三区| 亚洲成人手机| 国产精品国产av在线观看| 别揉我奶头~嗯~啊~动态视频| 好看av亚洲va欧美ⅴa在| 国产av一区二区精品久久| 99热国产这里只有精品6| 免费日韩欧美在线观看| 国产三级黄色录像| 国产男女内射视频| 国产男靠女视频免费网站| 亚洲国产欧美一区二区综合| 亚洲 欧美一区二区三区| 天天影视国产精品| 18禁黄网站禁片午夜丰满| 下体分泌物呈黄色| 19禁男女啪啪无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲精品久久久久久毛片 | a级毛片黄视频| 亚洲精品美女久久av网站| 99久久综合精品五月天人人| 亚洲国产欧美日韩在线播放| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人 | x7x7x7水蜜桃| 丰满饥渴人妻一区二区三| 国产av精品麻豆| 中文字幕最新亚洲高清| 日韩成人在线观看一区二区三区| 国产精品美女特级片免费视频播放器 | 久久人妻福利社区极品人妻图片| 亚洲人成电影观看| 亚洲av美国av| 国产av又大| 人妻丰满熟妇av一区二区三区 | av天堂在线播放| 免费在线观看完整版高清| 亚洲五月婷婷丁香| 精品少妇久久久久久888优播| 亚洲全国av大片| 高清视频免费观看一区二区| 亚洲aⅴ乱码一区二区在线播放 | 色在线成人网| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品sss在线观看 | 亚洲专区中文字幕在线| 免费在线观看完整版高清| 国产精华一区二区三区| 亚洲在线自拍视频| 女人被躁到高潮嗷嗷叫费观| 女人久久www免费人成看片| 18禁黄网站禁片午夜丰满| 色播在线永久视频| 免费看a级黄色片| 中文字幕人妻丝袜制服| 可以免费在线观看a视频的电影网站| 欧美国产精品va在线观看不卡| 亚洲欧美色中文字幕在线| 男女免费视频国产| 咕卡用的链子| 国产午夜精品久久久久久| 国产精品免费大片| 无遮挡黄片免费观看| 后天国语完整版免费观看| 在线十欧美十亚洲十日本专区| 精品人妻熟女毛片av久久网站| 十分钟在线观看高清视频www| 国产一区二区三区视频了| 久久精品国产亚洲av高清一级| 脱女人内裤的视频| 久久中文看片网| 亚洲精品乱久久久久久| 三上悠亚av全集在线观看| 老鸭窝网址在线观看| 欧美日韩国产mv在线观看视频| 人妻一区二区av| 成人三级做爰电影| 久久国产乱子伦精品免费另类| 欧美色视频一区免费| 欧美激情久久久久久爽电影 | 午夜福利欧美成人| 色精品久久人妻99蜜桃| 欧美日韩一级在线毛片| 99精品欧美一区二区三区四区| 51午夜福利影视在线观看| 日本wwww免费看| 美女国产高潮福利片在线看| 国产淫语在线视频| 亚洲五月天丁香| 精品一区二区三区av网在线观看| 精品国产亚洲在线| 91麻豆精品激情在线观看国产 | 欧美激情极品国产一区二区三区| 亚洲人成电影免费在线| 亚洲国产欧美网| 啦啦啦免费观看视频1| 亚洲aⅴ乱码一区二区在线播放 | 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 国产一区有黄有色的免费视频| 欧美精品人与动牲交sv欧美| 国产日韩一区二区三区精品不卡| 老汉色∧v一级毛片| 亚洲男人天堂网一区| 两性夫妻黄色片| 一本综合久久免费| videosex国产| 夜夜躁狠狠躁天天躁| 午夜福利一区二区在线看| 中文字幕色久视频| 极品少妇高潮喷水抽搐| 人人妻人人澡人人看| 国产在视频线精品| 午夜免费观看网址| 亚洲精品国产色婷婷电影| 国产高清视频在线播放一区| 女人久久www免费人成看片| xxx96com| 午夜福利,免费看| 欧洲精品卡2卡3卡4卡5卡区| 在线观看免费视频网站a站| 99久久精品国产亚洲精品| 999精品在线视频| 亚洲精品自拍成人| 国产精品免费视频内射| 国产精品久久久久久人妻精品电影| 一本综合久久免费| 国产精品一区二区在线观看99| 国产成人av激情在线播放| 日韩欧美一区二区三区在线观看 | 18禁观看日本| 国产欧美日韩综合在线一区二区| 欧美日韩亚洲高清精品| 99香蕉大伊视频| 一区二区三区激情视频| 91国产中文字幕| 97人妻天天添夜夜摸| 免费观看人在逋| netflix在线观看网站| 19禁男女啪啪无遮挡网站| 国产精品一区二区免费欧美| 高清视频免费观看一区二区| 久久热在线av| 午夜福利,免费看| 在线播放国产精品三级| av欧美777| 色综合欧美亚洲国产小说| 色在线成人网| 亚洲av熟女| 国产日韩一区二区三区精品不卡| 欧美老熟妇乱子伦牲交| 久久热在线av| 十八禁网站免费在线| 久久热在线av| 99re6热这里在线精品视频| 欧美大码av| 国产免费av片在线观看野外av| 欧美另类亚洲清纯唯美| av在线播放免费不卡| 婷婷丁香在线五月| 午夜福利视频在线观看免费| 久久久国产成人精品二区 | 丝袜美腿诱惑在线| av电影中文网址| 久久国产精品大桥未久av| 亚洲中文日韩欧美视频| 久久精品人人爽人人爽视色| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 两性午夜刺激爽爽歪歪视频在线观看 | 男女免费视频国产| 手机成人av网站| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看完整版高清| 欧美大码av| 91麻豆精品激情在线观看国产 | 建设人人有责人人尽责人人享有的| 视频在线观看一区二区三区| 天堂俺去俺来也www色官网| 99riav亚洲国产免费| 国产亚洲av高清不卡| 视频在线观看一区二区三区| 动漫黄色视频在线观看| 69精品国产乱码久久久| 日韩制服丝袜自拍偷拍| 欧美丝袜亚洲另类 | 男女之事视频高清在线观看| 国产在视频线精品| 高清黄色对白视频在线免费看| 高清欧美精品videossex| 欧美激情高清一区二区三区| 国产精品乱码一区二三区的特点 | 久久久久久久国产电影| 美女 人体艺术 gogo| 每晚都被弄得嗷嗷叫到高潮| 99久久国产精品久久久| 99国产极品粉嫩在线观看| 亚洲欧美激情综合另类| 亚洲国产精品sss在线观看 | 国产精品电影一区二区三区 | 老司机亚洲免费影院| 午夜亚洲福利在线播放| 亚洲午夜精品一区,二区,三区| 免费人成视频x8x8入口观看| 在线观看免费视频日本深夜| 后天国语完整版免费观看| 老司机靠b影院| 中文字幕人妻熟女乱码| av天堂在线播放| 亚洲免费av在线视频| 无遮挡黄片免费观看| 老司机午夜福利在线观看视频| 巨乳人妻的诱惑在线观看| av网站在线播放免费| 日韩精品免费视频一区二区三区| 黄色丝袜av网址大全| 国产不卡av网站在线观看| 久久热在线av| 久久香蕉国产精品| 午夜福利影视在线免费观看| 大型av网站在线播放| a级毛片黄视频| 亚洲五月天丁香| 欧美成人午夜精品| 国产成人影院久久av| 999久久久精品免费观看国产| 久9热在线精品视频| 亚洲 国产 在线| aaaaa片日本免费| 波多野结衣av一区二区av| 欧美成人免费av一区二区三区 | 首页视频小说图片口味搜索| 国产淫语在线视频| 丰满迷人的少妇在线观看| 老汉色av国产亚洲站长工具| 精品国产国语对白av| 狠狠婷婷综合久久久久久88av| 又黄又爽又免费观看的视频| a在线观看视频网站| 欧美亚洲日本最大视频资源| 亚洲欧美激情综合另类| 精品国产一区二区三区四区第35| 国产片内射在线| 99热只有精品国产| 男男h啪啪无遮挡| 国产精品自产拍在线观看55亚洲 | 久久久久国内视频| 12—13女人毛片做爰片一| 精品无人区乱码1区二区| 色在线成人网| 国内久久婷婷六月综合欲色啪| 亚洲第一青青草原| 国产1区2区3区精品| 精品国产一区二区三区久久久樱花| 欧美国产精品va在线观看不卡| 日韩人妻精品一区2区三区| 国产亚洲精品久久久久久毛片 | 免费少妇av软件| 夫妻午夜视频| 日本黄色日本黄色录像| 亚洲国产精品sss在线观看 | 精品少妇久久久久久888优播| 亚洲中文av在线| 国产亚洲精品一区二区www | 精品电影一区二区在线| 亚洲成a人片在线一区二区| 亚洲国产看品久久| 久久热在线av| 亚洲av电影在线进入| 老司机亚洲免费影院| 亚洲精品自拍成人| 日韩免费av在线播放| 首页视频小说图片口味搜索| 日韩欧美一区二区三区在线观看 | 亚洲视频免费观看视频| 久久国产亚洲av麻豆专区| 欧美激情高清一区二区三区| 精品少妇一区二区三区视频日本电影| 后天国语完整版免费观看| 久久精品国产a三级三级三级| 老司机午夜福利在线观看视频| 少妇被粗大的猛进出69影院| xxxhd国产人妻xxx| 日韩欧美免费精品| 少妇 在线观看| 中文字幕人妻熟女乱码| 天天影视国产精品| 欧美久久黑人一区二区| 视频区欧美日本亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 午夜影院日韩av| 黑人猛操日本美女一级片| 老汉色av国产亚洲站长工具| 欧美乱色亚洲激情| 在线观看午夜福利视频| 韩国精品一区二区三区| 亚洲国产中文字幕在线视频| 久久久水蜜桃国产精品网| 国产成+人综合+亚洲专区| 亚洲一区二区三区欧美精品| 久久久久久久国产电影| 成熟少妇高潮喷水视频| 中文字幕人妻丝袜一区二区| 国产在视频线精品| 一区二区三区精品91| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美精品永久| 精品人妻熟女毛片av久久网站| 咕卡用的链子| 久久久久国内视频| 亚洲伊人色综图| 日韩欧美在线二视频 | 国产精品乱码一区二三区的特点 | av超薄肉色丝袜交足视频| 欧美亚洲日本最大视频资源| 可以免费在线观看a视频的电影网站| 久久天堂一区二区三区四区| 中文字幕高清在线视频| 亚洲国产欧美一区二区综合| 18禁观看日本| 亚洲avbb在线观看| 久久香蕉国产精品| 手机成人av网站| 69精品国产乱码久久久| 精品国产一区二区三区四区第35| 怎么达到女性高潮| 18禁美女被吸乳视频| 精品国产超薄肉色丝袜足j| 日本vs欧美在线观看视频| av视频免费观看在线观看| 啦啦啦视频在线资源免费观看| 满18在线观看网站| 成人av一区二区三区在线看| 成熟少妇高潮喷水视频| 亚洲熟妇熟女久久| 美女国产高潮福利片在线看| 在线观看免费午夜福利视频| 久久狼人影院| 窝窝影院91人妻| 日本a在线网址| 亚洲精品在线美女| 久久草成人影院| 99re6热这里在线精品视频| 老司机深夜福利视频在线观看| 国产精品偷伦视频观看了| 国产野战对白在线观看| 国产精品一区二区免费欧美| 久久人妻熟女aⅴ| 在线观看www视频免费| 亚洲免费av在线视频| 一进一出好大好爽视频| 9191精品国产免费久久| 18禁裸乳无遮挡免费网站照片 | 99热国产这里只有精品6| 国产精品香港三级国产av潘金莲| 啦啦啦视频在线资源免费观看| 交换朋友夫妻互换小说| 成人国产一区最新在线观看| 久久久国产一区二区| 岛国毛片在线播放| 777久久人妻少妇嫩草av网站| 18禁黄网站禁片午夜丰满| 两个人免费观看高清视频| 丝袜美足系列| 十八禁人妻一区二区| 亚洲少妇的诱惑av| 国产精品一区二区在线不卡| 精品国产乱码久久久久久男人| 亚洲中文字幕日韩| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 久久ye,这里只有精品| 亚洲男人天堂网一区| 窝窝影院91人妻| 丝袜美腿诱惑在线| 亚洲午夜精品一区,二区,三区| 国产精品成人在线| 一级a爱片免费观看的视频| 国产激情欧美一区二区| 国产单亲对白刺激| 亚洲美女黄片视频| 三级毛片av免费| 精品熟女少妇八av免费久了| 欧美+亚洲+日韩+国产| 精品欧美一区二区三区在线| 国产一卡二卡三卡精品| 久久 成人 亚洲| 叶爱在线成人免费视频播放| 亚洲av成人一区二区三| 日本a在线网址| 亚洲专区国产一区二区| 大香蕉久久成人网| 嫩草影视91久久| 婷婷丁香在线五月| 亚洲第一av免费看| 最近最新中文字幕大全电影3 | 久久中文看片网| 黄色怎么调成土黄色| 国产成人精品在线电影| 亚洲中文日韩欧美视频| 欧美日韩乱码在线| 色婷婷久久久亚洲欧美| 久久精品成人免费网站| 欧美日韩亚洲高清精品| 日韩一卡2卡3卡4卡2021年| 搡老岳熟女国产| 国产精品 欧美亚洲| 黄片小视频在线播放| 91精品国产国语对白视频| 亚洲性夜色夜夜综合| 久久精品亚洲熟妇少妇任你| 亚洲精品中文字幕一二三四区| 老司机亚洲免费影院| 欧美精品人与动牲交sv欧美| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 国产深夜福利视频在线观看| 国产精品美女特级片免费视频播放器 | 国产99白浆流出| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 夜夜夜夜夜久久久久| 一级a爱片免费观看的视频| 男女高潮啪啪啪动态图| 亚洲av成人av| 国产亚洲精品一区二区www | 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 不卡一级毛片| 亚洲成a人片在线一区二区| 人妻 亚洲 视频| 亚洲欧美日韩高清在线视频| 老司机影院毛片| 手机成人av网站| 亚洲熟女精品中文字幕| 色在线成人网|