• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Density Functional Theory Study on the Structures and Thermochemical Properties of Azo-bridged Azoles

    2016-05-08 13:27:25LAIWeipengLIANPengLIUYingzheYUTaoLUJianWANGBozhouGEZhongxue
    含能材料 2016年9期

    LAI Wei-peng, LIAN Peng, LIU Ying-zhe, YU Tao, LU Jian, WANG Bo-zhou, GE Zhong-xue

    (Xi′an Modern Chemistry Research Institute, Xi′an 710065, China)

    1 Introduction

    Due to the high nitrogen contents and large positive enthalpies of formation, azoles and their derivatives are an important and interesting topic in the field of study of high energetic materials, and are considered as potential propellants and explosives. Huynh[1]synthesized one ditetrazole derivative from 3,6-diazido-1,2,4,5-tetrazine. Abe[2]successfully synthesized 5-azido-(1-dialkylimino)-tetrazole. 1,5-Diamino-4-methyl-tetrazolium dinitramide was synthesized by a metathetical reaction of the corresponding iodide and silver dinitramide[3]. Some derivatives of 4, 4′-bis(5-nitro-1,2,3-2H-triazole) were designed, synthesized, and characterized by He[4]. Comparing to the most of current-used propellants, they produced less CO and CO2, when combustion, which meant more environmental-friendly and might decrease the gun barrel and the rocket nozzle erosion. Among the derivates of azoles, the azo-bridged azoles had been extensively studied recent years, because the azo group could increase the enthalpy of formation remarkably, as an important factor of detonation properties[5-9]. When the azo group attached to the nitrogen atoms of azoles, a long chain of nitrogen would be formed. For example 1,1′-azobis(1,2,3-triazole)[10]and 1,1′-azobis(1,2,3,4-tetrazole)[11], which have been reported and present excellent property, contained nitrogen chains consisted of 8 and 10 nitrogen atoms respectively.

    The experimental experiences indicated that the nitrogen content, position of nitrogen atoms and decomposition mode of azo-bridged azoles could affect their thermochemical properties remarkably. However, to our knowledge, the thermochemical properties of azo-bridged azoles had never been well-studied by theoretical calculation. To uncover the relationships between their structures and thermochemical properties, we examined the structures and thermochemistries of 15 azo-bridged azoles using DFT method at B3LYP/6-311+G(d,p) level in this work.

    2 Computational Methods

    The structural formulas of azo-bridged azoles are illustrated in Scheme 1.

    All calculations were performed with the Gaussian 09 suite[12]. B3LYP density functional theoretical method with 6-311+G(d,p) basis set was selected for the geometry optimization and frequency calculation because it provides greater account of electron correlation.

    For the isodesmic reaction, the enthalpy of formation at 298 K was obtained from the following equation

    ΔrH=∑ΔHf,p-∑ΔHf,R

    (1)

    Where ΔHf,pand ΔHf,Rare the enthalpies of formation for products and reactants at 298 K.

    (2)

    Here ΔE0stands for the change in total energy between products and reactants; ΔZPEis the difference between the zero-point energies of products and reactants at 0 K; ΔHTis the thermal corrections from 0 to 298 K. For the isodesmic reaction, Δnis 0 and Δ(pV) equals zero.

    The accurately-determinated enthalpy of formation data from 1,3,5-trinitrobenzene, 1,1′-azobis(2,4,6-trinitrobenzene), pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, and 1H-tetrazole were used to construct isodesmic reaction for 15 compounds (see Scheme 2).

    Scheme 1 Structural formulas of the azo-bridged azoles

    Scheme 2 Isodesmic reaction for calculation of the standard enthalpy of formation

    3 Results and Discussion

    3.1 Molecular Structures

    As the compounds have similar structures excluding the azole rings, our study was focused on them.

    The bond lengths, bond angles, and dihedral angles of azoles obtained from the calculation were listed in Table 1. It could be seen from Table 1 that most bonds (C—C, C—N, and N—N) in the azoles had close bond lengths (1.30-1.40 ?), which was between the length of typical single bond (1.46 ?) and typical double bond (1.22 ?). At the same time, the dihedral angles data indicated that all of the azoles were planar. It could be concluded that both the nitrogen and carbon atoms in the azoles weresp2hybrid and the azole rings acquired planar aromatic structure as expected.

    It could be seen that the azo group also had effect on the structure of azoles, especially the atom connected to it. All the bonds consisted of and opposite this atom were elongated. And if the atom is nitrogen, the effect would be enlarged on bonds consisted of same kind atoms (i.e. C—C or N—N bond).

    3.2 Enthalpies of Formation

    The enthalpies of formation of the 15 compounds were investigated using the isodesmic reaction, which shown in Scheme 2, and the results were listed in Table 2. Enthalpies of formation of reference species acquired from same reactions were shown in Table 3.

    It could be observed that the enthalpies of formation of the azo-bridged azoles steadily increased with the increase of nitrogen contents, although some with higher nitrogen contents only had slight higher enthalpy of formation than the lower nitrogen content one.

    Table 1 Bond lengths ( ?), bond angles (°), and dihedral angles (°) of azoles in the 15 azo-bridged azoles calculated at B3LYP/6-311+G (d,p) level

    N(1)—C(2) 1.39N(1)—C(5) 1.39C(2)—C(3) 1.37C(3)—C(4) 1.43C(4)—C(5) 1.37N(1)—C(2)—C(3) 107.47C(2)—C(3)—C(4) 107.48C(3)—C(4)—C(5) 108.24C(4)—C(5)—N(1) 106.80C(5)—N(1)—C(2) 110.02N(1)—C(2)—C(3)—C(4) 0.00N(1)—C(2) 1.38N(1)—C(5) 1.37C(2)—C(3) 1.39C(3)—C(4) 1.41C(4)—C(5) 1.39N(1)—C(2)—C(3) 107.60C(2)—C(3)—C(4) 107.30C(3)—C(4)—C(5) 107.40C(4)—C(5)—N(1) 108.24C(5)—N(1)—C(2) 109.46N(1)—C(2)—C(3)—C(4) 0.00N(1)—C(2) 1.37N(1)—C(5) 1.38C(2)—C(3) 1.39C(3)—C(4) 1.43C(4)—C(5) 1.37N(1)—C(2)—C(3) 107.09C(2)—C(3)—C(4) 107.46C(3)—C(4)—C(5) 107.37C(4)—C(5)—N(1) 107.60C(5)—N(1)—C(2) 110.49N(1)—C(2)—C(3)—C(4) 0.00N(1)—N(2) 1.35N(1)—C(5) 1.37N(2)—C(3) 1.32C(3)—C(4) 1.42C(4)—C(5) 1.37N(1)—N(2)—C(3) 103.72N(2)—C(3)—C(4) 112.48C(3)—C(4)—C(5) 104.60C(4)—C(5)—N(1) 105.99C(5)—N(1)—N(2) 113.22N(1)—N(2)—C(3)—C(4) 0.00N(1)—N(2) 1.34N(1)—C(5) 1.34N(2)—C(3) 1.36C(3)—C(4) 1.38C(4)—C(5) 1.42N(1)—N(2)—C(3) 113.82N(2)—C(3)—C(4) 105.89C(3)—C(4)—C(5) 104.66C(4)—C(5)—N(1) 111.69C(5)—N(1)—N(2) 103.94N(1)—N(2)—C(3)—C(4) 0.00N(1)—N(2) 1.36N(1)—C(5) 1.35N(2)—C(3) 1.33C(3)—C(4) 1.42C(4)—C(5) 1.39N(1)—N(2)—C(3) 104.29N(2)—C(3)—C(4) 111.66C(3)—C(4)—C(5) 104.73C(4)—C(5)—N(1) 105.52C(5)—N(1)—N(2) 113.81N(1)—N(2)—C(3)—C(4) 0.00N(1)—C(2) 1.39N(1)—C(5) 1.39C(2)—N(3) 1.30N(3)—C(4) 1.39C(4)—C(5) 1.36N(1)—C(2)—N(3) 110.55C(2)—N(3)—C(4) 106.39N(3)—C(4)—C(5) 110.72C(4)—C(5)—N(1) 105.00C(5)—N(1)—C(2) 107.34N(1)—C(2)—N(3)—C(4) 0.00N(1)—C(2) 1.38N(1)—C(5) 1.37C(2)—N(3) 1.31N(3)—C(4) 1.38C(4)—C(5) 1.38N(1)—C(2)—N(3) 111.98C(2)—N(3)—C(4) 105.29N(3)—C(4)—C(5) 110.46C(4)—C(5)—N(1) 105.17C(5)—N(1)—C(2) 107.11N(1)—C(2)—N(3)—C(4) 0.00N(1)—C(2) 1.37N(1)—C(5) 1.37C(2)—N(3) 1.32N(3)—C(4) 1.36C(4)—C(5) 1.38N(1)—C(2)—N(3) 111.44C(2)—N(3)—C(4) 105.39N(3)—C(4)—C(5) 110.68C(4)—C(5)—N(1) 105.45C(5)—N(1)—C(2) 107.04N(1)—C(2)—N(3)—C(4) 0.00N(1)—N(2) 1.37N(1)—C(5) 1.37N(2)—N(3) 1.29N(3)—C(4) 1.38C(4)—C(5) 1.37N(1)—N(2)—N(3) 106.73N(2)—N(3)—C(4) 109.65N(3)—C(4)—C(5) 109.20C(4)—C(5)—N(1) 103.06C(5)—N(1)—N(2) 111.35N(1)—N(2)—N(3)—C(4) 0.00N(1)—N(2) 1.29N(1)—C(5) 1.37N(2)—N(3) 1.36N(3)—C(4) 1.35C(4)—C(5) 1.39N(1)—N(2)—N(3) 107.01N(2)—N(3)—C(4) 111.81N(3)—C(4)—C(5) 103.20C(4)—C(5)—N(1) 108.71C(5)—N(1)—N(2) 109.27N(1)—N(2)—N(3)—C(4) 0.00N(1)—N(2) 1.36N(1)—C(5) 1.37N(2)—C(3) 1.31C(3)—N(4) 1.37N(4)—C(5) 1.31N(1)—N(2)—C(3) 101.98N(2)—C(3)—N(4) 115.26C(3)—N(4)—C(5) 103.52N(4)—C(5)—N(1) 108.99C(5)—N(1)—N(2) 110.25N(1)—N(2)—C(3)—N(4) 0.00N(1)—N(2) 1.36N(1)—C(5) 1.32N(2)—C(3) 1.32C(3)—N(4) 1.37N(4)—C(5) 1.36N(1)—N(2)—C(3) 101.53N(2)—C(3)—N(4) 115.01C(3)—N(4)—C(5) 102.83N(4)—C(5)—N(1) 109.72C(5)—N(1)—N(2) 110.92N(1)—N(2)—C(3)—N(4) 0.00N(1)—N(2) 1.37N(1)—C(5) 1.36N(2)—N(3) 1.28N(3)—N(4) 1.38N(4)—C(5) 1.30N(1)—N(2)—N(3) 105.42N(2)—N(3)—N(4) 112.04N(3)—N(4)—C(5) 105.76N(4)—C(5)—N(1) 108.38C(5)—N(1)—N(2) 108.40N(1)—N(2)—N(3)—N(4) 0.00N(1)—N(2) 1.33N(1)—C(5) 1.35N(2)—N(3) 1.30N(3)—N(4) 1.35N(4)—C(5) 1.32N(1)—N(2)—N(3) 106.05N(2)—N(3)—N(4) 111.40N(3)—N(4)—C(5) 105.80N(4)—C(5)—N(1) 108.04C(5)—N(1)—N(2) 108.72N(1)—N(2)—N(3)—N(4) 0.00

    Table 2 Enthalpies of reaction calculated by the B3LYP/6-311+G(d,p) theoretical method, and enthalpies of formation calculated using the isodesmic reaction

    kJ·mol-1

    Table 3 Enthalpies of formation for the reference species in the isodesmic reactions

    compoundΔfHΘ298/kJ·mol-1pyrrole108.4[13]pyrazole179.6[14]imidazole133.1[15]1,2,3-triazole1)266.7[16]1,2,4-triazole193.0[14]1H-tetrazole327.0[17]1,3,5-trinitrobezene-37.7[18]1,2-bis(2,4,6-trinitrophenyl)diazene289.5[19]

    Note: 1) represents the value of enthalpy of formation for 1,2,3-triazole is calculated by quantum chemistry method.

    As to the azoles with same number of nitrogen atoms, the enthalpies of formation decreased as the distance from azo group to the nitrogen atoms in azole rings increased. The increase of the distance between nitrogen atoms in azole rings had similar effect. Moreover, the effect from the latter was more prominent than the former. However, TM3 was an exception. Its enthalpy of formation was higher than TM2, and the degree of the conjugation might act as an important role (see Fig.1 and Table 1). TM2 had greater conjugation, and then better stability, so its enthalpy of formation was lower than TM3.

    a. TM2 b. TM3

    Fig.1 Optimized structures of TM2 and TM3 by B3LYP/6-311+G(d,p) theoretical method

    If the 15 azo-bridged azoles were arranged in an order of the nitrogen atoms they contented and then the position connected to the azo group (from 1 to 5), a scatter diagram of enthalpies of formation against the series could be obtained (see Fig.2). It could be observed from the diagram that enthalpies of formation of TM1, TM4, TM10, and TM14 were higher than those of the compounds with same nitrogen content, and there was a good linear relationship. Of the four compounds, all of their nitrogen atoms connected each other to form a continuous nitrogen chain consisted of 4, 6, 8 and 10 nitrogen atoms respectively. So according to above principles, we could guess that 1,1′-azobis (pentazole) might have the largest enthalpy of formation among the azo-bridged azoles.

    Fig.2 Enthalpies of formation of the azo-brideged azoles

    3.3 Entropies and Specific Heat Capacities

    Entropies (SΘ) and constant pressure specific heat capacity (cp) forT=300-1500 K of 15 compounds were also calculated using B3LYP/6-311+G(d,p) theoretical method, and the results were shown in Table 4. It could be concluded that there was no correlation between the entropies with the nitrogen content, and all of the compounds had close values of 395.36-411.39 J·mol-1·K-1.

    Under the calculated temperature, the constant pressure specific heat capacity of the azo-bridged azoles with same nitrogen content were nearly a constant. So four azo-bridged azoles (TM1, TM4, TM10, and TM14) were chosen to represent the ones contented 4, 6, 8 and 10 nitrogen atoms respectively for studying the relationship between the constant pressure specific heat capacity, nitrogen content and temperature. From the obtained scatter diagram (Fig.3), it could be seen that the specific heat capacity decreased while the nitrogen content increased, and the tendency was obvious as temperature rose. According to this principle, it could be drawn that 1,1′-azobis (pentazole) might have the lowest value of specific heat capacity among the azo-bridged azoles.

    Table 4 Symmetry point group, entropy and specific heat capacity for the 15 compounds from B3LYP/6-311+G(d,p) calculations J·mol-1·K-1

    Fig.3 Thecpof four typical compounds with 1 to 4 nitrogen atoms in the heterocycle as a function of temperature

    4 Conclusions

    (1) The optimized structures and thermochemical properties of 15 azo-bridged azoles were theoretically obtained via a density functional theory method.

    (2) All the nitrogen and carbon atoms of azoles weresp2hybrid, and all of the heterocycles were planar aromatic rings.

    (3) The enthalpies of formation increased uniformly with the numbers of nitrogen atoms.

    (4) For the compounds with same number of nitrogen atoms, the enthalpies of formation decreased uniformly with increasing the distance from azo group to the nitrogen atoms in rings and the distance between the nitrogen atoms in rings.

    (5) The constant pressure specific heat capacity at different temperatures are inversely proportional to the nitrogen content (the number of nitrogen atom on the heterocyclic ring).

    [1] Huynh M H V, Hiskey M A, Chavez D E, et al. Synthesis characterization and energetic properties of diazido heteroaromatic high-nitrogen C—N compound[J].JAmChemSoc, 2005, 127(36): 12537-12543.

    [2] Abe T, Tao G H, Joo Y H, et al. Activation of the CF bond: transformation of CF3NN- into 5-azidotetrazoles[J].AngewChem. 2008, 120(37): 7195-7198.

    [3] Klap?tke T M, Mayer P, Schulz A, et al. 1,5-Diamino-4-methyltetrazolium dinitramide[J].JAmChemSoc, 2005, 127(7): 2032-2033.

    [4] He C L, Shreeve J M. Energetic materials with promising properties: synthesis and characterization of 4,4′-bis(5-nitro-1,2,3-2H-triazole) derivatives[J].AngewChemIntEd, 2015, 54(21): 6260-6264.

    [5] Chavez D E, Hiskey M A, Gilardi R D. 3,3′-Azobis(6-amino-1,2,4,5-tetrazine): a novel high-nitrogen energetic material[J].AngewChem, 2000, 112(10): 1861-1863.

    [6] Huynh M H V, Hiskey M A, Hartline E L, et al. Polyazido high-nitrogen compounds: hydrazo- and azo-1,3,5-triazine[J].AngewChem, 2004, 116(37): 5032-5036.

    [7] Hammerl A, Klap?tke T M, N?th H, et al. [N(2)H5]2+[N(4)C—NN—CN(4)]2-: A new high-nitrogen high-energetic material[J].InorgChem, 2001, 40(14): 3570-3575.

    [8] Martin B K, Norbert E, Helmut S, et al. Gas generating mixture containing copper diammine dinitrate: US5663524[P], 1997.

    [9] Hammerl A, Hiskey M A, Holl G, et al. Azidoformamidinium and guanidinium 5,5′-azotetrazolate salts[J].ChemMater, 2005, 17(14): 3784-3793.

    [10] Li Y C, Qi C, Li S H, et al. 1,1′-Azobis-1,2,3-triazole: a high-nitrogen compound with stable N8 structure and photochromism[J].JAmChemSoc, 2010, 132(35): 12172-12173.

    [11] Klap?tke T M, Piercey D G. 1,1′-Azobis(tetrazole): a highly energetic nitrogen-rich compound with a N10 Chain[J].InorgChem, 2011, 50(7): 2732-2734.

    [12] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP], Gaussian Inc, Wallingford CT, 2009.

    [13] Scott D W, Berg W T, Hossenlopp I A, et al. Pyrrole: chemical thermodynamic properties[J].JPhysChem, 1967, 71(7): 2263-2270.

    [14] Jimenez P, Roux M V, Turrion C. Thermochemical properties of N-heterocyclic compounds I enthalpies of combustion vapour pressures and enthalpies of sublimation and enthalpies of formation of pyrazole imidazole indazole and benzimidazole[J].JChemThermodyn, 1987, 19(9): 985-992.

    [15] Bedford A F, Edmondson P B, Mortimer C T. Heats of formation and bond energies part VI n-butylisobutyraldimine n-butylisobutylamine pyrazole and imidazole[J].JChemSoc, 1962, 87: 2927-2931.

    [16] Gabriel S, Eric E M, Joseph W B. Quantum chemical study of the structure and thermochemistry of the five-membered nitrogen-containing heterocycles and their anions and radicals[J].JPhysChemA, 2006, 110(51): 13979-13988.

    [17] Kabo G J, Kozyro A A, Krasulin A P, et al. Thermodynamic properties and tautomerism of tetrazole[J].JChemThermodyn, 1993, 25(4): 485-493.

    [18] Stull D R, Westrum E F, Sinke G C. The chemical thermodynamics of organic compounds[M]. New York: John Wiley & Sons Inc. 1969: 807-810.

    [19] Bathelt H, Volk F, Weindel M. The ICT-database of thermochemical values 4th ed[M]. 1997.

    免费大片黄手机在线观看| 日本色播在线视频| 亚洲成人一二三区av| 我要看日韩黄色一级片| 亚洲av综合色区一区| 亚洲精品第二区| 亚洲综合精品二区| 成人18禁高潮啪啪吃奶动态图 | 少妇人妻 视频| 一级a做视频免费观看| 91精品国产国语对白视频| 亚洲欧美一区二区三区国产| 久热久热在线精品观看| 亚洲av不卡在线观看| 国产欧美日韩一区二区三区在线 | 高清av免费在线| 久久精品国产亚洲av涩爱| 纵有疾风起免费观看全集完整版| 色婷婷av一区二区三区视频| 高清不卡的av网站| 美女视频免费永久观看网站| 人妻一区二区av| 亚洲av中文av极速乱| 大码成人一级视频| 免费观看的影片在线观看| av黄色大香蕉| 久久久精品免费免费高清| 午夜精品国产一区二区电影| xxx大片免费视频| 99热国产这里只有精品6| 久久精品久久久久久噜噜老黄| 免费播放大片免费观看视频在线观看| 又大又黄又爽视频免费| 一本—道久久a久久精品蜜桃钙片| 丰满人妻一区二区三区视频av| 国产精品秋霞免费鲁丝片| 色婷婷av一区二区三区视频| 国产男女内射视频| 在线观看美女被高潮喷水网站| 一二三四中文在线观看免费高清| 91精品伊人久久大香线蕉| 最后的刺客免费高清国语| 一区二区三区乱码不卡18| 亚洲四区av| 国产无遮挡羞羞视频在线观看| 内地一区二区视频在线| 国产色婷婷99| 尾随美女入室| .国产精品久久| 国产精品一区二区性色av| 欧美bdsm另类| 少妇人妻 视频| 国产免费视频播放在线视频| 免费黄网站久久成人精品| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 男男h啪啪无遮挡| 国产欧美日韩一区二区三区在线 | 国产精品久久久久久久久免| 免费看光身美女| 国产一区二区三区av在线| 中国国产av一级| 日韩 亚洲 欧美在线| 亚洲丝袜综合中文字幕| 在线观看av片永久免费下载| 亚洲欧洲日产国产| 国产美女午夜福利| 欧美高清成人免费视频www| 高清黄色对白视频在线免费看 | 亚洲aⅴ乱码一区二区在线播放| 99久久中文字幕三级久久日本| 2022亚洲国产成人精品| 亚洲熟女精品中文字幕| 久久99热这里只有精品18| 一级毛片 在线播放| 国产精品国产三级国产av玫瑰| 日韩三级伦理在线观看| 在线观看三级黄色| 久久 成人 亚洲| 51国产日韩欧美| 国产亚洲av片在线观看秒播厂| 成人午夜精彩视频在线观看| 看免费成人av毛片| 在线看a的网站| 男女免费视频国产| 如何舔出高潮| av在线app专区| 80岁老熟妇乱子伦牲交| 久久鲁丝午夜福利片| 国产熟女欧美一区二区| 亚洲精品日韩在线中文字幕| 国内揄拍国产精品人妻在线| 夫妻午夜视频| 一级毛片我不卡| 91在线精品国自产拍蜜月| 又粗又硬又长又爽又黄的视频| 色网站视频免费| 精品亚洲成a人片在线观看 | 亚洲第一区二区三区不卡| 男女啪啪激烈高潮av片| 精品午夜福利在线看| 国精品久久久久久国模美| 精品一区二区三区视频在线| 久久精品久久久久久久性| 日韩电影二区| 日韩电影二区| 久久韩国三级中文字幕| 精品一区在线观看国产| 亚洲怡红院男人天堂| 美女内射精品一级片tv| 日韩一区二区视频免费看| 久久精品熟女亚洲av麻豆精品| 国产亚洲av片在线观看秒播厂| 老女人水多毛片| 欧美变态另类bdsm刘玥| 久久久久久久久久久免费av| 久久国产乱子免费精品| 多毛熟女@视频| 久久午夜福利片| 99热这里只有精品一区| 伦精品一区二区三区| 街头女战士在线观看网站| 日韩中字成人| 一边亲一边摸免费视频| 能在线免费看毛片的网站| 中文字幕免费在线视频6| 国产在线视频一区二区| 成人黄色视频免费在线看| 丰满迷人的少妇在线观看| 午夜激情福利司机影院| 美女中出高潮动态图| 国产男女超爽视频在线观看| 亚洲av成人精品一二三区| 国产亚洲午夜精品一区二区久久| 黄色视频在线播放观看不卡| 久久精品熟女亚洲av麻豆精品| 插逼视频在线观看| 高清黄色对白视频在线免费看 | 久久久亚洲精品成人影院| 国产男人的电影天堂91| 丰满少妇做爰视频| 内地一区二区视频在线| 日本黄色日本黄色录像| 深夜a级毛片| 人人妻人人添人人爽欧美一区卜 | 日日摸夜夜添夜夜添av毛片| 91久久精品电影网| 国产黄频视频在线观看| 日韩av免费高清视频| 一区二区三区乱码不卡18| 国产乱人偷精品视频| 老司机影院毛片| 又大又黄又爽视频免费| 久久99热这里只频精品6学生| 日韩三级伦理在线观看| 自拍偷自拍亚洲精品老妇| 男女下面进入的视频免费午夜| 久久影院123| 在现免费观看毛片| 男人狂女人下面高潮的视频| 国产成人a区在线观看| 国产av精品麻豆| av网站免费在线观看视频| 日韩制服骚丝袜av| 日韩av免费高清视频| 我要看黄色一级片免费的| 亚洲国产成人一精品久久久| kizo精华| 交换朋友夫妻互换小说| 亚洲欧洲国产日韩| 一区二区三区四区激情视频| 狂野欧美白嫩少妇大欣赏| 日日啪夜夜爽| 亚洲中文av在线| av国产免费在线观看| 国产精品精品国产色婷婷| 最近的中文字幕免费完整| 青青草视频在线视频观看| 久久午夜福利片| 欧美3d第一页| 国产高清三级在线| 99精国产麻豆久久婷婷| 99热网站在线观看| 男人和女人高潮做爰伦理| 欧美97在线视频| 九九在线视频观看精品| 我的女老师完整版在线观看| 王馨瑶露胸无遮挡在线观看| 嘟嘟电影网在线观看| 久久av网站| 欧美三级亚洲精品| 久久久久久伊人网av| 亚洲成人手机| 18禁动态无遮挡网站| 亚洲在久久综合| freevideosex欧美| 久久久精品94久久精品| 久久午夜福利片| 如何舔出高潮| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| 久久ye,这里只有精品| 国产精品久久久久久av不卡| 韩国高清视频一区二区三区| 久久久欧美国产精品| 亚洲av国产av综合av卡| 久久99蜜桃精品久久| 亚洲国产精品专区欧美| 久久ye,这里只有精品| 一本久久精品| 亚洲综合色惰| 天美传媒精品一区二区| 99热这里只有是精品在线观看| 亚洲精华国产精华液的使用体验| 街头女战士在线观看网站| 99久久综合免费| 最近最新中文字幕大全电影3| 国产伦在线观看视频一区| 亚洲成人中文字幕在线播放| 久久人人爽人人爽人人片va| 亚洲欧美清纯卡通| 欧美日韩亚洲高清精品| 欧美一级a爱片免费观看看| 国产av精品麻豆| 视频区图区小说| av卡一久久| 一级黄片播放器| 国产国拍精品亚洲av在线观看| 少妇裸体淫交视频免费看高清| 男人爽女人下面视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 插逼视频在线观看| 中国三级夫妇交换| 日本与韩国留学比较| 午夜免费鲁丝| 亚洲精品乱码久久久v下载方式| .国产精品久久| 亚洲内射少妇av| 欧美3d第一页| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 国产成人免费无遮挡视频| 亚洲精品国产av蜜桃| 夫妻性生交免费视频一级片| 久久久成人免费电影| 少妇裸体淫交视频免费看高清| 免费看日本二区| 午夜福利影视在线免费观看| 国产在视频线精品| 纯流量卡能插随身wifi吗| 欧美老熟妇乱子伦牲交| 国产精品偷伦视频观看了| 久久久精品94久久精品| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 这个男人来自地球电影免费观看 | 日韩欧美精品免费久久| 亚洲精品一区蜜桃| 三级国产精品欧美在线观看| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 国产精品人妻久久久久久| freevideosex欧美| 久久影院123| 最近的中文字幕免费完整| 亚洲国产精品999| 日本av免费视频播放| 大片电影免费在线观看免费| 亚洲精品第二区| 97在线人人人人妻| 国产女主播在线喷水免费视频网站| 国产精品秋霞免费鲁丝片| 亚洲精品国产av成人精品| 黄色欧美视频在线观看| 欧美xxⅹ黑人| 日韩中文字幕视频在线看片 | 精品熟女少妇av免费看| 一本—道久久a久久精品蜜桃钙片| 久久久色成人| 男女无遮挡免费网站观看| 日韩av不卡免费在线播放| 舔av片在线| 香蕉精品网在线| 免费av不卡在线播放| 色吧在线观看| 水蜜桃什么品种好| 99国产精品免费福利视频| 亚洲欧洲国产日韩| 毛片女人毛片| 久久av网站| 国产成人91sexporn| 最近2019中文字幕mv第一页| 又黄又爽又刺激的免费视频.| 建设人人有责人人尽责人人享有的 | 日韩在线高清观看一区二区三区| 搡女人真爽免费视频火全软件| 国产人妻一区二区三区在| 精品少妇黑人巨大在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 久久97久久精品| 精品视频人人做人人爽| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美中文字幕日韩二区| 日本黄色日本黄色录像| 一区二区av电影网| 午夜激情久久久久久久| 国产精品99久久99久久久不卡 | 亚洲精品国产色婷婷电影| 久久久久久久国产电影| av在线蜜桃| 午夜福利视频精品| 国产成人午夜福利电影在线观看| 亚洲成人中文字幕在线播放| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 爱豆传媒免费全集在线观看| 色视频www国产| 久久人妻熟女aⅴ| 校园人妻丝袜中文字幕| 精品亚洲成a人片在线观看 | 久久精品国产亚洲网站| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看| 欧美+日韩+精品| 欧美日韩在线观看h| 色哟哟·www| 91在线精品国自产拍蜜月| 又黄又爽又刺激的免费视频.| 大话2 男鬼变身卡| 久久影院123| 韩国av在线不卡| 九九爱精品视频在线观看| 久久久久精品性色| 国产色婷婷99| av网站免费在线观看视频| 777米奇影视久久| 美女cb高潮喷水在线观看| 伊人久久国产一区二区| 久久人妻熟女aⅴ| av线在线观看网站| 亚洲经典国产精华液单| 久久久久视频综合| 欧美xxxx性猛交bbbb| 日韩成人伦理影院| 99精国产麻豆久久婷婷| 亚洲第一区二区三区不卡| 亚洲精品久久午夜乱码| 亚洲精品乱码久久久v下载方式| 99视频精品全部免费 在线| 日韩制服骚丝袜av| 成人无遮挡网站| 又爽又黄a免费视频| 亚洲精品亚洲一区二区| 青青草视频在线视频观看| 久久久久久久国产电影| 色网站视频免费| 一级毛片电影观看| 97精品久久久久久久久久精品| 久久毛片免费看一区二区三区| 在线观看人妻少妇| 国产永久视频网站| 卡戴珊不雅视频在线播放| 干丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看| 国产一区亚洲一区在线观看| 国产无遮挡羞羞视频在线观看| 岛国毛片在线播放| 国产国拍精品亚洲av在线观看| 秋霞在线观看毛片| 看免费成人av毛片| 亚洲欧洲日产国产| 丝瓜视频免费看黄片| 这个男人来自地球电影免费观看 | 欧美国产精品一级二级三级 | 在线精品无人区一区二区三 | 欧美一级a爱片免费观看看| 国产精品福利在线免费观看| 午夜福利视频精品| 赤兔流量卡办理| 自拍偷自拍亚洲精品老妇| 一区二区三区乱码不卡18| 国产欧美日韩精品一区二区| av免费观看日本| 日本欧美国产在线视频| 免费看光身美女| 精品午夜福利在线看| 国产无遮挡羞羞视频在线观看| 边亲边吃奶的免费视频| 久久久久国产精品人妻一区二区| 久久99精品国语久久久| 成人二区视频| 久久久久久九九精品二区国产| 青青草视频在线视频观看| 乱码一卡2卡4卡精品| 亚洲精品亚洲一区二区| 免费观看无遮挡的男女| 国产一区有黄有色的免费视频| 国产女主播在线喷水免费视频网站| 丰满乱子伦码专区| 极品少妇高潮喷水抽搐| 国产黄频视频在线观看| 色婷婷久久久亚洲欧美| 亚洲成色77777| 久久99热这里只频精品6学生| 久久毛片免费看一区二区三区| 在线观看三级黄色| 精品亚洲成a人片在线观看 | 男人爽女人下面视频在线观看| 日日摸夜夜添夜夜添av毛片| 日韩制服骚丝袜av| 成年人午夜在线观看视频| 国产精品.久久久| 狂野欧美激情性xxxx在线观看| 极品少妇高潮喷水抽搐| 成人黄色视频免费在线看| 水蜜桃什么品种好| 国产熟女欧美一区二区| 日本爱情动作片www.在线观看| 蜜桃在线观看..| 亚洲av福利一区| 新久久久久国产一级毛片| 精品久久久久久电影网| 亚洲精品中文字幕在线视频 | 免费看av在线观看网站| 久久女婷五月综合色啪小说| 国产亚洲最大av| 乱码一卡2卡4卡精品| 国产精品福利在线免费观看| 中文乱码字字幕精品一区二区三区| 大香蕉久久网| 青春草亚洲视频在线观看| 日韩电影二区| 99久久中文字幕三级久久日本| 最近手机中文字幕大全| 日韩成人伦理影院| 久久综合国产亚洲精品| 久久这里有精品视频免费| 日本vs欧美在线观看视频 | 又粗又硬又长又爽又黄的视频| 亚洲成人一二三区av| 最近中文字幕2019免费版| av在线播放精品| tube8黄色片| 在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 22中文网久久字幕| 一本一本综合久久| 大话2 男鬼变身卡| 一区二区三区乱码不卡18| 女性生殖器流出的白浆| 亚洲综合色惰| 免费看光身美女| 精品一区二区免费观看| 色视频www国产| 男的添女的下面高潮视频| 能在线免费看毛片的网站| 久久久精品94久久精品| 亚洲av成人精品一二三区| 久久精品国产亚洲网站| 国产永久视频网站| 日韩av不卡免费在线播放| 一级片'在线观看视频| 久久久久久久大尺度免费视频| 国产在线视频一区二区| 伦理电影免费视频| av黄色大香蕉| 日本午夜av视频| 午夜福利视频精品| 亚洲久久久国产精品| 久久久精品94久久精品| 精品久久久噜噜| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 深夜a级毛片| 久久精品久久久久久久性| 亚洲精品久久久久久婷婷小说| 国产人妻一区二区三区在| 天堂中文最新版在线下载| 成人无遮挡网站| 99精国产麻豆久久婷婷| 黄色怎么调成土黄色| 欧美高清成人免费视频www| 国产亚洲欧美精品永久| 免费黄频网站在线观看国产| 欧美日韩精品成人综合77777| 性色av一级| 婷婷色麻豆天堂久久| 日韩亚洲欧美综合| 九九在线视频观看精品| 大片免费播放器 马上看| 国产在线免费精品| 久久97久久精品| 不卡视频在线观看欧美| 天堂8中文在线网| 在线播放无遮挡| 搡老乐熟女国产| 亚洲在久久综合| 国产av国产精品国产| 成人高潮视频无遮挡免费网站| 久久精品久久精品一区二区三区| 一个人看视频在线观看www免费| 欧美精品国产亚洲| 欧美 日韩 精品 国产| 亚洲人成网站在线观看播放| 久久久久久久久大av| 99久久人妻综合| 99热国产这里只有精品6| 精品人妻一区二区三区麻豆| 爱豆传媒免费全集在线观看| 一级毛片aaaaaa免费看小| 91久久精品国产一区二区三区| 秋霞伦理黄片| 国产亚洲最大av| 日本黄色日本黄色录像| 亚洲,一卡二卡三卡| av福利片在线观看| 亚洲精品国产av成人精品| 欧美日韩一区二区视频在线观看视频在线| 中文字幕精品免费在线观看视频 | 寂寞人妻少妇视频99o| 乱系列少妇在线播放| 欧美亚洲 丝袜 人妻 在线| 特大巨黑吊av在线直播| 国产精品av视频在线免费观看| 干丝袜人妻中文字幕| 日韩精品有码人妻一区| 国产 一区 欧美 日韩| 精品久久久久久久久av| 久久毛片免费看一区二区三区| 欧美一区二区亚洲| 久久久久国产网址| 亚洲,一卡二卡三卡| 大香蕉久久网| 插阴视频在线观看视频| 国产精品一区二区性色av| 亚洲欧美一区二区三区国产| 黄片无遮挡物在线观看| 欧美成人精品欧美一级黄| 亚洲欧美精品专区久久| 蜜桃久久精品国产亚洲av| 久久久久久久久大av| 大又大粗又爽又黄少妇毛片口| 亚洲精品国产成人久久av| 欧美高清成人免费视频www| 久久人人爽av亚洲精品天堂 | 女人十人毛片免费观看3o分钟| 最近中文字幕2019免费版| 春色校园在线视频观看| 永久免费av网站大全| 国产黄色视频一区二区在线观看| 午夜福利在线在线| 日本黄色片子视频| 美女主播在线视频| 亚洲av在线观看美女高潮| 国产成人免费观看mmmm| 亚洲国产毛片av蜜桃av| 联通29元200g的流量卡| 爱豆传媒免费全集在线观看| 国产高清三级在线| 免费不卡的大黄色大毛片视频在线观看| av在线老鸭窝| 日韩三级伦理在线观看| 久久久久久久亚洲中文字幕| 国产精品人妻久久久影院| 国产欧美日韩精品一区二区| 狂野欧美激情性xxxx在线观看| 久久毛片免费看一区二区三区| 久久久久人妻精品一区果冻| 久久久久久久久久成人| 久久 成人 亚洲| 美女脱内裤让男人舔精品视频| 国产亚洲精品久久久com| 中文字幕av成人在线电影| 一级黄片播放器| 少妇人妻一区二区三区视频| 蜜桃久久精品国产亚洲av| 国产精品一及| 国产成人a区在线观看| 国产亚洲91精品色在线| a级一级毛片免费在线观看| 国产亚洲欧美精品永久| 久久这里有精品视频免费| 国产精品爽爽va在线观看网站| 中国美白少妇内射xxxbb| 天美传媒精品一区二区| 成人免费观看视频高清| 欧美xxxx黑人xx丫x性爽| 男女免费视频国产| 亚洲人与动物交配视频| 91aial.com中文字幕在线观看| 久久久久久人妻| 成人国产av品久久久| 色婷婷久久久亚洲欧美| 26uuu在线亚洲综合色| 成人午夜精彩视频在线观看| 能在线免费看毛片的网站| 少妇人妻一区二区三区视频| 国产欧美日韩精品一区二区| 欧美日韩国产mv在线观看视频 | 97在线人人人人妻| 一级毛片久久久久久久久女| 大话2 男鬼变身卡| 亚洲美女搞黄在线观看| 成人18禁高潮啪啪吃奶动态图 | 中文字幕久久专区| 观看美女的网站| 亚洲av欧美aⅴ国产| av在线app专区| 久久精品久久精品一区二区三区| 日韩人妻高清精品专区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品久久午夜乱码| 亚洲精品乱码久久久久久按摩| 少妇精品久久久久久久| 久久97久久精品|