• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Tensile Properties and Creep Performance of a Long-term Thermally Aged Plastic Bonded Explosive

    2016-05-08 13:18:50ZHOUHongpingHEQiangLIMingPANGHaiyanWEIXingwenWENMaoping
    含能材料 2016年9期

    ZHOU Hong-ping, HE Qiang, LI Ming, PANG Hai-yan, WEI Xing-wen, WEN Mao-ping

    (Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China)

    1 Introduction

    The physical and chemical changes of polymer bonded explosives(PBXs) with aging under diverse storage environments have been extensively studied, for instance, the effects of thermal aging at elevated temperatures on well known composition of PBX-9501 have been studied and the changes resulted from this type of treatment have been found[1-2]. It shows that the major aging mechanism, i.e., the hydrolysis of the binder, for instance Estane, may occur and the molecular weight may decrease and, thus degrade the tensile or compression mechanical properties of PBX 9501[3]. Similar studies have been done for LX-14 and many other compositions[4-6]. Most of the surveillance methods for aging evaluation were to inspect the conventional mechanical properties, which involve measurements of compression/tensile strength and elastic modulus[7-8]. According to the previous studies, it seems that there is no evidence of catastrophic structural integrity loss for all known PBXs which have been exposed to various aging environments[9]. But, as well known, the measurement of conventional mechanical properties, for instance, the tensile strength testing just takes less minutes and thus has its weakness to manifest the time-dependent effects of the PBXs. Lots of PBX compositions, such as EDC37, LX-17 and PBX 9501, show strongly time-dependent behaviors resulted from the polymer binders inside the compositions[11-13].

    Although the time-depend behaviors of creep of PBXs have been investigated extensively[12-13], very few studies on the creep performance for those PBXs having been long-term aged up to years are available. Most of the published studies attributed the time-dependent behaviors of PBXs to the binders, and forgot that the physical interfaces between the binder and the energetic crystals may play a key role on the creep behavior, especially on the sustainable creep time until to failure. In fact, in a long-term aging environment, especially when the temperature of storage is above the glassy transition temperature of the binder, the interfaces may change slowly and the residual stains induced by the mould pressing may release. The slowing changes in interfaces can not be easily inspected through conventional mechanical strength testing. The principal motivation of this study is to find and evaluate measurable changes of a pressed PBX after 6 month and 3 year storage under different temperature environments through mechanical tensile testing and creep testing.

    2 Experimental

    2.1 PBX Composition and Specimen Preparation

    PBX-901 employed in this study, is a PBX pressed from molding powder, which comprises about 95% crystalline cyclotetramethylen tetranitramine (HMX) and a small portion binder of 5% fluoro-rubber binder by mass. The pressed PBX-901 stocks were machined to standard cylindrical dumbbell specimens (Fig.1) which meet the requirements of the Chinese military standard for tensile strength and tensile creep testing. All the specimens had been inspected by Non-destructive methods to ensure those with pre-exiting defects were eliminated before thermally storage and mechanical testing started.

    Fig.1 Size of the specimen

    2.2 Thermal Aging Treatment

    The dumbbell specimens were stored in different environmental ovens at the temperature of 25, 45, 55, 65 ℃ and 75 ℃, respectively. Each oven was equipped with safety thermostats, the temperature variation was maintained within ±1 ℃ and monitored by a remote-controlled recording device. Some of the specimens were stored for 6 months and some up to 36 months. After treatment, the aged specimens were removed from the environmental chambers for tensile testing and tensile creep testing.

    2.3 Tensile Testing

    The clamp-method tensile testing was carried out by an Instron 5582 universe test machine equipped with an environmental temperature chamber as well as a high precise dual- extensometer. The constant crosshead speed is 0.05 mm·min-1that gives a nominal strain rate of 0.0033 s-1,and the testing temperature was at 45 ℃ which has been proved as a transition temperature in term of mechanical property for this type of PBX[14]. The stress-strain curve was obtained and Young′s modulus of each specimen can be calculated. It should be noted that each tensile strength or elastic modulus was an average output of five replicate tensile specimens per condition. The tensile strength for pristine and aged specimen at 25 ℃, i.e. the ambient temperature, were also measured in order to determinate the creep testing stress level, which will be detailed later.

    2.4 Tensile Creep Testing

    The tensile creep experiments were conducted by using Instron 8862 creep testing machine equipped with a temperature-controlled chamber[15]. The creep strains were recorded by a dual extensometer. All creep testing temperatures were at 45 ℃, same as the tensile testing. The tensile creep stress of the specimens aged for 3 years was kept constant of 2.88 MPa, which was about 60 percent of the tensile strength of 4.8 MPa at 45 ℃ or 52 percent of the tensile strength of 6.90 MPa at 25 ℃. For those stored for 6 months, the tensile creep stress level was kept constant of 3.58 MPa, which was about 75 percent of the tensile strength at 45 ℃. Setting such higher creep stress was to accelerate the time to rupture(TTR). In this work, the TTR can be an indictor to evaluate the aging effect on the creep performance of PBXs. To start the creep testing, the specimen was firstly loaded to the pre-determinate creep stress with the crosshead speed of 0.05 mm·min-1and then the stress was kept constant by load-hold method of the testing machine. The tensile creep strains were recorded automatically. For those specimens stored at room temperature, the creep rupture occurred very early and the creep testing will stop automatically after rupture, otherwise the testing will stop intentionally after the creep maintains for 8 hours since the beginning.

    3 Results and Discussion

    3.1 Tensile Mechanical Properties after Aging

    The tensile stress-strain curves at 45 ℃ for the specimens stored for 3 years under the temperature of 45, 55, 65 ℃ and 75 ℃, respectively, are given in figure 2, where the curve of the pristine specimen is presenting together. The tensile strength and Young′s modulus as well as the standard deviation are listed in table 1. From the figure 2 and table 1, it shows that the tensile strength and Young′s modulus at 45 ℃ are almost unchangeable even after 3 year thermally storage at difference temperature regarding the test uncertainty, except for slightly increasing for those stored at 55 ℃ or 65 ℃. The tensile strength (4.64 MPa) and Young′s modulus (9.17 GPa) of those stored at 75 ℃ for 3 years were slightly degraded and it suggests that above the temperature of 45 ℃ the thermal aging takes effect on the mechanical properties.

    Fig.2 Tensile stress-stain curves at 45 ℃ of 3 year stored specimens under difference temperature (the pristine specimens included)

    Table 1 Tensile strength and modulus at 45 ℃

    agingtemperature/℃tensilestrength/MPatensilemodulus/GPapristine4.73±0.279.92±0.4545(3year)4.74±0.1410.27±0.3055(3year)5.03±0.2210.45±0.3265(3year)5.20±0.2110.05±0.2775(3year)4.64±0.139.17±0.29

    3.2 Tensile Creep Behaviors

    The tensile creep curves of those specimens stored for 3 years were plotted together with pristine specimen in figure 3. It is found that the pristine specimen ruptured after 17326 s, much less time than those thermally treated specimens, which kept intact for 28800 s, i.e. 8 h. Similar results were obtained for those 6 month thermally treated specimens. Table 2 gives the creep testing results of those 6 month thermally aged specimen at a constant tensile stress of 3.58 MPa. Because the creep stress level for 6 month aged specimens was higher than 3 year stored specimens, the TTR was shortened accordingly. The pristine specimen has the shortest TTR of 2100 s, compared to all 6 month thermally treated specimens, in which those stored at 55 ℃ bear the longest TTR of 9600 s. But, for those at 75 ℃ for 6 months, the TTR was dramatically shortened to 2280 seconds and this shortened TTR result was similar with the slightly degraded tensile strength and Young′s modulus for those 3 year stored specimens as described previously. Although we do not present the tensile results for 6 month stored specimens, we can safely say that the temperature of 75 ℃ is not a safe condition for PBX-901 and the specimens will be assuredly thermally damaged at 75 ℃. It suggests that for PBX-901 a suitable long-term thermally storage environment will improve the creep performance and the storage temperature should be below 75 ℃.

    Table 2 Creep parameters of 6-month aged and pristine under 3.58 MPa and 45 ℃

    parameterTTR/sfailurestrain/%pristine21000.082agedat45℃40200.073agedat55℃96000.078agedat65℃51600.073agedat75℃22800.073

    Fig.3 Tensile creep curves of pristine (marked “1” in the plot) and 3 year stored specimens (2, 3, 4, and 5) at different temperature, all tests were performed under 2.88 MPa and 45 ℃

    3.3 Morphology of Cross Section of Ruptured Specimen

    To understand the failure mechanism of tensile testing as well as creep testing, the SEM observations of the broken faces were carried on. Figure 4 gives the morphology photos of a broken pristine and two 3 year aged specimens, which were tensile failures at 45 ℃ as described previously in chapter 3.1. From figure 4, it shows that the tensile broken sections of pristine resemble the aged specimens with much smoother faces, which are big different from the creep failure (figure 5) sections. In tensile testing, the HMX crystals inside the specimen have been transgranular sectioned and the smooth morphology was left as shown in figure 4a. This transgranular failure model is contradiction to de-bonding model that is accepted as a very common failure model for PBXs. The tensile creep failure of the specimens still comply with the de-bonding model as shown in figure 5, which presents the morphology of creep rupture of 6-month-aged specimens. As figure 5 shows, there was a hollow left in position 1 (figure 5a) and a HMX single crystal (figure 5b) was left in position 2 for the pristine specimen which was creeping ruptured, and a clear de-bonding interface in position 3 can be found in the failure face (figure 5c).

    As the morphology of the tensile broken sections nearly keep same whether in pristine or aged specimens (figure 4), it suggests the conventional tensile testing can not reveal the aging effects in terms of degradation of mechanical properties, whereas short-term creep testing within several hours in this work can disclose the slowing change during thermally storage, and the interface de-bonding between the crystals and binder can be clearly demonstrated.

    3.4 Analysis of Contact Angle

    The SEM observations demonstrate that the failure model of PBX-901 in tensile testing is different from the creep testing and we attribute this difference to the evolution of the interface status between HMX crystals and fluoro-rubber binder during aging treatments. However, few investigations are availably so far on the time-dependent interfacial property when PBX creeps. The contact angle measurement is considered as an effective method to evaluate the interface statue. Further the contact angle measurements were carried on this work.

    a. pristine b. aged at 45 ℃ for 3 years c. aged at 75 ℃ for 3 years

    Fig.4 Morphology of tensile failure specimens at 45 ℃

    a.position 1 b.position 2 c. position 3

    Fig.5 Morphology of tensile creep rupture specimens at 45 ℃

    a. binder aged at 45 ℃ b. binder aged at 55 ℃

    c. binder aged at 65 ℃ d. binder aged at 75 ℃

    Fig.6 Contact angles of binder with different reference liquids

    Small pellets for the Wihelmy plate method were fabricated from fluoro-rubber binder used in PBX-901 and were respectively stored at temperature of 45, 55, 65 ℃ and 75 ℃ for 2 months, 4 months and 6 months. A series of reference liquids including water, ethylene glycol and diodo-methane were employed to measure the static contact angle using contact angle analyzer(JY-82) and the results are plotted in figure 6.

    It can be found that at each aging temperature the contact angle decreases as time passed at early aging stage, but this trend did not keep monotonic decreasing except for the case of 55 ℃, contrarily, the contact angle goes up after a certain aging period. For the binder aged at 45 ℃ or 55 ℃ the turning time is in 4 months or less, and 2 months is for those aged at 65 ℃ and 75 ℃. It helps to understand that the wetting resulted from the long-term dependent thermo rheological mechanism of the binder takes effects, and the slower interaction between binder and crystals can release the residual strains resulted from pressing process. After turning time, for instance, the binder aged at 75 ℃, the contact angle goes up rapidly, it suggests that the thermally damage inside the interface dominates and in turn to shorten the TTR during creeping.

    Interesting result comes from the binder aged at 55 ℃ when the contact angle keeps monotonic decreasing. If referring to the creep testing, the specimen treated at 55 ℃ bears the longest TTR compared to the rest specimens. These two results are consistent very well with each other and it implies that for this kind of PBX the best stored temperature should be at 55 ℃.

    Base on the results and analysis, we propose that there are two competing mechanisms during thermally aging process: one, for store environment at lower temperatures, is the wetting induced by thermally rheological evolution which makes better interface, where the initial micro-defects such as the microvoids and micro delaminating induced probably from pressing can be healed and the residual strains are released slowly. The other, with the temperature increasing, is the thermal damage which poses a severe de-bonding stress in the interface that may come from the mismatch between the HMX crystal and the binder. But, the long time-dependent aging evolution can not be revealed distinctly by tensile testing, so we recommend using short-term creep testing within several hours to evaluate the long-term aging effects for plastic bonding explosives, especially for those pressing made PBXs.

    4 Conclusions

    It demonstrates that the short-term creep testing within several hours is a very useful method to evaluate the thermally effects on the mechanical properties and mechanical performance of long-term aged PBX. The TTR during creep testing can be a characteristic indicator to quantify the effects compared to the conventionally employed tensile strength testing.

    The thermally treated specimenemployed in the work shows much resistance to the creep failure in terms of much longer TTR compared to the pristine specimen and it suggests that for the types of pressed PBXs, much longer storage duration under a suitable storing temperature benefits eliminating the residual strains caused by pressing.

    Acknowledgement:The authors would like to thank the Environment Testing Group at ICM for the valuable long term aging experiments.

    [1] Burgess C E, Woodyard J D, Rainwater K A, et al. Literature Review of the Lifetime of DOE Materials: Aging of Plastic Bonded Explosives and the Explosives and Polymers Contained Therein[R], ANRCP-1998-12, Amarillo National Resource Center for Plutonium, 1998.

    [2] Skimore C B, Idar D J, Buntain G A, et al. Aging and PBX9502[R], LA-UR-98-1206, LANL, 1998.

    [3] Salazar M R, Kress J D, Lightfoot J M, et al. Experimental study of the oxidative degradation of PBX 9501 and its components[J].Propellants,Explosives,Pyrotechnics, 2008, 33(3): 182-201.

    [4] Deanne J. Idar Sheldon A. Larson, Cary B. Skidmore, Joanne R. Wendelberger, PBX 9502 Tensile Analysis[R], LA-UR-004948 LANL, 2000.

    [5] Ellis K, Leppard C, Radesk H. Mechanical properties and damage evaluation of a UK PBX[J].Mater.Sci. ,2005, 40 6241-8.

    [6] Rae P J, Palmer S J P, Goldrein H T, et al. Quasi-static studies of the deformation and failure of PBX 9501[J].Proc.R.Soc.Lond.A, 2002, 458, 2227-42.

    [7] Idar D J, Thompson D G, Gray III G T, et al. Influence on polymer molecular weight, temperature, and strain rate on the mechanical properties of PBX 9501[R], Shock Compression of Condensed Matter—2001 ed M D Furnish et al (Melville, NY: American Institute of Physics) 2002: 281-4.

    [8] Cady C M, Blumenthal W R, G.T. Gray G T III, Idar D Mechanical properties of plastic-bonded explosive binder materials as a function of strain-rate and temperature[C]∥Polymer Engineering and Science, 2006, 46(6): 812-819.

    [9] Lundberg A W. High explosives in stockpile surveillance indicate constancy[J].Science&TechnologyReview,December, 1996: 13-17.

    [10] Mang J T, Skidmore C B, Son S F, et al. An optical microcopy and small angle scattering study of porosity in thermally treated PBX9501[C]∥Shock Compression of Condensed Matter-2001, M. D. Furnish, N. N. Thadhani and Y. Horie, eds., AIP Press Conference Proc. 620, New York, 833-836.

    [11] Saw, Cheng K., Tarver, Craig M. ,Binder/HMX interaction in PBX9501 at Elevated Temperatures (UCRL-CONF-200156),13th Annual APS Topical Conference Portland, OR. 2003.

    [12] Williamson D M, Siviour C R, Proud W G, et al. Temperature-time response of a polymer bonded explosive in compression[J]. (EDC37),J.Phys.D:Appl.Phys, 2008, 41: 085404.

    [13] Gagliardi F J, Cunningham B J. Creep Testing Plastic Bonded Explosives in uniaxial Compression[C]∥10th International Conference on Experimental and Applied Mechanics, Orlando, Florida, 2008, June 2-5.

    [14] ZHOU Hong-ping, HE Qiang , LI Ming, et al. Experimental study on aging of pbx under low tensile stress[J].ChineseJournalofExplosives&Propellants, 2009, 32(5): 8-10.

    [15] LI Ming, WEN Mao-ping, HE Qiang, et al. The Compressive creep behaviour of PBX based on TATB[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2005,13(3): 150-154.

    丰满迷人的少妇在线观看| 久久久久精品性色| 五月天丁香电影| 久久久久网色| videossex国产| 大片免费播放器 马上看| 精品久久久精品久久久| 最近2019中文字幕mv第一页| 国产精品久久久久成人av| 啦啦啦视频在线资源免费观看| 久久青草综合色| 日日摸夜夜添夜夜爱| 精品少妇久久久久久888优播| 日韩成人av中文字幕在线观看| 最近中文字幕高清免费大全6| 天美传媒精品一区二区| 一级二级三级毛片免费看| 视频中文字幕在线观看| 国产成人a∨麻豆精品| 中文字幕精品免费在线观看视频 | 国产在视频线精品| 欧美成人午夜免费资源| 黑丝袜美女国产一区| 国产极品粉嫩免费观看在线 | av专区在线播放| 精品熟女少妇av免费看| 精品久久久久久久久av| 最近的中文字幕免费完整| 美女中出高潮动态图| 中文字幕人妻丝袜制服| 又粗又硬又长又爽又黄的视频| 日韩欧美精品免费久久| 国产日韩欧美在线精品| 中文天堂在线官网| av天堂久久9| 国产黄色视频一区二区在线观看| 成人午夜精彩视频在线观看| 亚洲精品亚洲一区二区| 亚洲精品国产色婷婷电影| 黄色视频在线播放观看不卡| av视频免费观看在线观看| 成人毛片60女人毛片免费| 国产一区亚洲一区在线观看| 午夜激情av网站| 夜夜爽夜夜爽视频| av.在线天堂| 亚洲欧美成人综合另类久久久| 18禁在线播放成人免费| 欧美 日韩 精品 国产| 精品少妇黑人巨大在线播放| 亚洲美女视频黄频| 久久午夜福利片| 亚洲不卡免费看| av有码第一页| 最近最新中文字幕免费大全7| 能在线免费看毛片的网站| 久久精品国产a三级三级三级| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 丰满少妇做爰视频| 欧美97在线视频| 国产免费福利视频在线观看| 亚州av有码| 日韩免费高清中文字幕av| 国产亚洲精品第一综合不卡 | 中国三级夫妇交换| 国产精品嫩草影院av在线观看| 亚洲av成人精品一区久久| 精品亚洲成国产av| 在线天堂最新版资源| 亚洲av男天堂| 亚洲欧美清纯卡通| 一区二区日韩欧美中文字幕 | 国产极品粉嫩免费观看在线 | 亚洲无线观看免费| 国产欧美日韩综合在线一区二区| 久久 成人 亚洲| 免费黄网站久久成人精品| 成人免费观看视频高清| 一本色道久久久久久精品综合| 久久国内精品自在自线图片| 国产欧美日韩一区二区三区在线 | 老熟女久久久| 久久国产精品男人的天堂亚洲 | 国产在视频线精品| 亚洲国产欧美日韩在线播放| 日韩在线高清观看一区二区三区| 肉色欧美久久久久久久蜜桃| 精品国产一区二区久久| 久久人人爽av亚洲精品天堂| 人妻人人澡人人爽人人| 亚洲精品一区蜜桃| 久久久精品区二区三区| 成年女人在线观看亚洲视频| 精品熟女少妇av免费看| 婷婷色综合大香蕉| 欧美性感艳星| 中文字幕精品免费在线观看视频 | 精品视频人人做人人爽| 熟女电影av网| av在线观看视频网站免费| 欧美精品国产亚洲| 亚洲精品av麻豆狂野| 麻豆乱淫一区二区| 日韩电影二区| 两个人的视频大全免费| 日韩av免费高清视频| 中文字幕精品免费在线观看视频 | 亚洲国产精品999| 亚洲精品aⅴ在线观看| 视频在线观看一区二区三区| 免费久久久久久久精品成人欧美视频 | 黄色一级大片看看| av有码第一页| 国产免费一级a男人的天堂| 久久久久精品久久久久真实原创| av在线播放精品| 少妇熟女欧美另类| 日韩精品免费视频一区二区三区 | 男女无遮挡免费网站观看| 久久女婷五月综合色啪小说| 精品久久久久久久久亚洲| 色哟哟·www| av不卡在线播放| 伊人久久国产一区二区| 久久久国产精品麻豆| 国产精品成人在线| 中文精品一卡2卡3卡4更新| 国产精品久久久久成人av| 久久久国产欧美日韩av| 国产精品久久久久久久电影| 精品久久久久久电影网| 一区二区三区免费毛片| 涩涩av久久男人的天堂| 熟女电影av网| 亚洲av福利一区| 一本久久精品| 韩国高清视频一区二区三区| 97超碰精品成人国产| 精品熟女少妇av免费看| 街头女战士在线观看网站| 97超视频在线观看视频| 黑人欧美特级aaaaaa片| 老司机影院成人| 老女人水多毛片| 欧美激情极品国产一区二区三区 | 免费高清在线观看视频在线观看| 五月玫瑰六月丁香| 午夜91福利影院| tube8黄色片| 九九在线视频观看精品| 久久99精品国语久久久| 精品一区二区免费观看| 丰满迷人的少妇在线观看| 成人二区视频| 免费黄频网站在线观看国产| tube8黄色片| 久久久a久久爽久久v久久| 999精品在线视频| 亚洲国产精品国产精品| h视频一区二区三区| 国产欧美亚洲国产| 久久99精品国语久久久| 大片电影免费在线观看免费| 久久 成人 亚洲| 建设人人有责人人尽责人人享有的| 国产精品国产av在线观看| 夜夜爽夜夜爽视频| 少妇被粗大的猛进出69影院 | 99久久综合免费| 亚洲婷婷狠狠爱综合网| 久久久精品区二区三区| videos熟女内射| 高清视频免费观看一区二区| 全区人妻精品视频| 亚洲av欧美aⅴ国产| 婷婷成人精品国产| 在现免费观看毛片| 日韩亚洲欧美综合| 国模一区二区三区四区视频| 啦啦啦啦在线视频资源| 精品一区二区三卡| 女人久久www免费人成看片| 哪个播放器可以免费观看大片| 色视频在线一区二区三区| 久久国产亚洲av麻豆专区| 亚洲欧美日韩另类电影网站| 在线观看人妻少妇| 人人妻人人澡人人爽人人夜夜| 一区在线观看完整版| 国产综合精华液| 国产精品久久久久久精品电影小说| 国产深夜福利视频在线观看| 日韩视频在线欧美| 99国产精品免费福利视频| 日韩一本色道免费dvd| 日韩中字成人| 激情五月婷婷亚洲| 久久国内精品自在自线图片| 黑人巨大精品欧美一区二区蜜桃 | 久热久热在线精品观看| 十八禁高潮呻吟视频| 国产av一区二区精品久久| 精品酒店卫生间| 黄色配什么色好看| 免费高清在线观看日韩| 亚洲欧美一区二区三区黑人 | av不卡在线播放| 啦啦啦啦在线视频资源| 精品一区二区三卡| 欧美日韩综合久久久久久| 精品久久久久久久久亚洲| 91久久精品国产一区二区三区| 黄色毛片三级朝国网站| 欧美 亚洲 国产 日韩一| 91成人精品电影| 亚洲国产精品999| 日本免费在线观看一区| 国产一区二区在线观看日韩| 午夜免费鲁丝| 丝袜在线中文字幕| 一级毛片aaaaaa免费看小| 成人免费观看视频高清| 99视频精品全部免费 在线| 男的添女的下面高潮视频| 欧美bdsm另类| 国产欧美另类精品又又久久亚洲欧美| 黄色怎么调成土黄色| av不卡在线播放| 啦啦啦啦在线视频资源| 日日啪夜夜爽| av视频免费观看在线观看| 久久精品国产亚洲av涩爱| 老司机影院毛片| 人妻一区二区av| 肉色欧美久久久久久久蜜桃| 视频在线观看一区二区三区| 日韩中字成人| √禁漫天堂资源中文www| 久久精品久久精品一区二区三区| 国产精品久久久久成人av| 国产乱来视频区| videos熟女内射| 亚洲中文av在线| 亚洲精品亚洲一区二区| 亚洲伊人久久精品综合| 国产精品三级大全| 久久国产亚洲av麻豆专区| 亚洲国产精品成人久久小说| 久热久热在线精品观看| 亚洲第一av免费看| 国产探花极品一区二区| 满18在线观看网站| 国产国语露脸激情在线看| 一本—道久久a久久精品蜜桃钙片| 免费久久久久久久精品成人欧美视频 | 久久久精品区二区三区| 久久久久久久久久久丰满| 另类亚洲欧美激情| 成人免费观看视频高清| 一级,二级,三级黄色视频| 搡女人真爽免费视频火全软件| 97在线视频观看| videossex国产| 国产精品国产三级国产专区5o| 十八禁高潮呻吟视频| 两个人免费观看高清视频| 国产有黄有色有爽视频| 日本午夜av视频| 国产精品三级大全| 日本欧美国产在线视频| av线在线观看网站| 黄色一级大片看看| 国产成人91sexporn| a级毛片免费高清观看在线播放| 久久人人爽人人片av| 丁香六月天网| 高清午夜精品一区二区三区| 国产欧美日韩综合在线一区二区| 欧美亚洲 丝袜 人妻 在线| 爱豆传媒免费全集在线观看| 精品少妇内射三级| 蜜桃国产av成人99| 亚洲,欧美,日韩| 纵有疾风起免费观看全集完整版| 天堂中文最新版在线下载| 亚洲国产av影院在线观看| 美女xxoo啪啪120秒动态图| 色婷婷久久久亚洲欧美| 日日啪夜夜爽| 一级毛片黄色毛片免费观看视频| 精品国产乱码久久久久久小说| 久久午夜综合久久蜜桃| 亚洲国产色片| 午夜福利视频在线观看免费| 欧美最新免费一区二区三区| 精品一区二区免费观看| 亚洲情色 制服丝袜| a级毛片黄视频| 久久精品熟女亚洲av麻豆精品| 寂寞人妻少妇视频99o| 亚洲内射少妇av| 国产黄色视频一区二区在线观看| 久热这里只有精品99| 日韩av在线免费看完整版不卡| 少妇的逼好多水| 狂野欧美激情性bbbbbb| 成人午夜精彩视频在线观看| 一区二区三区精品91| 青春草亚洲视频在线观看| 少妇熟女欧美另类| 国产成人一区二区在线| 国产精品一国产av| 久久99热这里只频精品6学生| 在线亚洲精品国产二区图片欧美 | 国产精品秋霞免费鲁丝片| 一二三四中文在线观看免费高清| 丰满饥渴人妻一区二区三| a级片在线免费高清观看视频| 天天躁夜夜躁狠狠久久av| 国产国拍精品亚洲av在线观看| 婷婷色综合www| 涩涩av久久男人的天堂| 久久女婷五月综合色啪小说| 亚洲av成人精品一二三区| 美女cb高潮喷水在线观看| 久久精品国产亚洲av天美| 国产成人精品福利久久| 美女主播在线视频| 免费观看无遮挡的男女| 国产爽快片一区二区三区| 成人免费观看视频高清| 国产极品粉嫩免费观看在线 | 久久99热6这里只有精品| 国产成人午夜福利电影在线观看| 日韩av在线免费看完整版不卡| 国产男女内射视频| 午夜激情av网站| 国产精品国产av在线观看| 亚洲精品久久久久久婷婷小说| 18禁裸乳无遮挡动漫免费视频| 夜夜骑夜夜射夜夜干| 中文字幕制服av| 国产免费现黄频在线看| 亚洲欧洲国产日韩| 中文字幕av电影在线播放| 新久久久久国产一级毛片| 99re6热这里在线精品视频| av在线观看视频网站免费| 成人国产麻豆网| 国产日韩一区二区三区精品不卡 | 97超碰精品成人国产| 免费高清在线观看视频在线观看| 国产精品女同一区二区软件| 99热这里只有精品一区| 夫妻性生交免费视频一级片| 一区在线观看完整版| 啦啦啦视频在线资源免费观看| 中文字幕人妻熟人妻熟丝袜美| 两个人的视频大全免费| 在线观看国产h片| 久热久热在线精品观看| 看十八女毛片水多多多| 哪个播放器可以免费观看大片| 91精品国产国语对白视频| 亚洲av在线观看美女高潮| 高清午夜精品一区二区三区| 黑人猛操日本美女一级片| 纯流量卡能插随身wifi吗| 久久人妻熟女aⅴ| 亚洲欧洲精品一区二区精品久久久 | 日韩一本色道免费dvd| 日韩av免费高清视频| 国产精品久久久久久精品电影小说| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 国产亚洲精品久久久com| 天天影视国产精品| 高清黄色对白视频在线免费看| 高清av免费在线| 欧美日韩av久久| 秋霞伦理黄片| 国产永久视频网站| 国产成人精品婷婷| 在线观看免费高清a一片| videos熟女内射| 精品人妻偷拍中文字幕| 免费观看无遮挡的男女| 亚洲三级黄色毛片| 国产黄频视频在线观看| av卡一久久| 国产乱人偷精品视频| 一区二区三区精品91| 久久97久久精品| 丝瓜视频免费看黄片| 中文天堂在线官网| 国产高清有码在线观看视频| 高清毛片免费看| www.av在线官网国产| 搡女人真爽免费视频火全软件| 黄色视频在线播放观看不卡| 久久精品国产亚洲av涩爱| 国产欧美另类精品又又久久亚洲欧美| 少妇人妻精品综合一区二区| 免费高清在线观看日韩| 亚洲综合色网址| 三级国产精品片| 久久精品人人爽人人爽视色| 国产高清三级在线| 在线看a的网站| 久久ye,这里只有精品| 亚洲av不卡在线观看| 黄色一级大片看看| 日日撸夜夜添| 简卡轻食公司| 久久av网站| 看非洲黑人一级黄片| av国产久精品久网站免费入址| 99久久精品一区二区三区| 日本与韩国留学比较| 免费观看无遮挡的男女| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品一区二区三区在线| 狂野欧美激情性xxxx在线观看| 91精品国产九色| 精品国产露脸久久av麻豆| 国产精品三级大全| 成年av动漫网址| 欧美日韩一区二区视频在线观看视频在线| 色哟哟·www| 欧美亚洲日本最大视频资源| 国产av码专区亚洲av| 欧美少妇被猛烈插入视频| 亚洲av综合色区一区| 人体艺术视频欧美日本| 日韩av免费高清视频| 99热这里只有是精品在线观看| 国产免费现黄频在线看| 又粗又硬又长又爽又黄的视频| 国产乱来视频区| 欧美最新免费一区二区三区| 2018国产大陆天天弄谢| 妹子高潮喷水视频| 婷婷色综合大香蕉| 日日爽夜夜爽网站| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人 | 亚洲国产欧美日韩在线播放| 久久鲁丝午夜福利片| 亚洲美女黄色视频免费看| 91久久精品国产一区二区三区| 亚洲精品456在线播放app| 大陆偷拍与自拍| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 久久久a久久爽久久v久久| 男女边摸边吃奶| a级毛片免费高清观看在线播放| 啦啦啦中文免费视频观看日本| 蜜桃国产av成人99| 蜜桃在线观看..| 22中文网久久字幕| 最近最新中文字幕免费大全7| av电影中文网址| 欧美变态另类bdsm刘玥| 免费高清在线观看视频在线观看| 18禁在线播放成人免费| 国产亚洲精品第一综合不卡 | 母亲3免费完整高清在线观看 | 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 免费久久久久久久精品成人欧美视频 | 视频在线观看一区二区三区| 免费观看的影片在线观看| 九草在线视频观看| 国产高清国产精品国产三级| 18禁在线播放成人免费| 久久狼人影院| 国产国拍精品亚洲av在线观看| 亚洲精品久久成人aⅴ小说 | 亚洲欧美清纯卡通| 免费观看av网站的网址| 久久久久网色| 天天躁夜夜躁狠狠久久av| 亚洲五月色婷婷综合| 婷婷色麻豆天堂久久| 人妻少妇偷人精品九色| 22中文网久久字幕| 男人爽女人下面视频在线观看| 日本黄大片高清| 99久国产av精品国产电影| av网站免费在线观看视频| 韩国av在线不卡| 只有这里有精品99| 亚洲成人一二三区av| 日韩不卡一区二区三区视频在线| 免费黄网站久久成人精品| 最新中文字幕久久久久| 国产在线一区二区三区精| 亚洲一级一片aⅴ在线观看| 高清毛片免费看| 亚洲av男天堂| 日韩视频在线欧美| 色哟哟·www| 久久av网站| 制服人妻中文乱码| 亚洲在久久综合| 午夜福利视频精品| 亚洲人成77777在线视频| 美女cb高潮喷水在线观看| 永久网站在线| 日本欧美国产在线视频| 日本免费在线观看一区| 精品久久久精品久久久| 中文字幕人妻丝袜制服| 下体分泌物呈黄色| 久久人妻熟女aⅴ| 熟女人妻精品中文字幕| 成人毛片a级毛片在线播放| 精品人妻熟女av久视频| a级毛片在线看网站| 三级国产精品片| 哪个播放器可以免费观看大片| 啦啦啦啦在线视频资源| 精品国产乱码久久久久久小说| 亚洲国产精品国产精品| 亚洲国产精品专区欧美| 国产在线一区二区三区精| 精品一区二区免费观看| 极品少妇高潮喷水抽搐| 亚洲精品日韩av片在线观看| a级毛片免费高清观看在线播放| 精品人妻在线不人妻| 搡老乐熟女国产| 国产成人一区二区在线| 久久青草综合色| 国产毛片在线视频| av一本久久久久| 免费人成在线观看视频色| 最近最新中文字幕免费大全7| 内地一区二区视频在线| 日本色播在线视频| 久久精品久久久久久久性| 91aial.com中文字幕在线观看| 国产成人aa在线观看| 国产精品偷伦视频观看了| 日本黄色片子视频| 91国产中文字幕| 狂野欧美白嫩少妇大欣赏| 满18在线观看网站| 亚洲欧美清纯卡通| 免费av不卡在线播放| 亚洲成人av在线免费| 校园人妻丝袜中文字幕| 国产精品不卡视频一区二区| 一级a做视频免费观看| 免费少妇av软件| 日韩大片免费观看网站| 久久精品国产a三级三级三级| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 只有这里有精品99| 亚洲欧美日韩另类电影网站| 中文天堂在线官网| 久久久久网色| 高清黄色对白视频在线免费看| 亚洲精品国产av成人精品| 久久久久久久久久人人人人人人| 卡戴珊不雅视频在线播放| 亚洲精品美女久久av网站| 黄色怎么调成土黄色| 欧美激情国产日韩精品一区| 人人澡人人妻人| 午夜福利,免费看| 99九九线精品视频在线观看视频| 久久久欧美国产精品| 久久久精品94久久精品| 一区二区日韩欧美中文字幕 | 久热这里只有精品99| av又黄又爽大尺度在线免费看| 在线观看人妻少妇| 十分钟在线观看高清视频www| av在线app专区| 亚洲综合色惰| 伊人久久国产一区二区| www.色视频.com| 久久精品国产a三级三级三级| 亚洲欧美成人综合另类久久久| 亚洲人成网站在线播| 亚洲欧美成人综合另类久久久| 欧美成人午夜免费资源| 免费播放大片免费观看视频在线观看| 18禁观看日本| 亚洲国产av新网站| 精品99又大又爽又粗少妇毛片| av福利片在线| 99热这里只有精品一区| 精品久久久久久电影网| 精品亚洲成a人片在线观看| 色吧在线观看| 久久久久久久亚洲中文字幕| 亚洲国产欧美在线一区| 日韩一区二区视频免费看| 色哟哟·www| 国产伦理片在线播放av一区| 欧美性感艳星| 欧美人与善性xxx| 少妇猛男粗大的猛烈进出视频| 日韩熟女老妇一区二区性免费视频| 午夜福利视频精品| 国产男女超爽视频在线观看| 精品久久久精品久久久| 肉色欧美久久久久久久蜜桃| 老司机亚洲免费影院| 亚洲av欧美aⅴ国产|