莊彪,閔志均,王延峰,張鵬,倪熊,瞿惠龍,丁育明(上海市浦東醫(yī)院,上海201399)
?
miR-34a在結(jié)腸癌細(xì)胞增殖和遷移中的作用及其分子機(jī)制
莊彪,閔志均,王延峰,張鵬,倪熊,瞿惠龍,丁育明(上海市浦東醫(yī)院,上海201399)
摘要:目的探討miR-34a在結(jié)腸癌細(xì)胞增殖和遷移中的作用,并驗證其靶點蛋白。方法傳代培養(yǎng)人結(jié)腸癌細(xì)胞株HCT-116,分別采用空病毒載體(pRI-CMV-GFP)轉(zhuǎn)染(陰性對照組)、慢病毒載體(pRI-CMV-GFP-miRNA-34a)轉(zhuǎn)染(慢病毒組),另選未經(jīng)任何處理的HCT-116細(xì)胞作為空白對照組。采用Real-time PCR法檢測miR-34a的相對表達(dá)量,采用MTT實驗、Transwell小室法檢測HCT-116細(xì)胞增殖和遷移能力,采用細(xì)胞免疫熒光試驗和Western blotting法驗證其靶點蛋白。結(jié)果以空白對照組miR-34a表達(dá)為1,陰性對照組為1.03±0.09,慢病毒組為6.41±1.56,慢病毒組高于陰性對照組及空白對照組(P均<0.01),證實慢病毒轉(zhuǎn)染成功。與空白對照組、陰性對照組比較,慢病毒組細(xì)胞增殖和遷移能力顯著下降(P均<0.01)。細(xì)胞免疫熒光試驗顯示,慢病毒組細(xì)胞c-Met的熒光強(qiáng)度顯著降低,而空白對照組與陰性對照組無明顯變化。Western blotting結(jié)果顯示,慢病毒組c-Met及磷酸化c-Met表達(dá)均低于陰性對照組、空白對照組(P均<0.01)。結(jié)論過表達(dá)miR-34a可抑制結(jié)腸癌細(xì)胞增殖及遷移,并下調(diào)靶點蛋白c-Met及磷酸化c-Met表達(dá),提示miR-34a可作為結(jié)腸癌治療的分子靶點。
關(guān)鍵詞:結(jié)腸癌;miR-34a;細(xì)胞增殖;細(xì)胞遷移;c-Met
微小RNA(miRNA)是一種廣泛存在于真核生物細(xì)胞內(nèi)、長約22個核苷酸、能與特定靶基因信使RNA的3′UTR配對結(jié)合來調(diào)控靶基因表達(dá)的非編碼RNA[1]。研究發(fā)現(xiàn),miRNAs(如miR-21、miR-143、miR-145等)能通過調(diào)控不同蛋白的表達(dá),影響結(jié)腸癌細(xì)胞的生物學(xué)行為[2]。miR-34a在肺癌、胃癌和肝癌等細(xì)胞中異常表達(dá)能夠誘導(dǎo)多種癌細(xì)胞凋亡并抑制其遷移[3, 4];但其在結(jié)腸癌細(xì)胞中的作用及其機(jī)制鮮見報道。2014年5月,我們采用慢病毒miR-34a過表達(dá)載體轉(zhuǎn)染結(jié)腸癌細(xì)胞,觀察其對結(jié)腸癌細(xì)胞增殖和遷移的影響,并驗證其靶點蛋白,旨在為結(jié)腸癌的臨床治療提供理論依據(jù)。
1材料與方法
1.1材料人結(jié)腸癌細(xì)胞株HCT-116,購自中國科學(xué)院上海細(xì)胞庫;miRNA提取試劑盒,購自德國QIAGEN公司;逆轉(zhuǎn)錄、熒光定量PCR試劑盒,購自日本TaKaRa公司;miR-34a過表達(dá)的慢病毒載體(pRI-CMV-GFP-miRNA-34a,以下稱慢病毒載體)和轉(zhuǎn)染增強(qiáng)劑(polybrene),購自上海吉瑪制藥技術(shù)有限公司;一抗(兔抗人anti-c-Met,anti-c-Met phosphorylation,GAPDH)和辣根過氧化物酶標(biāo)記的二抗(羊抗兔),購自美國Cell Signaling Technology公司;其他生化試劑購自Sigma公司。
1.2實驗方法
1.2.1細(xì)胞培養(yǎng)及轉(zhuǎn)染HCT-116細(xì)胞置于含10% FBS和100 U/mL青鏈霉素的DMEM培養(yǎng)基,37 ℃、5% CO2恒溫細(xì)胞培養(yǎng)箱內(nèi)培養(yǎng),每2~3天更換培養(yǎng)液。待細(xì)胞融合>80%,胰蛋白酶消化并傳代。取對數(shù)生長期細(xì)胞接種于6孔板,隨機(jī)分為空白對照組、陰性對照組、慢病毒組,37 ℃、5% CO2恒溫細(xì)胞培養(yǎng)箱培養(yǎng)。待細(xì)胞融合>30%時更換無血清培養(yǎng)基,陰性對照組轉(zhuǎn)染空病毒載體(pRI-CMV-GFP)、慢病毒組轉(zhuǎn)染慢病毒載體,空白對照組不予任何處理。按照1 μg載體∶500 μL DMEM混合均勻,加入polybrene(5 μg/mL)增強(qiáng)病毒轉(zhuǎn)染效率,室溫孵育30 min;將混合物加入6孔板中,混勻后繼續(xù)培養(yǎng),轉(zhuǎn)染12 h更換DMEM完全培養(yǎng)液。采用濃度遞增的嘌呤霉素對轉(zhuǎn)染后的細(xì)胞進(jìn)行穩(wěn)定表達(dá)篩選,細(xì)胞出現(xiàn)GFP綠色熒光表明轉(zhuǎn)染成功。取各組細(xì)胞1×106個,采用miRNA提取試劑盒提取總miRNA,TaqMan microRNA逆轉(zhuǎn)錄試劑盒將miRNA逆轉(zhuǎn)錄成cDNA。以cDNA為模板進(jìn)行Real-time PCR反應(yīng)。以U6為內(nèi)參校正PCR模板的拷貝數(shù)。以2-ΔΔCt法[5]計算各組miR-34a的相對表達(dá)量。每組設(shè)3個復(fù)孔,取平均值。
1.2.2HCT-116細(xì)胞增殖能力檢測采用MTT法。細(xì)胞分組及轉(zhuǎn)染同上,待轉(zhuǎn)染成功后,采用胰蛋白酶消化制成單細(xì)胞懸液,按2×103個/孔接種于96孔板中。分別于0、24、48、72 h,加入10 μL MTT試劑,37 ℃孵育1 h,酶標(biāo)儀480 nm處讀取每孔的吸光度(OD)值。細(xì)胞增殖能力=(當(dāng)日OD值-前日OD值)/前日OD值。
1.2.3HCT-116細(xì)胞遷移能力檢測采用Transwell小室法。細(xì)胞分組及轉(zhuǎn)染同上,待轉(zhuǎn)染成功后,于Transwell小室下室加入1 mL完全培養(yǎng)基,遷移小室內(nèi)加入200 μL細(xì)胞懸液(細(xì)胞密度1×106/mL),37 ℃孵育24 h;棉簽擦拭遷移小室內(nèi)未遷移至基底層細(xì)胞,向遷移小室內(nèi)加入200 μL染色液染色30 min,去除染色液,向每孔加入乙酸溶解染料,轉(zhuǎn)移至24孔板,置于酶標(biāo)儀570 nm處讀數(shù)。
1.2.4miR-34a靶點蛋白驗證①采用細(xì)胞免疫熒光試驗。細(xì)胞分組及轉(zhuǎn)染同上,待轉(zhuǎn)染成功后,于細(xì)胞培養(yǎng)板中將已爬好細(xì)胞的玻片用PBS浸洗,4%多聚甲醛常溫下固定15 min,0.5% Triton X-100室溫通透,PBS浸洗;玻片上滴加正常山羊血清,室溫封閉30 min;每張玻片滴加一抗(anti-c-Met)并放入濕盒,4 ℃孵育過夜;次日去除一抗,PBS清洗后加入熒光二抗,濕盒37 ℃孵育1 h;使用含抗熒光淬滅劑的封片液封片,熒光顯微鏡下觀察。②采用Western blotting法。細(xì)胞分組及轉(zhuǎn)染同上,48 h后取1×106個細(xì)胞,加入10 μL RIPA裂解液,10 min后提取總蛋白,并測定蛋白濃度,各組取50 μg蛋白進(jìn)行10% SDS-PAGE電泳。電泳結(jié)束后轉(zhuǎn)膜至PVDF膜,用5% milk-TBS將膜封閉1 h,加入相應(yīng)的第一抗體,靜置,4 ℃過夜。次日使用TBST漂洗,辣根過氧化物酶(HRP)標(biāo)記的二抗室溫孵育1 h,顯色拍照。
2結(jié)果
2.1各組miR-34a相對表達(dá)量比較轉(zhuǎn)染48 h,慢病毒組和陰性對照組可見GFP綠色熒光,而空白對照組未見GFP綠色熒光,表明慢病毒轉(zhuǎn)染成功。見插頁Ⅰ圖1。以空白對照組miR-34a表達(dá)為1,陰性對照組為1.03±0.09,慢病毒組為6.41±1.56。慢病毒組miR-34a表達(dá)高于陰性對照組、空白對照組(P均<0.01),而陰性對照組、空白對照組比較均無統(tǒng)計學(xué)差異(P>0.05)。
2.2各組細(xì)胞增殖能力及遷移能力比較見表1。
2.3miR-34a靶點蛋白驗證結(jié)果細(xì)胞免疫熒光試驗顯示,慢病毒組c-Met的熒光強(qiáng)度顯著降低,而空白對照組與陰性對照組無明顯變化。見插頁Ⅰ圖2。Western blotting結(jié)果顯示,以空白對照組c-Met及磷酸化c-Met表達(dá)為1,陰性對照組分別為1.10±0.22、1.14±0.31,慢病毒組分別為0.41±0.30、0.19±0.42。慢病毒組c-Met及磷酸化c-Met表達(dá)均低于陰性對照組、空白對照組(P均<0.01),而陰性對照組、空白對照組比較均無統(tǒng)計學(xué)差異(P均<0.01)。
表1 各組細(xì)胞增殖能力及遷移能力比較±s)
注:與空白對照組、陰性對照組比較,*P<0.01。
3討論
miRNAs是人體細(xì)胞內(nèi)種類最多的表達(dá)調(diào)控因子,具有多種生物學(xué)功能[6~8]。目前,miRNAs在癌細(xì)胞惡性生物學(xué)行為的調(diào)控已成為腫瘤研究熱點。有研究表明,腫瘤患者體內(nèi)miRNAs表達(dá)譜已經(jīng)出現(xiàn)顯著差異,通過對其中差異化表達(dá)明顯的miRNAs進(jìn)行初步篩選,證實部分miRNAs表達(dá)與腫瘤預(yù)后相關(guān)[9~13]。miR-34a作為一種最新鑒定的、與多種癌癥病理機(jī)制密切相關(guān)的miRNA,在前列腺癌、乳腺癌及胃癌中高表達(dá),并與腫瘤的侵襲及轉(zhuǎn)移密切相關(guān)。
為闡明miR-34a在結(jié)腸癌發(fā)生中的作用,本研究構(gòu)建了miR-34a過表達(dá)的慢病毒載體,并穩(wěn)定轉(zhuǎn)染HCT-116細(xì)胞,通過嘌呤霉素和Real-time PCR法證實轉(zhuǎn)染成功,并通過細(xì)胞功能試驗證實過表達(dá)miR-34a可顯著抑制HCT-116細(xì)胞增殖和遷移。
c-Met作為原癌基因,在多種癌細(xì)胞增殖、遷移和分化等過程中具有重要調(diào)節(jié)作用。c-Met在惡性腫瘤中過表達(dá),可能與腫瘤的進(jìn)展密切相關(guān)。Landskron等[14]研究發(fā)現(xiàn),潰瘍性結(jié)腸炎癌變黏膜c-Met表達(dá)明顯增高。本研究結(jié)果顯示,miR-34a可下調(diào)HCT-116細(xì)胞中靶點蛋白c-Met及磷酸化c-Met的表達(dá)。證實結(jié)腸癌細(xì)胞c-Met表達(dá)受miR-34a的調(diào)控,過表達(dá)miR-34a能夠顯著下調(diào)c-Met的表達(dá),繼而抑制結(jié)腸癌細(xì)胞的增殖和遷移。但在癌細(xì)胞的增殖、分化和遷移中,往往存在多種基因網(wǎng)絡(luò)或信號通路的共同參與,如TREM2、SIRT1等,也受miR-34a的抑制或增強(qiáng)[15]。因此,要進(jìn)一步明確miR-34a的作用及其機(jī)制,仍需對結(jié)腸癌相關(guān)基因的調(diào)控網(wǎng)絡(luò)進(jìn)行深入研究。
綜上所述,過表達(dá)miR-34a可抑制結(jié)腸癌細(xì)胞增殖及遷移,并下調(diào)靶點蛋白c-Met及磷酸化c-Met表達(dá),提示miR-34a可作為結(jié)腸癌治療的分子靶點。
參考文獻(xiàn):
[1] Pereira DM, Rodrigues PM, Borralho PM, et al. Delivering the promise of miRNA cancer therapeutics[J]. Drug Discov Today, 2013,18(5-6):282-289.
[2] Schepeler T, Reinert JT, Ostenfeld MS, et al. Diagnostic and prognostic microRNAs in stage Ⅱ colon cancer[J]. Cancer Res, 2008,68(15):6416-6424.
[3] Hong JH, Roh KS, Suh SS, et al. The Expression of microRNA-34a is inversely correlated with c-Met and CDK6 and has a prognostic significance in lung adenocarcinoma patients[J]. Tumour Biol, 2015,36(12):9327-9337.
[4] Xu X, Chen W, Miao R, et al. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting foxM1/c-Myc pathway[J]. Oncotarget, 2015,6(6):3988-4004.
[5] Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008,3(6):1101-1108.
[6] Shenouda SK, Alahari SK. microRNA function in cancer: oncogene or a tumor suppressor[J]. Cancer Metastasis Rev, 2009,28(3-4):369-378.
[7] Calin GA, Croce CM. microRNA signatures in human cancers[J]. Nat Rev Cancer, 2006,6(11):857-866.
[8] Mo YY. microRNA regulatory networks and human disease[J]. Cell Mol Life Sci, 2012,69(21):3529-3531.
[9] Schetter AJ, Leung SY, Sohn JJ, et al. microRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma[J]. JAMA, 2008,299(4):425-436.
[10] Duan K, Ge YC, Zhang XP, et al. miR-34a inhibits cell proliferation in prostate cancer by downregulation of SIRT1 expression[J]. Oncol Lett, 2015,10(5):3223-3227.
[11] Li G, Yao L, Zhang J, et al. Tumor-suppressive microrna-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52[J]. Tumour Biol, 2015.[Epud ahead of print]
[12] Cho CY, Huang JS, Shiah SG, et al. Negative feedback regulation of AXL by miR-34a modulates apoptosis in lung cancer cells[J]. RNA, 2015. [Epud ahead of print]
[13] Yan D, Zhou X, Chen X, et al. microRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met[J]. Invest Ophthalmol Vis Sci, 2009,50(4):1559-1565.
[14] Landskron G, De la Fuente M, Thuwajit P, et al. Chronic inflammation and cytokines in the tumor microenvironment[J]. J Immunol Res, 2014,2014:149185.
[15] Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci U S A, 2008,105(36):13421-13426.
Function and molecular mechanism of miR-34a in proliferation and migration of colon cancer
ZHUANGBiao,MINZhijun,WANGYanfeng,ZHANGPeng,NIXiong,QUHuilong,DINGYuming
(ShanghaiPudongHospital,Shanghai201399,China)
Abstract:ObjectiveTo explore the role of miR-34a in the proliferation and migration of colon cancer cells, and to validate the target protein. MethodsThe empty vector (pRI-CMV-GFP) and lentiviral vector (pRI-CMV-GFP-miRNA-34a vector) were transfected into human colon cancer cell line (HCT-116) as the negative control group and lentiviral group, while HCT116 cells without any processing were regarded as the blank control group. The expression of miR-34a was detected by real-time PCR. MTT and Transwell assays were used to detect HCT-116 cell proliferation and migration. Immunofluorescence and Western blotting were applied to verify the target gene of miR-34a in HCT-116. ResultsThe expression of miR-34a in the blank control group was taken as 1, the expression of miR-34a in the negative control group and lentiviral group was 1.03±0.09 and 6.41±1.56, respectively. The lentiviral group was higher than the negative control group and blank control group (all P<0.01), which confirmed lentiviral transfection was successful. Compared with the blank control group and negative control group, the proliferation and migration abilities of HCT-116 cells in the lentiviral group were significantly decreased (all P<0.01). Moreover, the fluorescence intensity of c-Met in the lentiviral group was significantly decreased while no change was found in the other two groups. Western blotting showed that the expression of c-Met and phosphorylated c-Met in the lentiviral group was lower than that of the negative control and blank control group (all P<0.01). ConclusionOver-expression of miR-34a inhibits the proliferation and migration of colon cancer cells and down-regulates the target protein c-Met and phosphorylated c-Met expression, which suggests miR-34a could be a effective molecular target in treatment of colon cancer.
Key words:colon cancer; miR-34a; cell proliferation; cell migration; c-Met
(收稿日期:2015-11-21)
中圖分類號:R735.3
文獻(xiàn)標(biāo)志碼:A
文章編號:1002-266X(2016)08-0014-03
doi:10.3969/j.issn.1002-266X.2016.08.005
作者簡介:第一莊彪(1969-),男,副主任醫(yī)師,主要研究方向為胃腸道腫瘤綜合治療。E-mail: zhuangbiao2000@163.com
基金項目:上海市浦東新區(qū)衛(wèi)生和計劃生育委員會衛(wèi)生科技項目(PW2014A-28)。