湯達(dá)禎,趙俊龍,許 浩,李治平,陶 樹,李 松
(1.中國(guó)地質(zhì)大學(xué)(北京) 能源學(xué)院,北京 100083;2.煤層氣開(kāi)發(fā)利用國(guó)家工程中心煤儲(chǔ)層實(shí)驗(yàn)室,北京 100083)
?
中—高煤階煤層氣系統(tǒng)物質(zhì)能量動(dòng)態(tài)平衡機(jī)制
湯達(dá)禎1,2,趙俊龍1,2,許浩1,2,李治平1,陶樹1,2,李松1,2
(1.中國(guó)地質(zhì)大學(xué)(北京) 能源學(xué)院,北京100083;2.煤層氣開(kāi)發(fā)利用國(guó)家工程中心煤儲(chǔ)層實(shí)驗(yàn)室,北京100083)
摘要:基于中—高煤階煤儲(chǔ)層欠飽和特性及煤層氣井生產(chǎn)數(shù)據(jù),以臨界解吸壓力為關(guān)鍵參數(shù)節(jié)點(diǎn),揭示了中—高煤階煤層氣系統(tǒng)物質(zhì)能量動(dòng)態(tài)平衡機(jī)制及其對(duì)煤層氣開(kāi)發(fā)過(guò)程的控制作用。結(jié)果表明:基于上述機(jī)制可以實(shí)現(xiàn)儲(chǔ)層壓力和含水飽和度實(shí)時(shí)監(jiān)測(cè)、煤層氣井單井可采儲(chǔ)量計(jì)算、儲(chǔ)層滲透率(包括絕對(duì)滲透率、相對(duì)滲透率、有效滲透率)動(dòng)態(tài)預(yù)測(cè)、產(chǎn)能動(dòng)態(tài)數(shù)值模擬等4方面現(xiàn)場(chǎng)需求;煤儲(chǔ)層相對(duì)含氣量(吸附態(tài)氣體飽和度)越高,儲(chǔ)層壓力與含水飽和度下降越快,煤層氣越容易解吸產(chǎn)出;臨界解吸壓力后,煤層氣井生產(chǎn)時(shí)間越長(zhǎng),儲(chǔ)量計(jì)算準(zhǔn)確性越高;在整個(gè)煤層氣生產(chǎn)過(guò)程中,煤儲(chǔ)層滲透率被統(tǒng)一為儲(chǔ)層壓力的函數(shù),欠飽和相滲曲線能更好地反映煤儲(chǔ)層正負(fù)效應(yīng)及氣體滑脫效應(yīng);在產(chǎn)能預(yù)測(cè)方面,欠飽和相滲模型較飽和相滲模型更加準(zhǔn)確,精確度更高。
關(guān)鍵詞:物質(zhì)能量;動(dòng)態(tài)平衡;中—高煤階;煤層氣系統(tǒng);欠飽和煤儲(chǔ)層;韓城地區(qū)
煤層氣是常規(guī)油氣的重要戰(zhàn)略補(bǔ)充,已成為非常規(guī)天然氣中舉足輕重的能源資源[1]。近年來(lái),中國(guó)沁水盆地、鄂爾多斯盆地中—高煤階煤層氣商業(yè)化開(kāi)發(fā)已取得了成功[1-2]。然而,煤層氣產(chǎn)業(yè)在取得重大突破的同時(shí),也遇到了諸多難題,其中煤層氣開(kāi)發(fā)地質(zhì)基礎(chǔ)理論薄弱,已成為制約中國(guó)煤層氣產(chǎn)業(yè)發(fā)展的關(guān)鍵因素[3]。煤層氣開(kāi)發(fā)是一個(gè)集排水、降壓、解吸、擴(kuò)散、滲流、產(chǎn)出的綜合過(guò)程[4-6]。依據(jù)原始儲(chǔ)層壓力下煤層實(shí)測(cè)含氣量與理論含氣量的比值(即相對(duì)含氣量,又稱吸附態(tài)含氣飽和度),煤層氣藏可劃分為飽和煤層氣藏(相對(duì)含氣量≥100%)和欠飽和煤層氣藏(相對(duì)含氣量<100%)[7]。目前,世界上已發(fā)現(xiàn)的絕大多數(shù)煤層氣藏都是欠飽和的,如加拿大阿爾伯塔盆地下白堊統(tǒng)蓋茨組4號(hào)煤相對(duì)含氣量約為90%[8],中國(guó)鄂爾多斯盆地東緣渭北煤層氣藏相對(duì)含氣量為39.2%~87.2%[9-10],沁水盆地南部煤層氣藏相對(duì)含氣量現(xiàn)場(chǎng)測(cè)試結(jié)果為40.8%[11]。而相對(duì)含氣量直接控制著煤層氣井的氣、水產(chǎn)出動(dòng)態(tài)[12]。當(dāng)前煤儲(chǔ)層基礎(chǔ)理論研究多以飽和煤層氣藏為前提[13-15],這就容易造成理論分析、實(shí)驗(yàn)測(cè)試、數(shù)值模擬結(jié)果與實(shí)際煤層氣生產(chǎn)存在較大誤差,無(wú)法真實(shí)反映煤層氣開(kāi)發(fā)動(dòng)態(tài),分析欠飽和煤層氣藏開(kāi)發(fā)機(jī)理與產(chǎn)能動(dòng)態(tài)具有更為現(xiàn)實(shí)的意義。筆者以中—高煤階煤儲(chǔ)層的欠飽和特性及煤層氣井生產(chǎn)數(shù)據(jù)為基礎(chǔ),選擇臨界解吸壓力(臨界含水飽和度)為關(guān)鍵參數(shù)節(jié)點(diǎn),研究提出了中—高煤階煤層氣系統(tǒng)物質(zhì)能量動(dòng)態(tài)平衡作用機(jī)制,探討了其在煤層氣開(kāi)發(fā)過(guò)程中的實(shí)踐應(yīng)用,以期為生產(chǎn)提供預(yù)測(cè)依據(jù)和理論指導(dǎo)。
1煤層氣采收機(jī)理與開(kāi)發(fā)動(dòng)態(tài)
1.1煤層氣采收機(jī)理
煤層氣藏開(kāi)發(fā)過(guò)程中,若原始儲(chǔ)層壓力低于臨界解吸壓力,一旦儲(chǔ)層壓力發(fā)生降低,煤層氣將立即從煤基質(zhì)內(nèi)表面發(fā)生解吸,從而煤層氣生產(chǎn)將以氣、水兩相共流開(kāi)始,此類煤層氣藏被稱為飽和煤層氣藏。值得注意的是,少數(shù)干燥的飽和煤層氣藏初始生產(chǎn)就可能以單相氣流開(kāi)始[7]。相反,若煤層氣藏原始儲(chǔ)層壓力高于臨界解吸壓力,煤層氣藏原始生產(chǎn)將以單相水流開(kāi)始,這被稱為欠飽和煤層氣藏??梢?jiàn),臨界解吸壓力是區(qū)分煤層氣藏類型、建立煤層氣井排采制度、進(jìn)行理論與實(shí)際分析的關(guān)鍵參數(shù)。
利用等溫吸附曲線可以揭示上述煤層氣采收機(jī)理,判定煤儲(chǔ)層的吸附態(tài)氣體飽和性[7,14]。以韓城地區(qū)為例,含氣量和等溫吸附測(cè)試結(jié)果顯示,該區(qū)煤儲(chǔ)層含氣量為6.89~13.60 m3/t,87.5%的煤層屬于欠飽和煤層(圖1和表1,圖中,p0為原始儲(chǔ)層壓力,MPa;pc為臨界解吸壓力,MPa;pL為蘭氏壓力,MPa;Vc為實(shí)測(cè)含氣量,m3/t;VL為蘭氏體積,m3/t;Sr為相對(duì)含氣量)。
圖1 欠飽和概念示意Fig.1 Isotherm demonstrating the concept of unsaturation
1.2煤層氣藏開(kāi)發(fā)動(dòng)態(tài)
與飽和煤層氣藏不同,欠飽和煤層氣藏生產(chǎn)動(dòng)態(tài)更為復(fù)雜[16]。從煤層氣井排水降壓到氣體解吸之前,為排水降壓階段,微弱的欠飽和特征將會(huì)大大延長(zhǎng)排水期。在這一階段內(nèi),儲(chǔ)層僅存在飽和單相水流,只受有效應(yīng)力作用,且水相相對(duì)滲透率保持最大值(圖2(a))。
當(dāng)煤層氣藏局部?jī)?chǔ)層壓力降低至臨界解吸壓力以下,煤層氣發(fā)生解吸,形成游離態(tài)氣體,但因游離氣飽和度很小且小于殘余氣飽和度,此時(shí)氣井仍未產(chǎn)出煤層氣。氣體以孤立的氣泡形式存在,煤層內(nèi)出現(xiàn)非飽和單相水流,儲(chǔ)層經(jīng)受有效應(yīng)力效應(yīng)為主、煤基質(zhì)收縮效應(yīng)為輔的雙重作用,滲透率開(kāi)始改善,但仍小于原始值,水相相對(duì)滲透率開(kāi)始下降(圖2(b))。
隨著儲(chǔ)層壓力的繼續(xù)下降,吸附態(tài)氣體不斷解吸,游離態(tài)氣體飽和度不斷增加。當(dāng)游離態(tài)氣體飽和度超過(guò)殘余氣飽和度時(shí),原本孤立的氣泡形成連續(xù)性氣流,氣井開(kāi)始產(chǎn)出煤層氣。此時(shí),煤儲(chǔ)層產(chǎn)生明顯的基質(zhì)收縮和相對(duì)弱的有效應(yīng)力效應(yīng),甚至氣體滑脫效應(yīng)。煤儲(chǔ)層滲透率得到明顯改善,氣相相對(duì)滲透率開(kāi)始上升,水相相對(duì)滲透率持續(xù)下降(圖2(c))。
可見(jiàn),開(kāi)發(fā)欠飽和煤層氣藏,煤層氣井要經(jīng)歷飽和單相水流、欠飽和單相水流,煤層氣才會(huì)產(chǎn)出,也就是說(shuō),開(kāi)發(fā)過(guò)程中儲(chǔ)層壓力與臨界解吸壓力的配置關(guān)系(相對(duì)含氣量)控制著煤儲(chǔ)層流體相態(tài)-相滲及煤層氣藏開(kāi)發(fā)動(dòng)態(tài)。
表1 韓城地區(qū)煤儲(chǔ)層相對(duì)含氣量與臨界解吸壓力計(jì)算結(jié)果
注:*相對(duì)含氣量Sr可通過(guò)蘭氏方程V=VLp/(p+pL)計(jì)算,以W2井11號(hào)煤為例,實(shí)測(cè)含氣量Vc=12.00 m3/t,理論含氣量Vt=17.61 m3/t,故相對(duì)含氣量Sr=Vc/Vt×100%=68.16%;** 臨界解吸壓力pc也可通過(guò)蘭氏方程計(jì)算,以W3井5號(hào)煤為例,蘭氏方程可以改寫為p=VpL/ (VL-V),因此,臨界解吸壓力pc=VcpL/ (VL-Vc)=7.70 MPa。
圖2 欠飽和煤層氣藏開(kāi)發(fā)過(guò)程中氣、水產(chǎn)出與相滲-相態(tài)特征綜合示意Fig.2 Comprehensive schematic of gas and water production,phase,permeability during the unsaturated CBM reservoir development
2物質(zhì)能量動(dòng)態(tài)平衡機(jī)制
煤層氣藏開(kāi)發(fā)過(guò)程中,有效應(yīng)力和基質(zhì)收縮雙重作用會(huì)誘導(dǎo)滲透率正負(fù)效應(yīng)和儲(chǔ)層壓力動(dòng)態(tài)變化,儲(chǔ)層孔隙度、滲透率、束縛水飽和度等參數(shù)發(fā)生規(guī)律性變化。King[17]最早提出了利用氣、水物質(zhì)平衡方程計(jì)算飽和煤層氣藏儲(chǔ)層壓力與含水飽和度的方法,但是對(duì)于欠飽和煤層氣藏來(lái)說(shuō),該方程難以直接應(yīng)用,需要對(duì)其改進(jìn)。
這里做分析對(duì)象的簡(jiǎn)化處理:① 臨界解吸壓力前,儲(chǔ)層以單相水流為主,臨界解吸壓力后,煤層氣開(kāi)始解吸,兩相共流出現(xiàn),直至產(chǎn)氣衰竭;② 煤層氣藏封閉,生產(chǎn)后期將出現(xiàn)邊界控制流,穿過(guò)裂縫并且遵循達(dá)西定律的徑向氣、水滲流;③ 排采過(guò)程中儲(chǔ)層物性均勻、各向同性、溫度恒定;④ 原始?xì)獠貧怏w均以吸附態(tài)儲(chǔ)集在煤基質(zhì)內(nèi)表面,無(wú)游離氣產(chǎn)出;⑤ 臨界解吸壓力下,氣體從基質(zhì)中瞬間解吸、立即擴(kuò)散到裂縫中。
2.1單相排水階段物質(zhì)動(dòng)態(tài)平衡
臨界解吸壓力前,隨著排水作業(yè)的進(jìn)行,儲(chǔ)層壓力與含水飽和度下降,產(chǎn)水量逐漸減小,無(wú)氣體產(chǎn)出,這時(shí)只存在水相物質(zhì)平衡,即任意時(shí)刻儲(chǔ)層裂縫中所含水的地下體積等于原始儲(chǔ)層壓力時(shí)裂縫中所含水的地下體積、水的彈性膨脹增加的水體積、外部侵入水的體積之和減去累計(jì)采水的地下體積:
(1)
式中,A為煤層氣供氣面積,m2;h為煤層厚度,m;φ為當(dāng)前孔隙度;Sw為當(dāng)前含水飽和度;Swi為原始含水飽和度;φ0為原始孔隙度;Cw為地層水壓縮系數(shù),MPa-1;p為當(dāng)前儲(chǔ)層壓力,MPa;pc為臨界解吸壓力,MPa;Wp為任意時(shí)刻的儲(chǔ)層累計(jì)產(chǎn)水量的地下體積,m3;Wi為外部侵入水的地下體積,m3;Bw為地層水體積系數(shù),m3/m3。
負(fù)效應(yīng)作用下的孔隙度變化由改進(jìn)的PMG模型[18]獲取,即
(2)
(3)
由于臨界解吸壓力前,煤儲(chǔ)層只有單相水產(chǎn)出,物質(zhì)平衡方程也可以表達(dá)為:累計(jì)產(chǎn)水的地下體積等于孔隙體積壓縮系數(shù)、儲(chǔ)層壓力差和孔隙體積的乘積加上外部侵入水的體積[19],即
(4)
臨界解吸壓力時(shí),
(5)
(6)
式中,Ct為孔隙體積壓縮系數(shù),MPa-1;Wpc為臨界解吸壓力對(duì)應(yīng)的累計(jì)產(chǎn)水量,m3;Wic為臨界解吸壓力對(duì)應(yīng)的累計(jì)水侵量,m3;φc為臨界解吸壓力對(duì)應(yīng)的孔隙度。
由式(1)和式(4)~(6)得到儲(chǔ)層壓力變化關(guān)系為
(7)
通過(guò)式(3)和式(7)就可以計(jì)算單相排水階段儲(chǔ)層壓力與含水飽和度的變化。
2.2兩相共流階段物質(zhì)動(dòng)態(tài)平衡
儲(chǔ)層壓力降到臨界解吸壓力后,產(chǎn)水量持續(xù)下降,氣體開(kāi)始解吸,產(chǎn)氣量逐漸上升,氣、水物質(zhì)動(dòng)態(tài)平衡同時(shí)存在,即任意時(shí)刻儲(chǔ)層累計(jì)產(chǎn)氣量的地面體積=裂縫中游離氣原始地質(zhì)儲(chǔ)量+基質(zhì)中吸附氣原始地質(zhì)儲(chǔ)量-裂縫中游離氣剩余地質(zhì)儲(chǔ)量-基質(zhì)中吸附氣剩余地質(zhì)儲(chǔ)量(均換算為地面體積),即
(8)
式中,Gp為任意時(shí)刻的儲(chǔ)層累計(jì)產(chǎn)氣量的地面體積,m3;Swc為臨界解吸壓力對(duì)應(yīng)的含水飽和度,即臨界含水飽和度;Bg為天然氣體積系數(shù),m3/m3;ρB為煤密度,kg/m3;pa為廢棄壓力,MPa。
水相物質(zhì)平衡方程與臨界解吸壓力前單相排水階段方程一致,區(qū)別在于初始值為臨界解吸壓力對(duì)應(yīng)數(shù)值,即
(9)
正負(fù)效應(yīng)雙重作用下的孔隙度變化從改進(jìn)的PMG模型[18]獲取
(10)
式中,Smax為蘭氏最大體積應(yīng)變。
由式(8)~(10)可得
(11)
聯(lián)立氣、水物質(zhì)平衡方程,得到對(duì)應(yīng)儲(chǔ)層壓力,代入式(11)可以求出兩相共流階段煤儲(chǔ)層含水飽和度。
式(1)~(11)表明,物質(zhì)能量動(dòng)態(tài)平衡方法最直接的作用是對(duì)開(kāi)發(fā)過(guò)程中儲(chǔ)層壓力及其對(duì)應(yīng)的含水飽和度的實(shí)時(shí)監(jiān)測(cè),進(jìn)而進(jìn)行煤層氣井產(chǎn)能預(yù)測(cè)、儲(chǔ)層滲透率及單井可采儲(chǔ)量計(jì)算。圖3為利用該方法實(shí)現(xiàn)上述幾個(gè)現(xiàn)場(chǎng)需求的流程,主要包括:① 現(xiàn)場(chǎng)獲取生產(chǎn)井累計(jì)氣、水產(chǎn)出數(shù)據(jù);② 通過(guò)物質(zhì)動(dòng)態(tài)平衡方程模擬生產(chǎn)過(guò)程中儲(chǔ)層壓力及對(duì)應(yīng)含水飽和度的變化;③ 將儲(chǔ)層壓力代入絕對(duì)滲透率模型,預(yù)測(cè)絕對(duì)滲透率的變化;將含水飽和度代入相對(duì)滲透率模型,預(yù)測(cè)相對(duì)滲透率的變化,同時(shí),為了考慮孔隙度變化誘發(fā)的束縛水飽和度的變化,可通過(guò)壓汞法擬合束縛水飽和度和孔隙度的關(guān)系,用于動(dòng)態(tài)數(shù)值模擬;④ 耦合同一時(shí)刻相對(duì)滲透率與絕對(duì)滲透率,得到該時(shí)刻有效滲透率;⑤ 將儲(chǔ)層壓力與含水飽和度代入視偏差因子中,繪制視地層壓力和累計(jì)產(chǎn)氣量的散點(diǎn)關(guān)系,通過(guò)曲線擬合計(jì)算煤層氣井可采儲(chǔ)量。
3方法應(yīng)用與算例分析
3.1儲(chǔ)層壓力與含水飽和度實(shí)時(shí)監(jiān)測(cè)
以韓城地區(qū)H1井為例,分析煤儲(chǔ)層壓力與含水飽和度在煤層氣開(kāi)發(fā)過(guò)程中的實(shí)時(shí)變化,模型基礎(chǔ)數(shù)據(jù)見(jiàn)表2,3。圖4為利用物質(zhì)動(dòng)態(tài)平衡方法計(jì)算得到的不同相對(duì)含氣量下含水飽和度隨儲(chǔ)層壓力的變化曲線。總體上,隨著排水降壓的進(jìn)行,儲(chǔ)層含水飽和度在不斷下降,但是高相對(duì)含氣量(Sr=95.2%)儲(chǔ)層比低相對(duì)含氣量(Sr=45.1%)儲(chǔ)層含水飽和度下降更快。究其原因,主要是由于相對(duì)含氣量越高,臨界解吸壓力越接近儲(chǔ)層壓力,從而排水降壓難度越小,儲(chǔ)層壓力和含水飽和度越容易降低。
圖3 利用物質(zhì)動(dòng)態(tài)平衡法實(shí)現(xiàn)儲(chǔ)層壓力與含水飽和度實(shí)時(shí)監(jiān)測(cè)、可采儲(chǔ)量與滲透率計(jì)算、產(chǎn)能預(yù)測(cè)流程Fig.3 Workflows of reservoir pressure and water saturation realtime monitoring,recoverable reserves computation,permeability and productivity prediction with material dynamic balance method
參 數(shù)取值井H1井H2獲取方式參 數(shù)取值井H1井H2獲取方式煤層面積A/m240000125600現(xiàn)場(chǎng)數(shù)據(jù)地層水體積系數(shù)Bw/(m3·m-3)1.01.0參考文獻(xiàn)[23]煤層厚度h/m5.826現(xiàn)場(chǎng)數(shù)據(jù)泊松比ν0.250.25三軸應(yīng)力測(cè)試原始孔隙度φ0.0350.038壓汞測(cè)試最大蘭氏體積應(yīng)變Smax0.0120.012吸附膨脹測(cè)試原始含水飽和度Swi11相對(duì)滲透率測(cè)試楊氏模量E/MPa40004000三軸應(yīng)力測(cè)試割理壓縮系數(shù)Cf/MPa-10.0003590.000325估計(jì)水平方向割理孔隙百分比g0.10.1參考文獻(xiàn)[21]地層水壓縮系數(shù)Cw/MPa-10.0004640.000464參考文獻(xiàn)[20]滑脫系數(shù)bc/MPa—0.15覆壓滲透率測(cè)試顆粒壓縮系數(shù)Cs/MPa-100參考文獻(xiàn)[21]氣相端點(diǎn)相對(duì)滲透率krg0—0.7相對(duì)滲透率測(cè)試天然氣體積系數(shù)Bg/(m3·m-3)0.010.01現(xiàn)場(chǎng)數(shù)據(jù)水相端點(diǎn)相對(duì)滲透率krw0—1相對(duì)滲透率測(cè)試煤巖密度ρB/(kg·m-3)16001600密度測(cè)試束縛水飽和度Swc—0.85壓汞測(cè)試蘭氏體積VL/(m3·t-1)18/28/3825等溫吸附測(cè)試割理尺寸分布指數(shù)η—0.3相對(duì)滲透率測(cè)試原始儲(chǔ)層壓力p0/MPa4.204.50現(xiàn)場(chǎng)數(shù)據(jù)迂曲度λ—2.6相對(duì)滲透率測(cè)試臨界解吸壓力pc/MPa3.75/1.67/1.073.88公式計(jì)算殘余氣飽和度Sgr—0.05估計(jì)廢棄壓力pa/MPa—0.7參考文獻(xiàn)[22]原始滲透率k0/10-15m2—0.6覆壓滲透率測(cè)試含氣量Vc/(m3·t-1)1013.71現(xiàn)場(chǎng)數(shù)據(jù)儲(chǔ)層溫度T/K—297.65現(xiàn)場(chǎng)數(shù)據(jù)蘭氏壓力pL/MPa33.2等溫吸附測(cè)試
3.2儲(chǔ)層滲透率計(jì)算與產(chǎn)能動(dòng)態(tài)預(yù)測(cè)
在煤儲(chǔ)層評(píng)價(jià)參數(shù)中,滲透率是儲(chǔ)層評(píng)價(jià)的重要內(nèi)容之一[24],其中有效滲透率與生產(chǎn)井產(chǎn)能關(guān)系最為密切[14],相滲曲線可以真實(shí)反映煤層氣井從單相水流到氣、水兩相流整個(gè)排采過(guò)程[25]。目前,已有眾多學(xué)者對(duì)煤儲(chǔ)層絕對(duì)滲透率進(jìn)行了理論分析與實(shí)驗(yàn)?zāi)M[13,15,18,20-21,23],但對(duì)相對(duì)滲透率及有效滲透率的研究較為薄弱。由于借鑒常規(guī)油氣實(shí)驗(yàn)相滲曲線測(cè)試受到儀器精度與樣品制備的限制,無(wú)法完全模擬天然裂縫與各種動(dòng)態(tài)參數(shù)變化,所以利用生產(chǎn)數(shù)據(jù)分析煤儲(chǔ)層滲透率動(dòng)態(tài)變化,成為一種有效手段[14,26]。
表3 用于算例分析的井H1和H2氣水產(chǎn)出數(shù)據(jù)
圖4 不同相對(duì)含氣量下含水飽和度隨儲(chǔ)層壓力變化關(guān)系Fig.4 Relationships between reservoir pressure and water saturation under different relative gas contents
筆者以PMG絕對(duì)滲透率模型[18]和CPL相對(duì)滲透率模型[27]作為基礎(chǔ)模型進(jìn)行滲透率計(jì)算。Palmer等[18]在原始Palmer-Mansoori模型[21]的基礎(chǔ)上,建立了考慮割理的非均質(zhì)性、滲透率彈性自調(diào)節(jié)性的PMG滲透率模型,但是該模型不適用于有效應(yīng)力作用顯著的欠飽和煤層氣藏,需要以臨界解吸壓力進(jìn)行改進(jìn)。此外,氣體滑脫效應(yīng)在低壓低滲條件下不可忽視,同樣需要考慮。因此,綜合改進(jìn)后的模型為
(12)
(13)
目前,廣泛應(yīng)用且能反映煤儲(chǔ)層特有的割理、裂隙系統(tǒng)的概念模型為火柴棍模型[28]。Chen等[27]基于火柴棍模型,耦合了割理尺寸分布指數(shù)和迂曲度,建立了CPL相對(duì)滲透率模型,筆者以臨界含水飽和度對(duì)其改進(jìn),改進(jìn)后的相對(duì)滲透率模型表達(dá)式為
(14)
(15)
(16)
式中,krg為氣相相對(duì)滲透率;krw為水相相對(duì)滲透率;krg0為氣相端點(diǎn)相對(duì)滲透率;krw0為水相端點(diǎn)相對(duì)滲透率;Swr為束縛水飽和度;Sgr為殘余氣飽和度;η為割理尺寸分布指數(shù);λ為迂曲度。
綜合式(1)~(16),在相同儲(chǔ)層壓力與含水飽和度下,欠飽和煤儲(chǔ)層有效滲透率被統(tǒng)一為儲(chǔ)層壓力的函數(shù),其動(dòng)態(tài)預(yù)測(cè)模型可簡(jiǎn)寫為
(17)
式中,kg為氣相有效滲透率,10-15m2;kw為水相有效滲透率,10-15m2。
以韓城H2井為例,分析開(kāi)發(fā)過(guò)程中煤儲(chǔ)層滲透率的變化,基礎(chǔ)數(shù)據(jù)見(jiàn)表2,3。表4為利用物質(zhì)動(dòng)態(tài)平衡方法對(duì)井H2進(jìn)行儲(chǔ)層滲透率預(yù)測(cè)結(jié)果??梢钥吹?,煤儲(chǔ)層絕對(duì)滲透率最終為0.643×10-15m2,較原始滲透率改善了7.2%。圖5表明,隨著儲(chǔ)層含水飽和度的降低,水相有效滲透率持續(xù)下降,但氣相有效滲透率直到儲(chǔ)層含水飽和度降低到0.913左右才開(kāi)始快速上升至0.279×10-15m2(橢圓圈出),隨后穩(wěn)定增長(zhǎng)。最終在正負(fù)效應(yīng)和滑脫效應(yīng)的綜合作用下,氣相有效滲透率比利用飽和有效滲透率模型[26]預(yù)測(cè)結(jié)果高,水相有效滲透率比之低??傮w上,2套模型在兩相共流階段的預(yù)測(cè)結(jié)果較為一致,但飽和相滲模型無(wú)法量化單相水階段氣、水有效滲透率變化。
表4 利用物質(zhì)動(dòng)態(tài)平衡方法對(duì)井H2進(jìn)行儲(chǔ)層滲透率預(yù)測(cè)結(jié)果
注:利用韓城煤巖壓汞實(shí)驗(yàn)數(shù)據(jù)擬合得到孔隙度和束縛水飽和度的關(guān)系為Swr=1.400 5e-11.44φ。
圖5 不同有效滲透率模型之間的對(duì)比Fig.5 Comparison of the effective permeability curves with different models
分析認(rèn)為,氣、水有效滲透率是煤層氣、水產(chǎn)出最為直接的反映,通過(guò)煤層氣井排采曲線可以解釋相滲曲線的差異。圖6表明,H2井在前400 d只有地層水產(chǎn)出(單相水階段),當(dāng)儲(chǔ)層壓力降低到臨界解吸壓力(3.88 MPa)后,煤層氣才大量產(chǎn)出,且產(chǎn)氣量?jī)H在100 d內(nèi)就上升至2 500 m3/d(橢圓圈出),隨后進(jìn)入穩(wěn)產(chǎn)階段。由于這100 d中,煤層氣足夠充分,孔隙流體的流態(tài)由單相水流快速過(guò)渡為氣、水兩相流,對(duì)應(yīng)氣相有效滲透率突破0后,出現(xiàn)先快速上升而后穩(wěn)定增長(zhǎng)的現(xiàn)象。相反,飽和有效滲透率曲線無(wú)法表征單相水階段氣、水有效滲透率的變化,故而無(wú)法反映真實(shí)的煤層氣井氣、水產(chǎn)出,但這一對(duì)比表明欠飽和理論更符合實(shí)際。
圖6 H2井氣、水產(chǎn)出動(dòng)態(tài)曲線Fig.6 Characteristics of gas and water production for well H2
此外,在獲得儲(chǔ)層滲透率之后,就可以對(duì)煤層氣、水產(chǎn)出特征進(jìn)行動(dòng)態(tài)數(shù)值模擬。圖7為利用飽和與欠飽和滲透率模型對(duì)H2井生產(chǎn)數(shù)據(jù)的預(yù)測(cè)結(jié)果。顯然,欠飽和滲透率模型對(duì)日產(chǎn)氣量與日產(chǎn)水量的預(yù)測(cè)與真實(shí)生產(chǎn)數(shù)據(jù)更為接近(日產(chǎn)氣量相對(duì)誤差一般不超過(guò)5%,而日產(chǎn)水量的相對(duì)誤差一般不超過(guò)10%),適用性與準(zhǔn)確性更好。這也從氣、水產(chǎn)出的角度證實(shí)了欠飽和理論的正確性。
3.3煤層氣井單井可采儲(chǔ)量計(jì)算
通過(guò)引入視氣體體積偏差因子(Z*),可以建立視平均地層壓力(p/Z*)和累計(jì)產(chǎn)氣量(Gp)之間的關(guān)系[17,29-30],即
(18)
圖8 H2井累計(jì)產(chǎn)氣量與視地層壓力擬合曲線Fig.8 Fitting between the accumulative gas production volume and apparent formation pressure for well H2
4結(jié)論與認(rèn)識(shí)
(1)欠飽和煤層氣藏開(kāi)發(fā)過(guò)程中氣井要經(jīng)歷較長(zhǎng)時(shí)間的排水降壓階段,煤儲(chǔ)層內(nèi)流體相態(tài)-相滲及煤層氣開(kāi)發(fā)動(dòng)態(tài)受儲(chǔ)層壓力與臨界解吸壓力的配置關(guān)系(相對(duì)含氣量,即原始地層壓力下吸附態(tài)氣體的飽和度)控制。
(2)以臨界解吸壓力為關(guān)鍵參數(shù)節(jié)點(diǎn)揭示的中—高煤階煤層氣系統(tǒng)物質(zhì)能量動(dòng)態(tài)平衡機(jī)制,可以實(shí)現(xiàn)儲(chǔ)層壓力和含水飽和度實(shí)時(shí)監(jiān)測(cè)、煤層氣井單井可采儲(chǔ)量計(jì)算、儲(chǔ)層滲透率(包括絕對(duì)滲透率、相對(duì)滲透率、有效滲透率)動(dòng)態(tài)預(yù)測(cè)、產(chǎn)能動(dòng)態(tài)數(shù)值模擬等4方面現(xiàn)場(chǎng)需求。
(3)煤儲(chǔ)層相對(duì)含氣量是判別煤儲(chǔ)層吸附態(tài)氣體飽和性,相對(duì)含氣量越高,儲(chǔ)層壓力與含水飽和度下降越快,煤層氣越容易解吸產(chǎn)出。同時(shí),臨界解吸壓力后,煤層氣井生產(chǎn)時(shí)間越長(zhǎng),可采儲(chǔ)量計(jì)算準(zhǔn)確性越高。
(4)煤儲(chǔ)層滲透率被統(tǒng)一為儲(chǔ)層壓力的一元函數(shù),與飽和相滲曲線相比,利用欠飽和相滲曲線不僅能更好地反映煤儲(chǔ)層正負(fù)效應(yīng)及氣體滑脫效應(yīng),而且對(duì)產(chǎn)能預(yù)測(cè)精確度更高。
參考文獻(xiàn):
[1]Zhao J L,Tang D Z,Xu H,et al.High production indexes and the key factors in coalbed methane production:A case in the Hancheng Block,southeastern Ordos Basin,China[J].Journal of Petroleum Science and Engineering,2015,130:55-67.
[2]Lü Y M,Tang D Z,Xu H,et al.Production characteristics and the key factors in high-rank coalbed methane fields:A case study on the Fanzhuang Block,Southern Qinshui Basin,China[J].International Journal of Coal Geology,2012,96-97:93-108.
[3]孫茂遠(yuǎn),楊陸武,劉申平.煤層氣基礎(chǔ)理論研究的關(guān)鍵科學(xué)問(wèn)題[J].煤炭科學(xué)技術(shù),2002,30(9):46-48.
Sun Maoyuan,Yang Luwu,Liu Shenping.Key scientific issues of basic theoretic research for coal bed methane[J].Coal Science and Technology,2002,30(9):46-48.
[4]馮文光.煤層氣藏工程[M].北京:科學(xué)出版社,2009.
[5]馮其紅,舒成龍,張先敏,等.煤層氣井兩相流階段排采制度實(shí)時(shí)優(yōu)化[J].煤炭學(xué)報(bào),2015,40(1):142-148.
Feng Qihong,Shu Chenglong,Zhang Xianmin,et al.Real-time optimization of drainage schedule for coalbed methanewells at gas-water two-phase flow stage[J].Journal of China Coal Society,2015,40(1):142-148.
[6]孟雅,李治平.覆壓下煤的孔滲性實(shí)驗(yàn)及其應(yīng)力敏感性研究[J].煤炭學(xué)報(bào),2015,40(1):154-159.
Meng Ya,Li Zhiping.Experimental study on the porosity and permeability of coal in net confining stress and its stress sensitivity[J].Journal of China Coal Society,2015,40(1):154-159.
[7]Carlson F M.Technical and economic evaluation of unsaturated coalbed methane reservoirs[A].Society of Petroleum Engineers paper 100224,presented at the SPE Europec/EAGE Annual Conference and Exhibition[C].Vienna,2006.
[8]Gentzis T,Goodarzi F,Cheung F K,et al.Coalbed methane producibility from the Mannville coals in Alberta,Canada:A comparison of two areas[J].International Journal of Coal Geology,2008,74:237-249.
[9]Yao Y B,Liu D M,Tang D Z,et al.Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei coalfield,Southeastern Ordos Basin,China[J].International Journal of Coal Geology,2009,78:1-15.
[10]Yao Y B,Liu D M,Qiu Y K.Variable gas content,saturation,and accumulation characteristics of Weibei coalbed methane pilot-production field in the southeastern Ordos Basin,China[J].AAPG Bulletin,2013,97:1371-1393.
[11]Wong S,Macdonald D,Andrei S,et al.Conceptual economics of full scale enhanced coalbed methane production and CO2storage in anthracitic coals at South Qinshui Basin,Shanxi,China[J].International Journal of Coal Geology,2010,82:280-286.
[12]蘇現(xiàn)波,陳江峰,孫俊民,等.煤層氣地質(zhì)學(xué)與勘探開(kāi)發(fā)[M].北京:科學(xué)出版社,2001.
[13]Zhao J L,Tang D Z,Xu H,et al.A permeability model for unsaturated coalbed methane reservoirs considering the effect of coal matrix shrinkage[J].Advanced Materials Research,2013,807-809:2413-2420.
[14]Zhao J L,Tang D Z,Xu H,et al.A dynamic prediction model for gas-water effective permeability in unsaturated coalbed methane reservoirs based on production data[J].Journal of Natural Gas Science and Engineering,2014,21:496-506.
[15]Shi J Q,Durucan S.Drawdown induced changes in permeability of coalbeds:A new interpretation of the reservoir response to primary recovery[J].Transport in Porous Media,2004,56:1-16.
[16]Pashin J C.Variable gas saturation in coalbed methane reservoirs of the Black Warrior Basin:Implications for exploration and production[J].International Journal of Coal Geology,2010,82:135-146.
[17]King G R.Material balance techniques for coal-seam and Devonian shale gas reservoirs with limited water influx[J].SPE Reservoir Evaluation and Engineering,1993,8:67-75.
[18]Palmer I,Mavor M,Gunter B.Permeability changes in coal seams during production and injection[A].Paper 0713 presented at the International Coalbed Methane Symposium[C].Tuscaloosa,2007.
[19]姜漢橋,姚軍,姜瑞忠.油藏工程原理與方法[M].東營(yíng):中國(guó)石油大學(xué)出版社,2006.
[20]Seidle J P,Jeansonne M W,Erickson D J.Application of matchstick geometry to stress dependent permeability in coals[A].SPE Rocky Mountain Regional Meeting,Casper,Wyoming[C].SPE 24361,1992.
[21]Palmer I,Mansoori J.Permeability depends on stress and pore pressure in coalbeds,a new model[J].SPE Reservoir Evaluation and Engineering,1998,1:539-544.
[22]張文忠,許浩,傅小康,等.利用等溫吸附曲線估算柳林區(qū)塊煤層氣可采資源量[J].大慶石油學(xué)院學(xué)報(bào),2010,34(1):29-32.
Zhang Wenzhong,Xu Hao,Fu Xiaokang,et al.Estimation of coalbed methane recoverable resources in Liulin block by means of adsorption isothermal curves[J].Journal of Daqing Petroleum Institute,2010,34(1):29-32.
[23]秦積瞬,李愛(ài)芬.油層物理學(xué)[M].東營(yíng):中國(guó)石油大學(xué)出版社,2006.
[24]Palmer I.Permeability changes in coal:Analytical modeling[J].International Journal of Coal Geology,2009,77:119-126.
[25]Ham Y,Kantzas A.Measurement of relative permeability of coal:approaches and limitations[A].Society of Petroleum Engineers paper 114994 presented at the CIPC/SPE Gas Technology Symposium 2008 Joint Conference[C].Canada,2008.
[26]Xu H,Tang D Z,Tang S H,et al.A dynamic prediction model for gas-water effective permeability based on coalbed methane production data[J].International Journal of Coal Geology,2014,121:44-52.
[27]Chen D,Pan Z,Liu J,et al.An improved relative permeability model for coal reservoirs[J].International Journal of Coal Geology,2013,109-110:45-57.
[28]van Golf-Racht T D.Fundamentals of fractured reservoir engineering[M].Netherlands:Elsevier Scientific Publishing Company,1982.
[29]薛成剛,曹文江,鐘英,等.煤層氣藏物質(zhì)平衡方程式的推導(dǎo)及儲(chǔ)量計(jì)算方法[J].天然氣勘探與開(kāi)發(fā),2000,23(4):44-49.
Xue Chenggang,Cao Wenjiang,Zhong Ying,et al.Derivation of coalbed methane reservoir material balance equations and reserves computation[J].Natural Gas Exploration and Development,2000,23(4):44-49.
[30]胡素明,李相方,胡小虎,等.考慮煤層氣藏地解壓差的物質(zhì)平衡儲(chǔ)量計(jì)算方法[J].煤田地質(zhì)與勘探,2012,40(1):14-19.
Hu Suming,Li Xiangfang,Hu Xiaohu,et al.Reserves calculation method with a material balance equation considering the difference between initial coal seam pressure and critical desorption pressure[J].Coal Geology and Exploration,2012,40(1):14-19.
Material and energy dynamic balance mechanism in middle-high rank coalbed methane (CBM) systems
TANG Da-zhen1,2,ZHAO Jun-long1,2,XU Hao1,2,LI Zhi-ping1,TAO Shu1,2,LI Song1,2
(1.SchoolofEnergyResources,ChinaUniversityofGeosciences(Beijing),Beijing100083,China;2.CoalReservoirLaboratoryofNationalEngineeringResearchCenterofCoalbedMethaneDevelopment&Utilization,Beijing100083,China)
Abstract:Based on the unsaturated characteristic of medium-high rank coal reservoirs and coalbed methane (CBM) well production data,the material and energy dynamic balance mechanism in middle-high rank CBM systems was revealed by considering the critical desorption pressure as a key parameter.The control action of this mechanism on practical CBM development was also analyzed.Results show that four aspects of the requirements in the field can be realized through using above mechanism,including the real-time monitoring of reservoir pressure and water saturation,the single CBM well recoverable reserves calculation,the reservoir absolute or relative as well as effective permeability dynamic prediction and the productivity dynamic numerical simulation.The higher the relative gas content (the absorbed gas saturation) of the coal reservoirs is,the faster the reservoir pressure and water saturation decline,the easier the CBM desorption is.After the reservoir pressure is under a critical desorption pressure,the longer production time could bring more accurate reserves computation.In the whole process of CBM production,the coal reservoir permeability are unified as the function of reservoir pressure and the unsaturated effective permeability curves can better reflect the positive and negative effects as well as the gas slippage effect.Meanwhile,the unsaturated effective permeability model is more accurate and precise than that of the saturated effective permeability model in the CBM well productivity prediction.
Key words:material and energy;dynamic balance;middle-high rank;CBM reservoir system;unsaturated coal reservoir;Hancheng area
中圖分類號(hào):P618.11
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0253-9993(2016)01-0040-09
作者簡(jiǎn)介:湯達(dá)禎(1957—),男,江蘇濱海人,教授,博士生導(dǎo)師。E-mail:tang@cugb.edu.cn
基金項(xiàng)目:國(guó)家科技重大專項(xiàng)資助項(xiàng)目(2016ZX05042-002);國(guó)家自然科學(xué)基金資助項(xiàng)目(41530314);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)基金資助項(xiàng)目(2652015331)
收稿日期:2015-08-19修回日期:2015-11-11責(zé)任編輯:韓晉平
湯達(dá)禎,趙俊龍,許浩,等.中—高煤階煤層氣系統(tǒng)物質(zhì)能量動(dòng)態(tài)平衡機(jī)制[J].煤炭學(xué)報(bào),2015,40(1):40-48.doi:10.13225/j.cnki.jccs.2015.9009
Tang Dazhen,Zhao Junlong,Xu Hao,et al.Material and energy dynamic balance mechanism in middle-high rank coalbed methane (CBM) systems[J].Journal of China Coal Society,2015,40(1):40-48.doi:10.13225/j.cnki.jccs.2015.9009