• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low temperature friction stir welding of P91 steel

    2016-04-18 10:14:18PrsdRoKALVALAJvedAKRAMMnoMISRADmodrmRAMACHANDRANJnkiRmGABBITA
    Defence Technology 2016年4期

    Prsd Ro KALVALA*,Jved AKRAMMno MISRADmodrm RAMACHANDRAN,Jnki Rm GABBITA

    aUniversity of Utah,Salt Lake City,USA

    bSSN College of Engineering,Kalavakkam,India

    cIndian Institute of Technology Madras,Chennai,India

    Low temperature friction stir welding of P91 steel

    Prasad Rao KALVALAa,*,Javed AKRAMa,Mano MISRAa,Damodaram RAMACHANDRANb,Janaki Ram GABBITAc

    aUniversity of Utah,Salt Lake City,USA

    bSSN College of Engineering,Kalavakkam,India

    cIndian Institute of Technology Madras,Chennai,India

    Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM)to study their effects on weld microstructural changes and impression creep behavior.Temperatures experienced by the stir zone were recorded at the weld tool tip.Different zones of welds were characterized for their microstructural changes,hardness and creep behavior (by impression creep tests).The results were compared with submerged arc fusion weld.Studies revealed that the stir zone temperature with 100 RPM was well below Ac1temperature of P91 steel while it was above Ac3with 1000 RPM.The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

    Friction stir welding;P91;Low temperature;Martensite;Carbides;Impression creep

    1.Introduction

    Modif i ed 9Cr-1Mo steels (P91)have been widely used for thermal power plant applications in view of their excellent creep strength.However,their weld counterparts are found to prematurely fail in their heat affected zone (HAZ)generally known asType IV cracking [1].Type IV cracking is found to be located in the f i ne grained heat affected zone (FGHAZ)and is related to the lower creep strength of the FGHAZ compared to the base material [2,3].The degradation of martensite lath subgrains into equiaxed subgrains is regarded as one of the major factors in reducing the creep strength of the FGHAZ [4]. This is attributed to the high temperature excursion of the FGHAZ region above Ac1/Ac3during welding.Due to short dwell times at the elevated temperature,carbides will not dissolve.This results in the formation of martensite (on quenching)with lean carbon and a degraded lath subgrain structure[4].Analytical results [5]showed that the stress triaxiality in the FGHAZ will accentuate Type IV cracking.

    One of the major technical challenges is to avoid the formation of f i ne grains in the HAZ of P91 welds by limiting the peaktemperatures in the HAZ well belowAc1/Ac3(857/914 °C)[6].It is not possible to avoid FGHAZ in welds fabricated by conventional fusion welding processes because the melting temperatures in the fusion zone reach temperatures above 1500 °C.If the temperature in the weld metal can be controlled well below Ac1(857 °C),then the HAZ will not experience temperatures above Ac1.Such control is possible in friction stir welding(FSW)where weld temperatures and microstructural changes can be controlled.In the current investigation,experiments were conducted to control the stir zone peak temperature well belowAc1by controlling the weld parameters.The main emphasis of this work was mainly on the microstructural characterization,substantiated by some preliminary impression creep results.Detailed studies on impression creep studies are underway as a follow-up investigation to this work.

    2.Experimental

    Fig.1.Friction stir welding of P91 in progress.

    The chemical composition (wt%)of P91 sheet used is as follows:Cr-8.91;Mo-0.98;C-0.09;Mn-0.42;Si-0.31;V-0.21;Nb-0.07;Fe-rest.Bead-on-plate friction stir welds with argon gas shielding (Fig.1)were made on a 3 mm thick P91 steel(Normalized and tempered).The welding experiments were performed at Mega Stir Technologies LLC,Provo.A convex scrolled shouldertooldesign madefrom a grade of polycrystalline cubic boron nitride (PCBN)weld tool was used with a small shoulder diameter and a tapered pin.The welding involved 3 stages: (1)Plunging stage:Tool rotational speed: 800 RPM;Plunge depth:2.5 mm with tool feed rate of 76 mm/ min in Z-direction.(2)Dwell stage:Plunge depth is increased from 2.5 mm to 2.8 mm in Z-direction.Once plunge depth reached 2.8 mm,the RPM was reduced to 100 from 800,the tool’s dwell time (with no tool movement)was set at 5 sec with 2500 N axial force.(3)Weld stage:After 5 sec dwell time,the tool started traversing with 100 RPM,55 mm/min traverse speed with 2500 N force.Friction stir welding experiment was repeated on a similar sheet of P91 with 1000 RPM rotational speed,keeping all other conditions same.The temperature of the stir zone was measured at the tip of the tool by inserting K-type thermocouple.For comparative purpose,a submerged arc weld (SAW)(3.75 kJ/mm heat input,post weld heat treated at 760 °C/16 hrs)was included in the study.The specimens were cut,polished and etched in the cross sectional direction of the weld to include stir (weld)zone,HAZ and base metal portions.The polished samples were etched using solution containing 1 g Picric acid+5 mL HCl and 100 mL Ethanol.Preliminary impression creep tests were conducted to assess the relative creep behavior of different welds.Flat specimens with dimensions 20 × 10 × 3 mm were used for impression creep test with the following test conditions:Test temperature: 650 °C;Indenter:Tungsten carbide,1 mm diameter,cylindrical,f l at bottom;Punching stress:280 MPa;Vacuum level:10-3Torr and test time:about 100 hrs (until attaining steady state). During impression creep testing,the displacement (i.e.,depth of impression)was continuously monitored (at 10 minute intervals)as a function of test time.Testing was terminated after going well into the secondary creep regime.

    3.Results and discussion

    3.1.Temperature prof i les

    Typical temperatures recorded with 100 and 1000 RPM are shown in Fig.2.It can be seen that the peak temperature at the tip of the tool was about 560 °C with 100 RPM and 775 °C with 1000 RPM.The temperature was more or less stable with welding time for 100 RPM weld whereas for 100 RPM weld,it increased gradually.

    3.2.Microstructures

    Fig.2.Temperature prof i les recorded with 100 and 1000 RPM.

    SEM micrographs were taken for different zones of the welds.The base metal consisted of typical martensitic lath structure with carbides distributed along grain boundaries and laths (Fig.3).When cooled from the austenizing temperature, P91 steel exhibits a lath martensitic structure with a high dislocation density.Post weld tempering results in two kinds of precipitates: (1)M23C6(M=Cr,F(xiàn)e,Mo)carbides located at prior austenite grain boundaries and at other(packet,block,and martensite lath)boundaries,and (2)f i nely dispersed MX-type(M=V,Nb and X=C,N)carbonitrides within laths [7].

    3.3.FSW weld with 100 RPM

    SEM microstructure of stir zone of weld made with 100 RPM (Fig.4(a))showed f i ne grains along with f i ne carbides distributed in the matrix.This can help impede dislocation movement and improve creep resistance within the stir zone.As the peak temperature experienced by the stir zone was well below theAc1(857 °C),it is expected that the carbides will be intact and will not dissolve into the matrix.Although M23C6particles were present at the prior austenite grain boundaries in the base metal,they were found to be fragmented and uniformly distributed in the matrix due to the severe plastic deformation of friction stir welding (Fig.4(a)).The carbide precipitates were too small to be analyzed using SEM-EDS.The tempered martensite structure was found to be preserved with lath features ref i ned.The MX precipitates are expected to be in the matrix undissolved as their dissolution temperature is above 1250 °C[8].Stir zone microstructure of 100 RPM weld indicates that it is possible to preserve the lath martensite structure without the dissolution of carbides.

    Fig.3.Base metal microstructure.

    Fig.4.Friction stir weld-100 RPM microstructure.

    HAZ microstructure of weld made with 100 RPM (Fig.4(b))was similar to the base metal microstructure (Fig.4(a))and the weld heat generated with 100 RPM appeared to have not caused signif i cant change to its microstructure.This was substantiated by the hardness and microstructural results.The HAZs immediately close to the stir zone (both on advance and retreating sides)did not show signif i cant change in hardness compared to unwelded base metal (Fig.5).Similarly,the microstructure of these regions showed no signif i cant change compared to the base metal(Fig.6).These results indicate that the temperatures experienced by the stir zone as well as HAZ of weld made with 100 RPM were below Ac1temperature.The temperature recorded at the tool tip also showed the same trend (Fig.2).

    Fig.5.Hardness prof i le of friction stir weld-100 RPM.

    3.4.FSW weld with 1000 RPM

    The SEM microstructure of stir zone of weld made with 1000 RPM (Fig.7(a))showed as-quenched martensitic needles. It is very clear from this micrograph that there are no carbide particles in the matrix.HAZ microstructure of weld made with 1000 RPM was found to be similar to the stir zone showing as-quenched martensitic structure with no carbides in the matrix (Fig.7(b)).

    For the martensite to exhibit as-quenched lath structure with no carbides in the matrix,P91 should have experienced temperatures in the ausenite region (temperature above Ac3).This indicates that the temperatures experienced by the stir zone as well as HAZ of the weld made with 1000 RPM were above Ac3temperature.The temperature recorded at the tool tip showed the same trend (Fig.2)for welds made with 1000 RPM.As the reported Ac3for P91 is 914 °C [6],it appears that the temperature difference between the tip of the tool and actual stir zone temperature could be approximately 200 °C.

    Fig.6.Friction stir weld-100 RPM-Microstructure of HAZ/stir zone.

    Fig.7.Friction stir weld-1000 RPM microstructure.

    3.5.Submerged arc weld

    Fig.8.Submerged arc weld-cross section.

    In SAW P91 welds (Fig.8),the following weld zones were observed: (a)coarse grain HAZ (Fig.9(a));(b)intercritical region;(c)f i ne grain HAZ (Fig.9(b));and (d)over tempered region.Coarse grain HAZ formed at 0-1.0 mm away from the fusion line which experiences temperatures well above the Ac3temperature during fusion welding.In the coarse grain HAZ,most carbides dissolve completely [9].This removes obstacles for austenite grain growth and favors the formation of coarse austenite.Upon cooling,the coarse austenite forms readily into martensite.Fine grain HAZ forms at temperatures just above the Ac3temperature where the α → γ phase transformation is almost complete.At temperatures between 1000 °C and 1135 °C even the large M23C6carbides dissolve [10].MX particles do not dissolve in austenite as their dissolution temperatures are even higher.MX is stable even up to a temperature of 1200 °C [11].During the PWHT and creep,pronounced recovery and recrystallization of the matrix occurs in this zone resulting in equiaxed grains without a lath structure.Coarsening and agglomeration of M23C6during PWHT and creep were also suggested as main factors reducing the creep rupture strength of the FGHAZ leading to type IV fracture in weldments of P91 steel without W [12,13].No lath martensite structure was observed in the f i ne grain HAZ of fusion welds [4].The disappearance of a lath martensite structure was caused by the instability of the f i ne grain HAZ microstructure.During the α → γ phase transformation,M23C6carbide particles do not fully dissolve into austenite.This results in a relatively small amount of carbon atoms available for diffusion into the matrix and accordingly the martensite formed on cooling will be lean in carbon content and will be unstable.The lath subgrain structure with a high density of free dislocations plays an important role in enhancing the creep rupture strength of a martensitic steel [4]. Therefore,the degradation of the lath subgrain structure into equiaxed subgrains (and the absence of lath martensite)can be regarded as one of the main factors reducing the creep strength in the FGHAZ signif i cantly leading to type IV cracking failures.

    Fig.9.Submerged arc weld.

    Fig.10.Impression creep graphs.

    3.6.The impression creep studies

    The depth of impression vs.time plots is shown in Fig.10:(a)base metal,(b)SAW f i ne grain HAZ,and (c)friction stir weld HAZ with 100 RPM.A linear f i t for the steady state part of the curve was made,from which the impression rate (which is the slope,dh/dt)was calculated.According to Sastry [14],the impression rate divided by the diameter of the indenter gives the creep rate.In the present case,since the diameter of the indenter is 1 mm,the impression rate is equal to the creep rate.The results showed that the f i ne grain HAZ of SAW sample showed higher impression creep rate (Fig.10(b))compared to the base metal(Fig.10(a)).The impression creep rate of HAZ portion of 100 RPM friction stir weld (Fig.10(c))was almost similar to that of the base metal(Fig.10(a)).The impression creep test for 100 RPM weld HAZ demonstrated that the low temperature FSW technique is useful in controlling the HAZ damage in P91 steel.Detailed studies are underway to study the impression creep behavior of other welds to understand the effect of weld parameters.The studies are also taken up on the effect of post weld tempering temperature and time on different welds.This approach can be applied for various other engineering alloys to control the weld metal as well as HAZ degradation which will be useful to improve their service life.

    4.Conclusions

    In summary,the microstructural degradation in the heat affected zone of P91 welds needs to be controlled in order to use these materials to the full designed life.Low temperature friction stir welding technique of P91 is proposed for this purpose.Temperature measurements,microstructural characterization and the impression creep tests conf i rmed the benef icial effects of the proposed technique.

    Acknowledgement

    We would like to thank Russell Steel,MegastirTechnologies LLC,Provo,Utah for making the welds and Murray Mahoney,Consultant,Midway,Utah for discussions.

    [1]Lundin CD,Liu P,Cui Y.A literature review on characteristics of high temperature ferritic Cr-Mo steels and weldments,WRC bulletin 454. New York,NY,USA:Welding Research Council,Inc.;2000.

    [2]Sakthivel T,Vasudevan M,Laha K,Parameswaran P,Chandravathi KS,PanneerSelvi S,et al.Creep rupture behavior of 9Cr-1.8W-0.5Mo-VNb(ASME grade 92)ferritic steel weld joint.Mater Sci Eng A 2014;591:111-20.

    [3]Zhao L,Jing H,Xu L.Investigation on mechanism of type IV cracking in P92 steel at 650°C.J Mater Res 2011;26:934-43.

    [4]Xue W,Qian-gang P,Yao-yao R,Wei S,Hui-qiang Z,Hong L. Microstructure and type IV cracking behavior of HAZ in P92 steel weldment.Mater Sci Eng A 2012;552:493-501.

    [5]Zhao L,Jing H,Xu L,An J,Xiao G.Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint. Mater Des 2012;34:566-75.

    [6]Vuherer T,Dundˉer M,Milovic′LJ,Zrilic′M,Samard?ic′I.Microstructural investigation of the heat-affected zone of simulated welded joint of P91 steel.Metalurgija 2013;52:317-20.

    [7]Jara DR.9-12% Crheatresistantsteels:alloy design,TEM characterisation of microstructure evolution and creep response at 650°C[Ph.D.thesis].Bochum,Chile:Ruhr-Universit?t Bochum;2011.

    [8]Suzuki K,Kumai S,Toda Y,Kushima H,Kimura K.Two-phase separation of primary MX carbonitride during tempering in creep resistant 9Cr1MoVNb steel.ISIJ Int 2003;43(7):1089-94.

    [9]Singh K,Jaipal Reddy G,Vidyasagar DV,Thyagarajan V.Creep and creep damage assessment in P91 weld joints,ECCC Creep Conference,12-14 September 2005,London,825-36.

    [10]Halid J.Metallurgy and Creep properties of new 9-12%Cr steels.Steels Res 1996;67:369-74.

    [11]Yoshino M,Mishima Y,Toda Y,Kushima H,Sawada K,Kimura K. Inf l uence of normalizing heat treatment on precipitation behaviour in modif i ed 9Cr-1Mo steel,ECCP creep conference,Creep&Fracture in HighTemperature Components,12-14 September 2005,London,153-64.

    [12]Albert SK,Matsui M,Hongo H,Watanabe T,Kubo K,Tabuchi M.Creep rupture properties of HAZs of a high Cr steel simulated by a weld simulator.Int J Pressure Vessel Piping 2004;81:221-34.

    [13]Otoguro Y,Matsubara M,Itoh I,Nakazawa T.Creep rupture strength of heat affected zone for 9Cr ferritic heat resisting steels.Nucl Eng Des 2000;196:51-61.

    [14]Sastry DH.Impression creep technique-an overview.Mater Sci Eng A 2005;409:67-75.

    Received 26 October 2015;accepted 10 November 2015 Available online 15 December 2015

    *Corresponding author.Tel.:+14157228105.

    E-mail addresses:jyothipr@gmail.com;prasad.kalvala@utah.edu (P.R. KALVALA).

    http://dx.doi.org/10.1016/j.dt.2015.11.003

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    丰满迷人的少妇在线观看| 国产男女超爽视频在线观看| 男女无遮挡免费网站观看| 天天躁狠狠躁夜夜躁狠狠躁| 日日啪夜夜爽| 熟妇人妻不卡中文字幕| 91成人精品电影| 久久久久久免费高清国产稀缺| 侵犯人妻中文字幕一二三四区| 日韩中文字幕欧美一区二区 | 午夜福利在线观看免费完整高清在| 色网站视频免费| 狠狠婷婷综合久久久久久88av| 人妻一区二区av| 中文字幕人妻丝袜一区二区 | 人妻一区二区av| 岛国毛片在线播放| 免费大片黄手机在线观看| 亚洲国产精品999| 色94色欧美一区二区| 九草在线视频观看| 色网站视频免费| 成年美女黄网站色视频大全免费| 日产精品乱码卡一卡2卡三| 亚洲精品,欧美精品| 久久99精品国语久久久| 男的添女的下面高潮视频| 亚洲av国产av综合av卡| a级毛片在线看网站| 亚洲欧美一区二区三区黑人 | 免费观看性生交大片5| 女人精品久久久久毛片| 777久久人妻少妇嫩草av网站| 久久ye,这里只有精品| 日本wwww免费看| 看非洲黑人一级黄片| av福利片在线| 一本—道久久a久久精品蜜桃钙片| 日本猛色少妇xxxxx猛交久久| 我的亚洲天堂| 精品卡一卡二卡四卡免费| a 毛片基地| 如何舔出高潮| 天天躁狠狠躁夜夜躁狠狠躁| 宅男免费午夜| 美女高潮到喷水免费观看| 国产成人精品久久久久久| 国产精品偷伦视频观看了| 国产一区二区在线观看av| 美女xxoo啪啪120秒动态图| 在线免费观看不下载黄p国产| 午夜福利乱码中文字幕| 免费高清在线观看视频在线观看| 美女xxoo啪啪120秒动态图| 日韩中文字幕欧美一区二区 | 黄网站色视频无遮挡免费观看| 18+在线观看网站| 日韩人妻精品一区2区三区| 国产成人精品婷婷| 日韩 亚洲 欧美在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产av码专区亚洲av| 精品国产一区二区久久| 黄片播放在线免费| 97人妻天天添夜夜摸| 波多野结衣av一区二区av| 成人亚洲精品一区在线观看| 亚洲综合色惰| a级毛片黄视频| 久久国产精品男人的天堂亚洲| 亚洲国产精品一区二区三区在线| 国产精品免费大片| 一级a爱视频在线免费观看| 午夜免费观看性视频| 成人毛片a级毛片在线播放| 一级片'在线观看视频| 色婷婷久久久亚洲欧美| 亚洲第一av免费看| 男女下面插进去视频免费观看| 欧美精品国产亚洲| 少妇 在线观看| 免费看不卡的av| 国产精品成人在线| 精品少妇内射三级| videos熟女内射| 叶爱在线成人免费视频播放| 亚洲欧洲日产国产| 国产精品久久久久久精品古装| 深夜精品福利| 国产极品粉嫩免费观看在线| 国产精品久久久久成人av| 欧美精品高潮呻吟av久久| 久久精品国产亚洲av高清一级| 中文精品一卡2卡3卡4更新| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 美女大奶头黄色视频| 国产精品 欧美亚洲| 少妇 在线观看| 亚洲第一青青草原| 久久久精品国产亚洲av高清涩受| av线在线观看网站| 看免费成人av毛片| 99热网站在线观看| 亚洲欧美清纯卡通| 成人午夜精彩视频在线观看| 国产熟女午夜一区二区三区| 午夜福利影视在线免费观看| 日韩欧美一区视频在线观看| 国产精品无大码| av在线播放精品| 亚洲欧美中文字幕日韩二区| 亚洲伊人色综图| 久热这里只有精品99| 国产成人精品福利久久| 亚洲精品久久久久久婷婷小说| 欧美日韩一级在线毛片| 夫妻午夜视频| 啦啦啦中文免费视频观看日本| av天堂久久9| 亚洲成av片中文字幕在线观看 | 亚洲av电影在线进入| 久久久欧美国产精品| 久久 成人 亚洲| 美女主播在线视频| av.在线天堂| 亚洲成av片中文字幕在线观看 | 97在线人人人人妻| 宅男免费午夜| 久久精品国产亚洲av高清一级| 菩萨蛮人人尽说江南好唐韦庄| 有码 亚洲区| 五月天丁香电影| 18禁观看日本| 午夜免费观看性视频| a级毛片在线看网站| 免费不卡的大黄色大毛片视频在线观看| 午夜福利影视在线免费观看| 久久久久国产精品人妻一区二区| 亚洲国产精品国产精品| 日本欧美视频一区| 免费在线观看完整版高清| 天天操日日干夜夜撸| av片东京热男人的天堂| 女人精品久久久久毛片| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美视频二区| 午夜日韩欧美国产| 一级a爱视频在线免费观看| 久久婷婷青草| 久久久亚洲精品成人影院| 国产激情久久老熟女| 黄色怎么调成土黄色| 亚洲欧美日韩另类电影网站| 男女午夜视频在线观看| 免费观看av网站的网址| 日韩一卡2卡3卡4卡2021年| 丰满乱子伦码专区| 水蜜桃什么品种好| 成人午夜精彩视频在线观看| 国产免费现黄频在线看| 亚洲精品自拍成人| www.熟女人妻精品国产| 国产精品免费视频内射| 久久精品熟女亚洲av麻豆精品| av.在线天堂| 七月丁香在线播放| 免费在线观看视频国产中文字幕亚洲 | 国产极品天堂在线| 一区二区av电影网| 成人18禁高潮啪啪吃奶动态图| 99九九在线精品视频| 婷婷色av中文字幕| 秋霞伦理黄片| 中文字幕人妻丝袜制服| 久久久久久伊人网av| 热re99久久国产66热| 久久精品夜色国产| 国产成人精品一,二区| 精品国产一区二区三区久久久樱花| 国产一区二区三区av在线| 成人影院久久| 亚洲精品第二区| 美女午夜性视频免费| 亚洲中文av在线| 国产精品亚洲av一区麻豆 | 女人高潮潮喷娇喘18禁视频| 久久久亚洲精品成人影院| 久久青草综合色| 自线自在国产av| 久久99一区二区三区| 男女高潮啪啪啪动态图| 97在线人人人人妻| 亚洲天堂av无毛| 一本大道久久a久久精品| 久久婷婷青草| 又大又黄又爽视频免费| 亚洲精品日本国产第一区| 尾随美女入室| xxx大片免费视频| 最近2019中文字幕mv第一页| 国产精品.久久久| 高清av免费在线| 亚洲三区欧美一区| 欧美xxⅹ黑人| 国产精品女同一区二区软件| 亚洲精品在线美女| 亚洲视频免费观看视频| 亚洲av中文av极速乱| 亚洲精品乱久久久久久| 好男人视频免费观看在线| 国产精品久久久久久久久免| 十八禁网站网址无遮挡| 久久精品国产自在天天线| 国产精品一二三区在线看| 成年动漫av网址| 满18在线观看网站| 欧美精品av麻豆av| 三级国产精品片| 久久精品熟女亚洲av麻豆精品| 制服丝袜香蕉在线| 国产成人91sexporn| 九色亚洲精品在线播放| 在线天堂最新版资源| 国产片内射在线| 国产日韩欧美亚洲二区| 国产熟女午夜一区二区三区| 99热全是精品| 精品国产一区二区三区久久久樱花| 制服人妻中文乱码| 亚洲国产看品久久| 最近最新中文字幕免费大全7| 人妻系列 视频| 亚洲精品久久成人aⅴ小说| 国产极品天堂在线| 亚洲欧美色中文字幕在线| 狠狠婷婷综合久久久久久88av| 亚洲av男天堂| www日本在线高清视频| 十八禁高潮呻吟视频| 黄色配什么色好看| 99热国产这里只有精品6| 午夜福利视频精品| 午夜精品国产一区二区电影| 99精国产麻豆久久婷婷| 中文字幕人妻熟女乱码| 性色avwww在线观看| 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| 一二三四中文在线观看免费高清| 成年av动漫网址| 国产成人精品久久久久久| 免费av中文字幕在线| 丰满饥渴人妻一区二区三| 成人亚洲精品一区在线观看| 色吧在线观看| 日本欧美国产在线视频| 国产免费又黄又爽又色| 男女下面插进去视频免费观看| 制服人妻中文乱码| 黄色 视频免费看| 亚洲久久久国产精品| 男女啪啪激烈高潮av片| 伦理电影免费视频| 少妇熟女欧美另类| 国产成人一区二区在线| 观看av在线不卡| 久久久久久久精品精品| 日韩制服丝袜自拍偷拍| 黄频高清免费视频| 国产精品人妻久久久影院| www日本在线高清视频| 国产xxxxx性猛交| 亚洲精品日韩在线中文字幕| 亚洲国产精品一区三区| 久久久久久免费高清国产稀缺| 亚洲久久久国产精品| 视频区图区小说| 一级毛片我不卡| 亚洲,欧美精品.| 中文精品一卡2卡3卡4更新| 18禁观看日本| 26uuu在线亚洲综合色| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区黑人 | 国产毛片在线视频| 一边亲一边摸免费视频| 老熟女久久久| 最新中文字幕久久久久| 免费看av在线观看网站| 欧美亚洲 丝袜 人妻 在线| 亚洲国产色片| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 欧美国产精品一级二级三级| 久久国产精品男人的天堂亚洲| 人人妻人人澡人人看| 成人二区视频| 国产精品成人在线| 久久久久久免费高清国产稀缺| 亚洲av欧美aⅴ国产| 久久人人97超碰香蕉20202| 亚洲一区二区三区欧美精品| 欧美精品亚洲一区二区| 老鸭窝网址在线观看| 99九九在线精品视频| 国产在线免费精品| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 精品一区在线观看国产| 人妻 亚洲 视频| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲熟女精品中文字幕| 侵犯人妻中文字幕一二三四区| 亚洲国产精品一区二区三区在线| 丰满少妇做爰视频| 国产精品av久久久久免费| 日日爽夜夜爽网站| 看免费成人av毛片| 久久 成人 亚洲| 亚洲精品美女久久久久99蜜臀 | 电影成人av| 精品第一国产精品| av线在线观看网站| 成年美女黄网站色视频大全免费| 免费不卡的大黄色大毛片视频在线观看| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 日韩制服骚丝袜av| 久久久久精品性色| 国产精品二区激情视频| 亚洲欧美成人综合另类久久久| 99久久精品国产国产毛片| 国产av一区二区精品久久| 免费观看a级毛片全部| 又黄又粗又硬又大视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久ye,这里只有精品| 丝瓜视频免费看黄片| 只有这里有精品99| 欧美成人午夜精品| 超色免费av| 国产黄色视频一区二区在线观看| 久久99一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 国产视频首页在线观看| h视频一区二区三区| 亚洲av成人精品一二三区| 97精品久久久久久久久久精品| 夫妻性生交免费视频一级片| 午夜激情久久久久久久| 亚洲av综合色区一区| 满18在线观看网站| 日日爽夜夜爽网站| 波多野结衣av一区二区av| 亚洲av国产av综合av卡| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| 日韩中字成人| 亚洲四区av| 不卡视频在线观看欧美| 国产在线一区二区三区精| 美女大奶头黄色视频| 少妇猛男粗大的猛烈进出视频| 久久狼人影院| 欧美bdsm另类| 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 亚洲精品乱久久久久久| av女优亚洲男人天堂| 捣出白浆h1v1| 天美传媒精品一区二区| 亚洲精品美女久久久久99蜜臀 | 免费久久久久久久精品成人欧美视频| 亚洲第一av免费看| 777米奇影视久久| 国产又爽黄色视频| 欧美中文综合在线视频| 熟女av电影| 久久久久人妻精品一区果冻| 午夜福利,免费看| 国产成人av激情在线播放| 免费看不卡的av| av天堂久久9| 18禁国产床啪视频网站| 久久综合国产亚洲精品| 国产精品二区激情视频| 卡戴珊不雅视频在线播放| 久久久国产精品麻豆| 国产精品久久久久久av不卡| 大陆偷拍与自拍| 精品久久久精品久久久| 国产女主播在线喷水免费视频网站| 丝袜脚勾引网站| 亚洲国产精品一区二区三区在线| 狂野欧美激情性bbbbbb| 在线观看免费日韩欧美大片| 亚洲国产成人一精品久久久| 国产成人免费观看mmmm| 久久久a久久爽久久v久久| 亚洲精品乱久久久久久| 成年动漫av网址| av一本久久久久| 少妇被粗大的猛进出69影院| 国产一区二区 视频在线| 日韩在线高清观看一区二区三区| 最近中文字幕高清免费大全6| 大香蕉久久网| 精品久久久精品久久久| 男的添女的下面高潮视频| 777久久人妻少妇嫩草av网站| 丝袜人妻中文字幕| 美女视频免费永久观看网站| 国产熟女午夜一区二区三区| 97在线人人人人妻| 亚洲综合色网址| 精品一品国产午夜福利视频| 一级毛片电影观看| 精品人妻熟女毛片av久久网站| 男女高潮啪啪啪动态图| 97在线人人人人妻| 国产精品麻豆人妻色哟哟久久| 久久毛片免费看一区二区三区| 香蕉国产在线看| 一本久久精品| 亚洲,欧美,日韩| 日本猛色少妇xxxxx猛交久久| 波多野结衣av一区二区av| av免费观看日本| 少妇人妻精品综合一区二区| 精品国产乱码久久久久久男人| 久久99热这里只频精品6学生| 久久精品熟女亚洲av麻豆精品| 日韩一卡2卡3卡4卡2021年| 三级国产精品片| 男女下面插进去视频免费观看| 亚洲成人手机| 亚洲在久久综合| 熟女少妇亚洲综合色aaa.| 亚洲国产精品国产精品| 成人黄色视频免费在线看| 2021少妇久久久久久久久久久| 大香蕉久久网| 看免费av毛片| 赤兔流量卡办理| 亚洲精品国产一区二区精华液| 丁香六月天网| 精品久久蜜臀av无| 久久久欧美国产精品| 色视频在线一区二区三区| 90打野战视频偷拍视频| www日本在线高清视频| 最新的欧美精品一区二区| 欧美 日韩 精品 国产| 日韩制服骚丝袜av| 欧美日韩视频精品一区| 如何舔出高潮| 各种免费的搞黄视频| 在线观看免费视频网站a站| 久久人人爽av亚洲精品天堂| 久久女婷五月综合色啪小说| 曰老女人黄片| 免费观看a级毛片全部| 亚洲图色成人| 男女边吃奶边做爰视频| 久久鲁丝午夜福利片| av电影中文网址| 一级,二级,三级黄色视频| 国产无遮挡羞羞视频在线观看| 久久精品久久久久久噜噜老黄| 男女午夜视频在线观看| 国产激情久久老熟女| 亚洲成av片中文字幕在线观看 | 日本91视频免费播放| 国产激情久久老熟女| 亚洲国产精品999| 99久久综合免费| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区国产| 男女下面插进去视频免费观看| 亚洲av免费高清在线观看| 精品国产一区二区三区久久久樱花| 午夜福利视频精品| 老汉色av国产亚洲站长工具| 91久久精品国产一区二区三区| 日韩精品免费视频一区二区三区| 欧美bdsm另类| 999精品在线视频| 这个男人来自地球电影免费观看 | 热99国产精品久久久久久7| 久久久久久久久久久免费av| 黄片播放在线免费| 久久久欧美国产精品| 国产精品三级大全| 亚洲av在线观看美女高潮| 日韩伦理黄色片| 如何舔出高潮| 欧美日韩视频精品一区| 麻豆乱淫一区二区| 母亲3免费完整高清在线观看 | 国产精品麻豆人妻色哟哟久久| 各种免费的搞黄视频| 一个人免费看片子| 免费不卡的大黄色大毛片视频在线观看| 十八禁高潮呻吟视频| 99久久中文字幕三级久久日本| 亚洲图色成人| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区蜜桃| 日韩伦理黄色片| 欧美 日韩 精品 国产| av免费在线看不卡| 黄片小视频在线播放| 热re99久久国产66热| 国产免费福利视频在线观看| 黄色 视频免费看| 免费不卡的大黄色大毛片视频在线观看| 欧美老熟妇乱子伦牲交| 好男人视频免费观看在线| 亚洲av欧美aⅴ国产| 在线亚洲精品国产二区图片欧美| 大码成人一级视频| 亚洲国产日韩一区二区| 国产精品熟女久久久久浪| 在线观看免费日韩欧美大片| 久久久a久久爽久久v久久| 91久久精品国产一区二区三区| 亚洲经典国产精华液单| 侵犯人妻中文字幕一二三四区| 最新中文字幕久久久久| 成人午夜精彩视频在线观看| 卡戴珊不雅视频在线播放| 母亲3免费完整高清在线观看 | 国产精品成人在线| 日本91视频免费播放| 成人18禁高潮啪啪吃奶动态图| 叶爱在线成人免费视频播放| 丰满饥渴人妻一区二区三| 国产97色在线日韩免费| 伦精品一区二区三区| 9191精品国产免费久久| 母亲3免费完整高清在线观看 | 如日韩欧美国产精品一区二区三区| 精品亚洲乱码少妇综合久久| 欧美成人午夜精品| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 一本久久精品| 亚洲色图 男人天堂 中文字幕| 巨乳人妻的诱惑在线观看| 校园人妻丝袜中文字幕| 永久网站在线| 久久久久久免费高清国产稀缺| av又黄又爽大尺度在线免费看| 日本黄色日本黄色录像| 成年人午夜在线观看视频| 26uuu在线亚洲综合色| 午夜免费观看性视频| 美女福利国产在线| 91午夜精品亚洲一区二区三区| 亚洲伊人色综图| 中文字幕最新亚洲高清| 欧美日韩一区二区视频在线观看视频在线| 亚洲成人一二三区av| av又黄又爽大尺度在线免费看| 久久鲁丝午夜福利片| 97人妻天天添夜夜摸| 亚洲av成人精品一二三区| 亚洲精华国产精华液的使用体验| 丰满少妇做爰视频| 如日韩欧美国产精品一区二区三区| 欧美在线黄色| 看免费av毛片| 中文天堂在线官网| 国产乱人偷精品视频| 久久影院123| 亚洲欧美精品自产自拍| 亚洲精品国产av蜜桃| 熟女少妇亚洲综合色aaa.| 亚洲成色77777| 天堂俺去俺来也www色官网| 一本色道久久久久久精品综合| 日韩,欧美,国产一区二区三区| 九色亚洲精品在线播放| 日韩一卡2卡3卡4卡2021年| 高清视频免费观看一区二区| 不卡av一区二区三区| 看非洲黑人一级黄片| 一区二区日韩欧美中文字幕| 天天躁日日躁夜夜躁夜夜| 两性夫妻黄色片| 久久婷婷青草| 一区二区三区乱码不卡18| 香蕉国产在线看| 午夜福利乱码中文字幕| 性色avwww在线观看| 国产精品无大码| 秋霞伦理黄片| 一区二区三区乱码不卡18| 午夜av观看不卡| 久久精品熟女亚洲av麻豆精品| 精品国产国语对白av| 青草久久国产| 精品一区二区三卡| videossex国产| 亚洲美女黄色视频免费看| 久久这里有精品视频免费| 久久精品国产综合久久久| 免费高清在线观看视频在线观看| 欧美在线黄色| 国产免费一区二区三区四区乱码| 久久精品亚洲av国产电影网| 国产xxxxx性猛交|