• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low temperature friction stir welding of P91 steel

    2016-04-18 10:14:18PrsdRoKALVALAJvedAKRAMMnoMISRADmodrmRAMACHANDRANJnkiRmGABBITA
    Defence Technology 2016年4期

    Prsd Ro KALVALA*,Jved AKRAMMno MISRADmodrm RAMACHANDRAN,Jnki Rm GABBITA

    aUniversity of Utah,Salt Lake City,USA

    bSSN College of Engineering,Kalavakkam,India

    cIndian Institute of Technology Madras,Chennai,India

    Low temperature friction stir welding of P91 steel

    Prasad Rao KALVALAa,*,Javed AKRAMa,Mano MISRAa,Damodaram RAMACHANDRANb,Janaki Ram GABBITAc

    aUniversity of Utah,Salt Lake City,USA

    bSSN College of Engineering,Kalavakkam,India

    cIndian Institute of Technology Madras,Chennai,India

    Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM)to study their effects on weld microstructural changes and impression creep behavior.Temperatures experienced by the stir zone were recorded at the weld tool tip.Different zones of welds were characterized for their microstructural changes,hardness and creep behavior (by impression creep tests).The results were compared with submerged arc fusion weld.Studies revealed that the stir zone temperature with 100 RPM was well below Ac1temperature of P91 steel while it was above Ac3with 1000 RPM.The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

    Friction stir welding;P91;Low temperature;Martensite;Carbides;Impression creep

    1.Introduction

    Modif i ed 9Cr-1Mo steels (P91)have been widely used for thermal power plant applications in view of their excellent creep strength.However,their weld counterparts are found to prematurely fail in their heat affected zone (HAZ)generally known asType IV cracking [1].Type IV cracking is found to be located in the f i ne grained heat affected zone (FGHAZ)and is related to the lower creep strength of the FGHAZ compared to the base material [2,3].The degradation of martensite lath subgrains into equiaxed subgrains is regarded as one of the major factors in reducing the creep strength of the FGHAZ [4]. This is attributed to the high temperature excursion of the FGHAZ region above Ac1/Ac3during welding.Due to short dwell times at the elevated temperature,carbides will not dissolve.This results in the formation of martensite (on quenching)with lean carbon and a degraded lath subgrain structure[4].Analytical results [5]showed that the stress triaxiality in the FGHAZ will accentuate Type IV cracking.

    One of the major technical challenges is to avoid the formation of f i ne grains in the HAZ of P91 welds by limiting the peaktemperatures in the HAZ well belowAc1/Ac3(857/914 °C)[6].It is not possible to avoid FGHAZ in welds fabricated by conventional fusion welding processes because the melting temperatures in the fusion zone reach temperatures above 1500 °C.If the temperature in the weld metal can be controlled well below Ac1(857 °C),then the HAZ will not experience temperatures above Ac1.Such control is possible in friction stir welding(FSW)where weld temperatures and microstructural changes can be controlled.In the current investigation,experiments were conducted to control the stir zone peak temperature well belowAc1by controlling the weld parameters.The main emphasis of this work was mainly on the microstructural characterization,substantiated by some preliminary impression creep results.Detailed studies on impression creep studies are underway as a follow-up investigation to this work.

    2.Experimental

    Fig.1.Friction stir welding of P91 in progress.

    The chemical composition (wt%)of P91 sheet used is as follows:Cr-8.91;Mo-0.98;C-0.09;Mn-0.42;Si-0.31;V-0.21;Nb-0.07;Fe-rest.Bead-on-plate friction stir welds with argon gas shielding (Fig.1)were made on a 3 mm thick P91 steel(Normalized and tempered).The welding experiments were performed at Mega Stir Technologies LLC,Provo.A convex scrolled shouldertooldesign madefrom a grade of polycrystalline cubic boron nitride (PCBN)weld tool was used with a small shoulder diameter and a tapered pin.The welding involved 3 stages: (1)Plunging stage:Tool rotational speed: 800 RPM;Plunge depth:2.5 mm with tool feed rate of 76 mm/ min in Z-direction.(2)Dwell stage:Plunge depth is increased from 2.5 mm to 2.8 mm in Z-direction.Once plunge depth reached 2.8 mm,the RPM was reduced to 100 from 800,the tool’s dwell time (with no tool movement)was set at 5 sec with 2500 N axial force.(3)Weld stage:After 5 sec dwell time,the tool started traversing with 100 RPM,55 mm/min traverse speed with 2500 N force.Friction stir welding experiment was repeated on a similar sheet of P91 with 1000 RPM rotational speed,keeping all other conditions same.The temperature of the stir zone was measured at the tip of the tool by inserting K-type thermocouple.For comparative purpose,a submerged arc weld (SAW)(3.75 kJ/mm heat input,post weld heat treated at 760 °C/16 hrs)was included in the study.The specimens were cut,polished and etched in the cross sectional direction of the weld to include stir (weld)zone,HAZ and base metal portions.The polished samples were etched using solution containing 1 g Picric acid+5 mL HCl and 100 mL Ethanol.Preliminary impression creep tests were conducted to assess the relative creep behavior of different welds.Flat specimens with dimensions 20 × 10 × 3 mm were used for impression creep test with the following test conditions:Test temperature: 650 °C;Indenter:Tungsten carbide,1 mm diameter,cylindrical,f l at bottom;Punching stress:280 MPa;Vacuum level:10-3Torr and test time:about 100 hrs (until attaining steady state). During impression creep testing,the displacement (i.e.,depth of impression)was continuously monitored (at 10 minute intervals)as a function of test time.Testing was terminated after going well into the secondary creep regime.

    3.Results and discussion

    3.1.Temperature prof i les

    Typical temperatures recorded with 100 and 1000 RPM are shown in Fig.2.It can be seen that the peak temperature at the tip of the tool was about 560 °C with 100 RPM and 775 °C with 1000 RPM.The temperature was more or less stable with welding time for 100 RPM weld whereas for 100 RPM weld,it increased gradually.

    3.2.Microstructures

    Fig.2.Temperature prof i les recorded with 100 and 1000 RPM.

    SEM micrographs were taken for different zones of the welds.The base metal consisted of typical martensitic lath structure with carbides distributed along grain boundaries and laths (Fig.3).When cooled from the austenizing temperature, P91 steel exhibits a lath martensitic structure with a high dislocation density.Post weld tempering results in two kinds of precipitates: (1)M23C6(M=Cr,F(xiàn)e,Mo)carbides located at prior austenite grain boundaries and at other(packet,block,and martensite lath)boundaries,and (2)f i nely dispersed MX-type(M=V,Nb and X=C,N)carbonitrides within laths [7].

    3.3.FSW weld with 100 RPM

    SEM microstructure of stir zone of weld made with 100 RPM (Fig.4(a))showed f i ne grains along with f i ne carbides distributed in the matrix.This can help impede dislocation movement and improve creep resistance within the stir zone.As the peak temperature experienced by the stir zone was well below theAc1(857 °C),it is expected that the carbides will be intact and will not dissolve into the matrix.Although M23C6particles were present at the prior austenite grain boundaries in the base metal,they were found to be fragmented and uniformly distributed in the matrix due to the severe plastic deformation of friction stir welding (Fig.4(a)).The carbide precipitates were too small to be analyzed using SEM-EDS.The tempered martensite structure was found to be preserved with lath features ref i ned.The MX precipitates are expected to be in the matrix undissolved as their dissolution temperature is above 1250 °C[8].Stir zone microstructure of 100 RPM weld indicates that it is possible to preserve the lath martensite structure without the dissolution of carbides.

    Fig.3.Base metal microstructure.

    Fig.4.Friction stir weld-100 RPM microstructure.

    HAZ microstructure of weld made with 100 RPM (Fig.4(b))was similar to the base metal microstructure (Fig.4(a))and the weld heat generated with 100 RPM appeared to have not caused signif i cant change to its microstructure.This was substantiated by the hardness and microstructural results.The HAZs immediately close to the stir zone (both on advance and retreating sides)did not show signif i cant change in hardness compared to unwelded base metal (Fig.5).Similarly,the microstructure of these regions showed no signif i cant change compared to the base metal(Fig.6).These results indicate that the temperatures experienced by the stir zone as well as HAZ of weld made with 100 RPM were below Ac1temperature.The temperature recorded at the tool tip also showed the same trend (Fig.2).

    Fig.5.Hardness prof i le of friction stir weld-100 RPM.

    3.4.FSW weld with 1000 RPM

    The SEM microstructure of stir zone of weld made with 1000 RPM (Fig.7(a))showed as-quenched martensitic needles. It is very clear from this micrograph that there are no carbide particles in the matrix.HAZ microstructure of weld made with 1000 RPM was found to be similar to the stir zone showing as-quenched martensitic structure with no carbides in the matrix (Fig.7(b)).

    For the martensite to exhibit as-quenched lath structure with no carbides in the matrix,P91 should have experienced temperatures in the ausenite region (temperature above Ac3).This indicates that the temperatures experienced by the stir zone as well as HAZ of the weld made with 1000 RPM were above Ac3temperature.The temperature recorded at the tool tip showed the same trend (Fig.2)for welds made with 1000 RPM.As the reported Ac3for P91 is 914 °C [6],it appears that the temperature difference between the tip of the tool and actual stir zone temperature could be approximately 200 °C.

    Fig.6.Friction stir weld-100 RPM-Microstructure of HAZ/stir zone.

    Fig.7.Friction stir weld-1000 RPM microstructure.

    3.5.Submerged arc weld

    Fig.8.Submerged arc weld-cross section.

    In SAW P91 welds (Fig.8),the following weld zones were observed: (a)coarse grain HAZ (Fig.9(a));(b)intercritical region;(c)f i ne grain HAZ (Fig.9(b));and (d)over tempered region.Coarse grain HAZ formed at 0-1.0 mm away from the fusion line which experiences temperatures well above the Ac3temperature during fusion welding.In the coarse grain HAZ,most carbides dissolve completely [9].This removes obstacles for austenite grain growth and favors the formation of coarse austenite.Upon cooling,the coarse austenite forms readily into martensite.Fine grain HAZ forms at temperatures just above the Ac3temperature where the α → γ phase transformation is almost complete.At temperatures between 1000 °C and 1135 °C even the large M23C6carbides dissolve [10].MX particles do not dissolve in austenite as their dissolution temperatures are even higher.MX is stable even up to a temperature of 1200 °C [11].During the PWHT and creep,pronounced recovery and recrystallization of the matrix occurs in this zone resulting in equiaxed grains without a lath structure.Coarsening and agglomeration of M23C6during PWHT and creep were also suggested as main factors reducing the creep rupture strength of the FGHAZ leading to type IV fracture in weldments of P91 steel without W [12,13].No lath martensite structure was observed in the f i ne grain HAZ of fusion welds [4].The disappearance of a lath martensite structure was caused by the instability of the f i ne grain HAZ microstructure.During the α → γ phase transformation,M23C6carbide particles do not fully dissolve into austenite.This results in a relatively small amount of carbon atoms available for diffusion into the matrix and accordingly the martensite formed on cooling will be lean in carbon content and will be unstable.The lath subgrain structure with a high density of free dislocations plays an important role in enhancing the creep rupture strength of a martensitic steel [4]. Therefore,the degradation of the lath subgrain structure into equiaxed subgrains (and the absence of lath martensite)can be regarded as one of the main factors reducing the creep strength in the FGHAZ signif i cantly leading to type IV cracking failures.

    Fig.9.Submerged arc weld.

    Fig.10.Impression creep graphs.

    3.6.The impression creep studies

    The depth of impression vs.time plots is shown in Fig.10:(a)base metal,(b)SAW f i ne grain HAZ,and (c)friction stir weld HAZ with 100 RPM.A linear f i t for the steady state part of the curve was made,from which the impression rate (which is the slope,dh/dt)was calculated.According to Sastry [14],the impression rate divided by the diameter of the indenter gives the creep rate.In the present case,since the diameter of the indenter is 1 mm,the impression rate is equal to the creep rate.The results showed that the f i ne grain HAZ of SAW sample showed higher impression creep rate (Fig.10(b))compared to the base metal(Fig.10(a)).The impression creep rate of HAZ portion of 100 RPM friction stir weld (Fig.10(c))was almost similar to that of the base metal(Fig.10(a)).The impression creep test for 100 RPM weld HAZ demonstrated that the low temperature FSW technique is useful in controlling the HAZ damage in P91 steel.Detailed studies are underway to study the impression creep behavior of other welds to understand the effect of weld parameters.The studies are also taken up on the effect of post weld tempering temperature and time on different welds.This approach can be applied for various other engineering alloys to control the weld metal as well as HAZ degradation which will be useful to improve their service life.

    4.Conclusions

    In summary,the microstructural degradation in the heat affected zone of P91 welds needs to be controlled in order to use these materials to the full designed life.Low temperature friction stir welding technique of P91 is proposed for this purpose.Temperature measurements,microstructural characterization and the impression creep tests conf i rmed the benef icial effects of the proposed technique.

    Acknowledgement

    We would like to thank Russell Steel,MegastirTechnologies LLC,Provo,Utah for making the welds and Murray Mahoney,Consultant,Midway,Utah for discussions.

    [1]Lundin CD,Liu P,Cui Y.A literature review on characteristics of high temperature ferritic Cr-Mo steels and weldments,WRC bulletin 454. New York,NY,USA:Welding Research Council,Inc.;2000.

    [2]Sakthivel T,Vasudevan M,Laha K,Parameswaran P,Chandravathi KS,PanneerSelvi S,et al.Creep rupture behavior of 9Cr-1.8W-0.5Mo-VNb(ASME grade 92)ferritic steel weld joint.Mater Sci Eng A 2014;591:111-20.

    [3]Zhao L,Jing H,Xu L.Investigation on mechanism of type IV cracking in P92 steel at 650°C.J Mater Res 2011;26:934-43.

    [4]Xue W,Qian-gang P,Yao-yao R,Wei S,Hui-qiang Z,Hong L. Microstructure and type IV cracking behavior of HAZ in P92 steel weldment.Mater Sci Eng A 2012;552:493-501.

    [5]Zhao L,Jing H,Xu L,An J,Xiao G.Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint. Mater Des 2012;34:566-75.

    [6]Vuherer T,Dundˉer M,Milovic′LJ,Zrilic′M,Samard?ic′I.Microstructural investigation of the heat-affected zone of simulated welded joint of P91 steel.Metalurgija 2013;52:317-20.

    [7]Jara DR.9-12% Crheatresistantsteels:alloy design,TEM characterisation of microstructure evolution and creep response at 650°C[Ph.D.thesis].Bochum,Chile:Ruhr-Universit?t Bochum;2011.

    [8]Suzuki K,Kumai S,Toda Y,Kushima H,Kimura K.Two-phase separation of primary MX carbonitride during tempering in creep resistant 9Cr1MoVNb steel.ISIJ Int 2003;43(7):1089-94.

    [9]Singh K,Jaipal Reddy G,Vidyasagar DV,Thyagarajan V.Creep and creep damage assessment in P91 weld joints,ECCC Creep Conference,12-14 September 2005,London,825-36.

    [10]Halid J.Metallurgy and Creep properties of new 9-12%Cr steels.Steels Res 1996;67:369-74.

    [11]Yoshino M,Mishima Y,Toda Y,Kushima H,Sawada K,Kimura K. Inf l uence of normalizing heat treatment on precipitation behaviour in modif i ed 9Cr-1Mo steel,ECCP creep conference,Creep&Fracture in HighTemperature Components,12-14 September 2005,London,153-64.

    [12]Albert SK,Matsui M,Hongo H,Watanabe T,Kubo K,Tabuchi M.Creep rupture properties of HAZs of a high Cr steel simulated by a weld simulator.Int J Pressure Vessel Piping 2004;81:221-34.

    [13]Otoguro Y,Matsubara M,Itoh I,Nakazawa T.Creep rupture strength of heat affected zone for 9Cr ferritic heat resisting steels.Nucl Eng Des 2000;196:51-61.

    [14]Sastry DH.Impression creep technique-an overview.Mater Sci Eng A 2005;409:67-75.

    Received 26 October 2015;accepted 10 November 2015 Available online 15 December 2015

    *Corresponding author.Tel.:+14157228105.

    E-mail addresses:jyothipr@gmail.com;prasad.kalvala@utah.edu (P.R. KALVALA).

    http://dx.doi.org/10.1016/j.dt.2015.11.003

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    成人国产一区最新在线观看| 国产精品 欧美亚洲| 国产色视频综合| 日本a在线网址| 18在线观看网站| 国产精品秋霞免费鲁丝片| 亚洲欧美激情综合另类| 很黄的视频免费| 十分钟在线观看高清视频www| 久久ye,这里只有精品| 美女 人体艺术 gogo| 欧洲精品卡2卡3卡4卡5卡区| 国产成人啪精品午夜网站| 中文字幕最新亚洲高清| 精品国内亚洲2022精品成人 | 午夜日韩欧美国产| 亚洲av成人一区二区三| 老司机深夜福利视频在线观看| 中文亚洲av片在线观看爽 | 国产国语露脸激情在线看| 99riav亚洲国产免费| 久久性视频一级片| 热99re8久久精品国产| 大片电影免费在线观看免费| 亚洲情色 制服丝袜| 我的亚洲天堂| 美国免费a级毛片| 久久精品亚洲熟妇少妇任你| 美女国产高潮福利片在线看| 黄网站色视频无遮挡免费观看| 久久久精品区二区三区| 成年版毛片免费区| 一本综合久久免费| 日韩免费高清中文字幕av| 国产亚洲精品一区二区www | 在线看a的网站| 1024视频免费在线观看| 亚洲精品中文字幕一二三四区| 这个男人来自地球电影免费观看| 高清av免费在线| 9色porny在线观看| 免费一级毛片在线播放高清视频 | 国产av一区二区精品久久| 亚洲视频免费观看视频| 91麻豆精品激情在线观看国产 | 天天添夜夜摸| 很黄的视频免费| 精品卡一卡二卡四卡免费| 亚洲全国av大片| 国产精品九九99| 69精品国产乱码久久久| 99国产精品99久久久久| 精品亚洲成a人片在线观看| 色94色欧美一区二区| 操出白浆在线播放| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美亚洲二区| 丝袜美腿诱惑在线| 国产成人免费观看mmmm| 亚洲自偷自拍图片 自拍| 亚洲成人免费av在线播放| 黑丝袜美女国产一区| 国产精品秋霞免费鲁丝片| 在线国产一区二区在线| 丁香欧美五月| 中亚洲国语对白在线视频| 成人18禁在线播放| 麻豆乱淫一区二区| 天堂√8在线中文| 亚洲人成电影免费在线| 韩国av一区二区三区四区| 国产男靠女视频免费网站| 久久国产精品大桥未久av| x7x7x7水蜜桃| 成人永久免费在线观看视频| 日韩精品免费视频一区二区三区| 色精品久久人妻99蜜桃| 91老司机精品| 少妇粗大呻吟视频| 五月开心婷婷网| 女警被强在线播放| 男男h啪啪无遮挡| 丝瓜视频免费看黄片| 国产单亲对白刺激| 亚洲一区中文字幕在线| 国产一卡二卡三卡精品| 青草久久国产| 国产成人免费无遮挡视频| 久久精品国产a三级三级三级| 午夜福利在线免费观看网站| 亚洲成国产人片在线观看| 欧美国产精品va在线观看不卡| 亚洲第一av免费看| 久久久久久久久久久久大奶| 亚洲精品国产色婷婷电影| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 在线观看免费日韩欧美大片| 中文字幕av电影在线播放| 亚洲 国产 在线| 国产av精品麻豆| 亚洲精品乱久久久久久| 国产精品亚洲一级av第二区| 亚洲精品粉嫩美女一区| 99久久精品国产亚洲精品| 无限看片的www在线观看| 丁香欧美五月| 嫁个100分男人电影在线观看| 丰满迷人的少妇在线观看| 欧美亚洲日本最大视频资源| 99国产综合亚洲精品| 久久草成人影院| 成年人午夜在线观看视频| 国产高清激情床上av| 又大又爽又粗| 男男h啪啪无遮挡| 久久国产乱子伦精品免费另类| 高清黄色对白视频在线免费看| 免费久久久久久久精品成人欧美视频| 久久久精品区二区三区| 五月开心婷婷网| 首页视频小说图片口味搜索| 黄色成人免费大全| 亚洲精品粉嫩美女一区| 校园春色视频在线观看| 侵犯人妻中文字幕一二三四区| 天堂动漫精品| 国产麻豆69| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 制服诱惑二区| 成人永久免费在线观看视频| 国产精品免费一区二区三区在线 | 亚洲五月色婷婷综合| 一进一出好大好爽视频| 精品国产一区二区久久| 又紧又爽又黄一区二区| 91成年电影在线观看| 在线av久久热| 建设人人有责人人尽责人人享有的| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 在线观看免费视频日本深夜| 精品久久久久久久毛片微露脸| 亚洲综合色网址| 变态另类成人亚洲欧美熟女 | 亚洲精品久久成人aⅴ小说| 黄片大片在线免费观看| 99久久99久久久精品蜜桃| 精品国产一区二区三区四区第35| 欧美成狂野欧美在线观看| 丝袜美足系列| 啦啦啦免费观看视频1| 亚洲一区二区三区欧美精品| 一区二区三区国产精品乱码| 国产主播在线观看一区二区| tocl精华| 好看av亚洲va欧美ⅴa在| 久热这里只有精品99| 国产欧美日韩一区二区精品| 亚洲专区字幕在线| 人人妻人人爽人人添夜夜欢视频| 十分钟在线观看高清视频www| 黄色成人免费大全| 精品国产一区二区三区久久久樱花| 国产成人啪精品午夜网站| 久久婷婷成人综合色麻豆| 久久国产精品大桥未久av| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 中出人妻视频一区二区| 丝袜在线中文字幕| 在线看a的网站| 人人澡人人妻人| 亚洲伊人色综图| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜添小说| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品在线福利| 欧美激情久久久久久爽电影 | 在线永久观看黄色视频| 久久这里只有精品19| 午夜激情av网站| 亚洲精品美女久久av网站| 十分钟在线观看高清视频www| 一级黄色大片毛片| 精品国产一区二区三区久久久樱花| 国内久久婷婷六月综合欲色啪| 纯流量卡能插随身wifi吗| 久久精品国产亚洲av高清一级| 国产aⅴ精品一区二区三区波| 成人国产一区最新在线观看| 欧美亚洲 丝袜 人妻 在线| 一级毛片高清免费大全| 欧美午夜高清在线| aaaaa片日本免费| 热99国产精品久久久久久7| 一本一本久久a久久精品综合妖精| 亚洲成a人片在线一区二区| 久久国产精品影院| 亚洲中文av在线| 大片电影免费在线观看免费| 国产在线一区二区三区精| 久久精品91无色码中文字幕| 国产成+人综合+亚洲专区| 国产不卡av网站在线观看| 黄色片一级片一级黄色片| 亚洲午夜精品一区,二区,三区| 人人妻人人爽人人添夜夜欢视频| 成人国语在线视频| 午夜视频精品福利| 国产精品久久视频播放| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 麻豆国产av国片精品| 国产精品国产高清国产av | 亚洲自偷自拍图片 自拍| 男女床上黄色一级片免费看| 国产精品久久电影中文字幕 | 欧美精品一区二区免费开放| 下体分泌物呈黄色| 久久中文字幕人妻熟女| 看免费av毛片| 一进一出好大好爽视频| 一级片'在线观看视频| 国产高清视频在线播放一区| 交换朋友夫妻互换小说| 亚洲av片天天在线观看| 欧美老熟妇乱子伦牲交| 法律面前人人平等表现在哪些方面| 在线观看免费午夜福利视频| 手机成人av网站| 国产午夜精品久久久久久| 人妻久久中文字幕网| 亚洲专区中文字幕在线| 成年人黄色毛片网站| 欧美日韩国产mv在线观看视频| 在线免费观看的www视频| 夜夜夜夜夜久久久久| 建设人人有责人人尽责人人享有的| 中文字幕人妻丝袜制服| 在线国产一区二区在线| 啦啦啦 在线观看视频| √禁漫天堂资源中文www| 欧美+亚洲+日韩+国产| 中亚洲国语对白在线视频| 91在线观看av| 国产精品.久久久| 国产精品永久免费网站| 免费少妇av软件| 国产精品美女特级片免费视频播放器 | 久久久国产成人免费| 欧美日韩av久久| 国产男女超爽视频在线观看| 国产99久久九九免费精品| 精品一品国产午夜福利视频| 久久久久国产一级毛片高清牌| 每晚都被弄得嗷嗷叫到高潮| 这个男人来自地球电影免费观看| 99国产精品99久久久久| 日本黄色日本黄色录像| 人人澡人人妻人| 精品视频人人做人人爽| 一进一出抽搐动态| 亚洲精品国产区一区二| 国产精华一区二区三区| 国产精品免费视频内射| 国产精品久久久久久人妻精品电影| 99国产精品99久久久久| 欧美激情极品国产一区二区三区| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线 | 国产深夜福利视频在线观看| 午夜精品在线福利| 黄网站色视频无遮挡免费观看| 男女免费视频国产| 91九色精品人成在线观看| 中文字幕人妻丝袜一区二区| 久久ye,这里只有精品| 啦啦啦免费观看视频1| 国产精品秋霞免费鲁丝片| 国产99白浆流出| 国产精品 国内视频| 91在线观看av| 午夜福利在线免费观看网站| 男男h啪啪无遮挡| 国产精品二区激情视频| 黑人欧美特级aaaaaa片| 热99久久久久精品小说推荐| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 亚洲欧美激情综合另类| 亚洲伊人色综图| 一级作爱视频免费观看| 老司机靠b影院| 中国美女看黄片| 欧美性长视频在线观看| 久久人妻熟女aⅴ| 在线观看免费高清a一片| 高清视频免费观看一区二区| 亚洲情色 制服丝袜| 人妻 亚洲 视频| 精品欧美一区二区三区在线| 精品亚洲成a人片在线观看| 免费在线观看黄色视频的| 国产亚洲精品久久久久久毛片 | 国产成人欧美| 国产精品偷伦视频观看了| 曰老女人黄片| av网站免费在线观看视频| 日韩免费高清中文字幕av| 久久精品人人爽人人爽视色| 50天的宝宝边吃奶边哭怎么回事| 黄色女人牲交| 亚洲精品国产一区二区精华液| 亚洲美女黄片视频| 首页视频小说图片口味搜索| 午夜福利视频在线观看免费| 99久久精品国产亚洲精品| 18禁观看日本| 热99re8久久精品国产| 亚洲国产欧美日韩在线播放| 欧美精品一区二区免费开放| 不卡一级毛片| 欧美色视频一区免费| 久久香蕉精品热| 国产精品 国内视频| 欧美日韩瑟瑟在线播放| 高清黄色对白视频在线免费看| 欧美乱色亚洲激情| 亚洲性夜色夜夜综合| 丁香六月欧美| 久久香蕉国产精品| 精品高清国产在线一区| 日韩熟女老妇一区二区性免费视频| 看免费av毛片| 亚洲中文av在线| av国产精品久久久久影院| 男女床上黄色一级片免费看| 免费观看精品视频网站| 国产精品二区激情视频| 久久青草综合色| 高清视频免费观看一区二区| 人妻丰满熟妇av一区二区三区 | 免费久久久久久久精品成人欧美视频| 亚洲精品久久成人aⅴ小说| 人妻久久中文字幕网| 丁香欧美五月| 国产精品免费大片| 日韩欧美一区视频在线观看| 国产精品欧美亚洲77777| 亚洲片人在线观看| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av香蕉五月 | 日韩三级视频一区二区三区| 黄色毛片三级朝国网站| 成人免费观看视频高清| 亚洲av成人一区二区三| 叶爱在线成人免费视频播放| 一本综合久久免费| 男女之事视频高清在线观看| 色老头精品视频在线观看| 精品免费久久久久久久清纯 | 欧美日韩成人在线一区二区| 欧美日韩黄片免| 国产av又大| 精品一区二区三区视频在线观看免费 | 91av网站免费观看| 久久精品亚洲熟妇少妇任你| cao死你这个sao货| 国产精品一区二区精品视频观看| 最近最新免费中文字幕在线| 色老头精品视频在线观看| 亚洲av熟女| 手机成人av网站| 老鸭窝网址在线观看| 下体分泌物呈黄色| 十八禁人妻一区二区| 亚洲欧美日韩另类电影网站| 国产成人影院久久av| 欧美成人午夜精品| 成年人黄色毛片网站| 超碰97精品在线观看| 欧美日韩视频精品一区| 中文字幕制服av| 国产国语露脸激情在线看| www.自偷自拍.com| 国产成人免费观看mmmm| 精品一区二区三卡| www.精华液| 国产高清激情床上av| 在线播放国产精品三级| 天堂动漫精品| 国产成人精品久久二区二区免费| 91av网站免费观看| 下体分泌物呈黄色| 大香蕉久久成人网| 黄色 视频免费看| 69精品国产乱码久久久| 乱人伦中国视频| 夜夜夜夜夜久久久久| 欧美av亚洲av综合av国产av| 夫妻午夜视频| 欧美激情 高清一区二区三区| 国产成人av激情在线播放| 天堂动漫精品| 亚洲av片天天在线观看| 精品免费久久久久久久清纯 | 免费观看a级毛片全部| 三上悠亚av全集在线观看| 18禁黄网站禁片午夜丰满| 欧美精品高潮呻吟av久久| 狂野欧美激情性xxxx| 巨乳人妻的诱惑在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 美女午夜性视频免费| www.精华液| 国产一卡二卡三卡精品| 精品国内亚洲2022精品成人 | 精品一区二区三区av网在线观看| 亚洲av日韩精品久久久久久密| 91在线观看av| 天天操日日干夜夜撸| 又紧又爽又黄一区二区| 69精品国产乱码久久久| 新久久久久国产一级毛片| 成年女人毛片免费观看观看9 | 操美女的视频在线观看| 久久精品熟女亚洲av麻豆精品| av一本久久久久| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 国产亚洲欧美在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 十八禁人妻一区二区| 久久香蕉精品热| 波多野结衣一区麻豆| 91字幕亚洲| 亚洲一区高清亚洲精品| 少妇被粗大的猛进出69影院| 我的亚洲天堂| 黄色视频,在线免费观看| 欧美乱色亚洲激情| 老鸭窝网址在线观看| 国产亚洲一区二区精品| 日本一区二区免费在线视频| 一级a爱片免费观看的视频| 夫妻午夜视频| 天堂√8在线中文| 精品国产国语对白av| 亚洲av日韩在线播放| 亚洲精品一卡2卡三卡4卡5卡| 欧美亚洲 丝袜 人妻 在线| 久久久久久人人人人人| 国产单亲对白刺激| 亚洲精品一二三| 黄色毛片三级朝国网站| 精品免费久久久久久久清纯 | 亚洲精品美女久久久久99蜜臀| 91老司机精品| 国产精品自产拍在线观看55亚洲 | 国产av又大| 国产在线一区二区三区精| 亚洲综合色网址| 精品乱码久久久久久99久播| 在线国产一区二区在线| av网站免费在线观看视频| 在线观看www视频免费| 亚洲国产毛片av蜜桃av| 国产又爽黄色视频| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 免费av中文字幕在线| 国产精品久久久人人做人人爽| 制服人妻中文乱码| 亚洲av美国av| 国产精品电影一区二区三区 | 国产精品一区二区免费欧美| 天堂√8在线中文| 脱女人内裤的视频| 他把我摸到了高潮在线观看| 日韩有码中文字幕| 侵犯人妻中文字幕一二三四区| av网站免费在线观看视频| av不卡在线播放| 日本a在线网址| 老汉色∧v一级毛片| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 国产欧美日韩综合在线一区二区| 日韩成人在线观看一区二区三区| 高清在线国产一区| 久久久国产精品麻豆| 岛国在线观看网站| 超色免费av| 亚洲全国av大片| 777米奇影视久久| 国产91精品成人一区二区三区| 亚洲色图综合在线观看| 亚洲欧美一区二区三区黑人| 亚洲精品在线美女| 亚洲免费av在线视频| 国产主播在线观看一区二区| 国产精品电影一区二区三区 | 久久 成人 亚洲| 狠狠婷婷综合久久久久久88av| 一级毛片女人18水好多| 日韩欧美一区二区三区在线观看 | 亚洲男人天堂网一区| 十分钟在线观看高清视频www| 国产高清视频在线播放一区| 中文欧美无线码| 下体分泌物呈黄色| 亚洲精品中文字幕一二三四区| av国产精品久久久久影院| 国产免费av片在线观看野外av| 少妇的丰满在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久久久国内视频| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影| 国产精品久久久久成人av| 久久中文字幕一级| 久久精品亚洲精品国产色婷小说| 日韩视频一区二区在线观看| 中文字幕av电影在线播放| 亚洲av成人av| 99精品在免费线老司机午夜| 亚洲熟妇中文字幕五十中出 | 丰满迷人的少妇在线观看| 国产精品久久久人人做人人爽| 国产精品免费大片| 久久精品aⅴ一区二区三区四区| 日日夜夜操网爽| 香蕉丝袜av| 天堂俺去俺来也www色官网| 最新在线观看一区二区三区| 亚洲第一青青草原| 国产免费男女视频| 国产色视频综合| 在线视频色国产色| 一级毛片女人18水好多| 国产成人精品无人区| 老熟妇仑乱视频hdxx| 欧美日韩亚洲国产一区二区在线观看 | 色精品久久人妻99蜜桃| 国产精品影院久久| 久久国产精品人妻蜜桃| 狠狠婷婷综合久久久久久88av| 国产99白浆流出| 中出人妻视频一区二区| 啦啦啦 在线观看视频| 一个人免费在线观看的高清视频| 亚洲五月色婷婷综合| 亚洲成a人片在线一区二区| 欧美激情 高清一区二区三区| 亚洲专区字幕在线| 久9热在线精品视频| 极品少妇高潮喷水抽搐| 91大片在线观看| 国产亚洲精品久久久久5区| 老汉色∧v一级毛片| 亚洲avbb在线观看| 国产成人精品在线电影| 一级黄色大片毛片| 首页视频小说图片口味搜索| 亚洲精品美女久久久久99蜜臀| 亚洲一区中文字幕在线| 无人区码免费观看不卡| 热99久久久久精品小说推荐| 美国免费a级毛片| 国产av又大| 成年动漫av网址| 精品卡一卡二卡四卡免费| 男人的好看免费观看在线视频 | 91av网站免费观看| 老司机靠b影院| 欧洲精品卡2卡3卡4卡5卡区| 日韩视频一区二区在线观看| 精品一区二区三区视频在线观看免费 | 在线观看免费午夜福利视频| 国产精品久久久人人做人人爽| 美国免费a级毛片| 久久久国产成人免费| 午夜福利一区二区在线看| 搡老熟女国产l中国老女人| 香蕉国产在线看| 精品一品国产午夜福利视频| 黑人操中国人逼视频| 超色免费av| 午夜福利欧美成人| 王馨瑶露胸无遮挡在线观看| 欧美精品一区二区免费开放| 精品一品国产午夜福利视频| 咕卡用的链子| 久久香蕉激情| 丰满的人妻完整版| 国产成+人综合+亚洲专区| av福利片在线| 91麻豆精品激情在线观看国产 | av欧美777| 午夜91福利影院| 麻豆国产av国片精品| 国产精品久久久人人做人人爽| 又黄又粗又硬又大视频| 国产欧美日韩综合在线一区二区| 欧美老熟妇乱子伦牲交| 成年人午夜在线观看视频| 亚洲欧美激情综合另类| 国产欧美日韩精品亚洲av| 一级a爱视频在线免费观看| 女人精品久久久久毛片| 亚洲精品粉嫩美女一区| 亚洲欧美激情在线|