• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis

    2016-04-18 10:14:25ShnmugrjnRishhSHRIVASTAVASthiyBuvnshekrn
    Defence Technology 2016年4期

    Shnmugrjn B.*,Rishh SHRIVASTAVA,Sthiy P.,Buvnshekrn G.

    aWelding Research Institute,Bharat Heavy Electricals Ltd.,Tiruchirappalli 620014,Tamil Nadu,India

    bGE India Technology Centre,Bangalore,India

    cDepartment of Production Engineering,NIT,Tiruchirappalli,India

    Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis

    Shanmugarajan B.a,*,Rishabh SHRIVASTAVAb,Sathiya P.c,Buvanashekaran G.a

    aWelding Research Institute,Bharat Heavy Electricals Ltd.,Tiruchirappalli 620014,Tamil Nadu,India

    bGE India Technology Centre,Bangalore,India

    cDepartment of Production Engineering,NIT,Tiruchirappalli,India

    Creep strength enhanced ferritic (CSEF)steels are used in advanced power plant systems for high temperature applications.P92 (Cr-W-Mo-V)steel,classif i ed under CSEF steels,is a candidate material for piping,tubing,etc.,in ultra-super critical and advanced ultra-super critical boiler applications.In the present work,laser welding process has been optimised for P92 material by usingTaguchi based grey relational analysis (GRA). Bead on plate (BOP)trials were carried out using a 3.5 kW diffusion cooled slab CO2laser by varying laser power,welding speed and focal position.The optimum parameters have been derived by considering the responses such as depth of penetration,weld width and heat affected zone(HAZ)width.Analysis of variance (ANOVA)has been used to analyse the effect of different parameters on the responses.Based onANOVA,laser power of 3 kW,welding speed of 1 m/min and focal plane at-4 mm have evolved as optimised set of parameters.The responses of the optimised parameters obtained using the GRA have been verif i ed experimentally and found to closely correlate with the predicted value.

    Laser;Welding;Optimisation;Taguchi;P92

    1.Introduction

    The global initiative towards “Go Green”has urged all the manufacturing industries to improve the eff i ciency to reduce the greenhouse gases.In the power sector,it has led to the development of supercritical,ultra super critical and advanced ultrasuper critical boiler technologies,which operate at higher temperatures and pressures compared to conventional sub critical boilers.These developments increase the eff i ciency of operation thereby reducing the polluting emissions and demand the use of materials that can withstand such operating conditions [1].Stainless steels,Cr-Mo steels like P22,23,etc.,have been traditionally used for such applications in components like super heater tubes,panels,etc.To further increase the life of the components without hampering the heat transfer eff i ciency,9-12%Cr steels have been developed,which have better oxidation resistance,high temperature properties,etc. [2].The most commonly used material in this category is the 9Cr-1Mo(P91)steel due to its high thermal conductivity and low coeff i cient of thermal expansion compared to the closely competing austenitic stainless steels.P91 has been in use for applications experiencing temperatures of the order of 600 °C [3].However,the presence of Mo leads to the formation of deleterious phases,which will affect the high temperature performance of the components made of P91 material [4].To reduce the chance of formation of deleterious phases and to further enhance the high temperature performance,P92 steels have been developed by reducing the Mo content to 0.5%and adding 2%W to compensate for the loss in strength due to reduced Mo content.The material is being considered for applications like headers,panels,coils,etc.,in super critical and ultra super critical power plants.P92 materials have oxidation resistance similar to the P91 as the oxidation resistance is inf l uenced by the Cr content and both P91 and P92 materials have similar Cr content.The componentsfabricated with P92 willinvolveextensive welding.Hence,weldability of the material will be an essentialrequirement.P92 is also usually supplied in normalised and tempered conditions and will have fully martensitic microstructure at room temperature and hence,during welding should have issues similar to P91.The weldability issues in the material will include hard and brittle microstructure in weld and HAZ,susceptibility to hydrogen induced cracking (HIC),formation of soft intercritical zone,etc.[5,6].P91/92 material can be welded by almost all fusion welding processes.Laser welding with the capability of carrying out the welding in open atmosphere with just an inert gas shield is gaining attention for welding of such materials.The use of laser welding can offer benef i ts like easy shielding of molten pool to avoid hydrogen induced cracking,reduced chances of formation of soft intercritical zone because of high cooling rates associated with the process,reduced chances of formation of deleterious phase,etc.[7,8].However,there is limited information available in the open literature on laser welding of P92 material.Hence,in the present work,laser welding process has been attempted on P92 plates in bead on plate (BOP)mode.

    In any welding process,to achieve the desired properties,it is necessary to carry out the welding using optimised parameters.To obtain the optimised parameters,the scientif i c method is to use optimisation techniques.In the present work,Taguchi based grey relation analysis method has been used to optimise the parameters.Quite a good number of published literatures have proved the usability of optimisation techniques for both non-fusion and fusion welding including laser welding process of different materials.Ajith et al. [9]have used ANN to optimise friction welding of UNS S32205 duplex stainless steel and Magudeeswaran et al. [10]have optimised ATIG welding parameters using Taguchi followed by ANOVA and Pooled ANOVA to achieve the desired width to depth ratio to avoid hot cracking in the same material.Tamrin et al. [11]have optimised laser lap welding process using grey relational analysis for dissimilar welding of polymer to glass based ceramics to arrive at the optimum joint characteristics like joint strength,etc.and found that welding speed has the maximum inf l uence on the joint characteristics.Zhao et al.[12]optimised laser welding process for welding of thin gauge galvanised steel using response surface methodology (RSM)and they have found that welds made with optimised parameters had good bead geometry values.They could also f i nd out that with optimisation,the process eff i ciency could be enhanced and the average aspect ratio could be increased from 0.62 to 0.83.Reisgen et al.[13]have optimised CW CO2laser welding parameters like laser power,welding speed and focus position using RSM for welding of dissimilar thickness of Advanced High Strength Steels of DP 600 and TRIP steel to achieve good bead geometry parameters, mechanical properties and formability at a reduced cost of fabrication. Olabi et al.[14]have optimised laser welding parameters like laser power,welding speed and focal position using a combined approach withArtif i cial Neural Network (ANN)and Taguchi analysis to achieve optimal bead geometry values like the ratios of penetration to fusion zone width and penetration to HAZ width.They have arrived at an ANN model that will work for all the range of parameters experimented.Ruggiero et al. [15]have optimised CW CO2laser welding parameters using RSM for welding of dissimilar joint involving AISI 316 austenitic stainless steel and low carbon steel to arrive at optimum bead geometry values and welding cost.They have also found welding speed to be the most inf l uencing parameter and the welding cost was found to be greatly reduced based on their devised formula with the optimised parameters.E.M. Anawa and Olabi [16]have used Taguchi approach with ANOVA to arrive at the optimum set of laser welding parameters for achieving good mechanical properties tested by notched tensile specimen for a dissimilar combination of AISI 316 austenitic stainless steel to AISI 1008 low carbon steel. The mechanical properties of welded joints with optimum parameters were found to be better than the base material. They have found laser power to be the most inf l uencing factor in determining the strength of such dissimilar joints.The authors have also optimised the parameters for obtaining good fusion zone properties for the same combination of materials and they have found that with respect to the fusion zone properties,welding speed had the greatest inf l uence [17].The optimisation technique was found to be a very useful tool even for welding of nonmetals like plastics.Kumar et al. [18]have optimised the laser transmission welding parameters like current,standoff distance and clamping for welding of plastics.Pan et al. [19]used Taguchi method to optimise pulsed Nd:YAG laser welding parameters for welding of AZ31B Magnesium alloy to achieve the maximum tensile strength.The optimisation could yield a parametric combination that could increase the tensile strength by 2.5× compared to the original value as set for laser welding. Benyounis et al. [20]analysed the effect of laser power,welding speed and focal position of the laser beam with respect to the workpiece surface using RSM for CW CO2laser welding of medium carbon steel in butt joint conf i gurations. They have concluded that the proposed model could accurately predict the responses like depth of penetration,weld width and HAZ width within the parametric range that have been experimented.All the reported works not only prove the usefulness of the optimisation techniques for optimising the laser welding process for different materials but also prove to be a scientif i c way to reduce the number of experiments to arrive at a parameter to achieve the desired weld quality.

    In the present work,laser welding parameters were optimised usingTaguchi analysis with GRA for welding of P92 material using diffusion cooled slab CO2laser.The welding trials were carried out using Taguchi L9 orthogonal array in bead on plate (BOP)mode by varying laser power,welding speed and focal position.The trials were carried out twice in a random manner to avoid sequential error.The welds were cut in the transverse direction to study the macrostructure and bead geometry characteristics like depth of penetration,top weld width and HAZ width,which were taken as responses.The average of the responses was taken for the analysis.Subsequently,ANOVA was performed and the optimum parameters were derived.The optimum parameters obtained through the analysis were verif i ed experimentally and the results were presented and discussed.

    Table 1Chemistry of P92 base material in wt.%.

    2.Experimental procedure

    2.1.Laser welding experiments

    Laser welding experiments were performed in BOP mode by varying parameters like laser power,welding speed and focal plane position using an L9 orthogonal array on P92 plate material of dimensions 200 × 150 × 8 mm without any preheating. The chemistry of the material is given in Table 1 and the details of the parameters used for the trials are given in Table 2.The welding trials were performed twice in a random manner to avoid the sequential error.The welding trials were carried out using 3.5 kW slab CO2laser using Argon as shielding and plasma purge gas at 30 lpm in trailing mode using a 300 mm focal mirror,which gives a focal spot size of 180 μm in the Gaussian mode.The laser has a depth of focus of+/-3 mm with the present focal arrangement.The welding power was varied in the range of 2.5-3.5 kW,welding speed 1-5 m/min and focal plane position in the range of 0 to-4 mm (inside the material).All welds were cut in the transverse direction,polished and etched using Villella’s reagent to study the macrostructures.Macrostructures were taken using a Leica Stereo microscope.Subsequently,bead geometry measurements like depth of penetration,bead width and HAZ width were taken using the measurement software available in the microscope and the values were used as responses for optimisation.

    2.2.Optimisation of laser welding parameters

    Since multiple output parameters have to be dealt with,GRA basedTaguchi method was used for the analysis.To optimise the parametersusingGRA,theexperimentaldatawerenormalisedby assigningthevaluesbetween0and1.Subsequently,greyrelation coeff i cient was calculated,which shows the interconnection betweenthedesiredandobtainedexperimentaldata.Furthermore,the problem was converted to a single objective function by calculatingthegreyrelationalgrade,whichistheaverageofgrey relation coeff i cient.The combination of parameters with highest valueofgreyrelationalgradewillbetheoptimalsolution.Incase of laser welding,the prime objective will be to increase thepenetrationattheminimalweldandHAZwidth,asitconveysthat all the incident energy is effectively utilised to penetrate the material.Thiswillbeevenmorecriticalinaheatsensitivematerial like P92,where the interface between the HAZ and base metal(BM)will be the weakest zone.

    Table 2L9 Orthogonal array used for laser welding trials.

    Hence,in grey relational generation,the normalised top bead width and HAZ width correspond to the smaller-the-better(SB)criterion that can be expressed by Eq. (1)

    Penetration should follow the larger-the-better (LB)criterion,which can be expressed by Eq.(2)

    where xi(k)is the value after the grey relational generation,min yi(k)is the smallest value of yi(k)for the kth response,and max yi(k)is the largest value of yi(k)for the kth response.Grey relational coeff i cient can be calculated by using the formula given in Eq. (3)

    Suppose ideal sequence isxo( k )for a kth response,then its value will be the maximum value of that particular column which will always be 1 andΔoi=differenceof the absolute value xo(k)and xi(k),which means how much that particular value is deviating from ideal value,so the equation for calculating delta is given below

    ψ is a distinguishing coef fi cient 0 ≤ Ψ ≤1,here ψ =0.25 for all quality characteristics

    Δmin =the smallest value ofΔoi

    Δmax =the largest value ofΔoi

    After averaging the grey relational coeff i cients,the grey relational grade can be calculated as

    where n is the number of process responses.The higher value of grey relational grade corresponds to intense relational degreebetween the reference sequence xo(k)and the given sequence xi(k).

    Fig.1.Macrostructures of laser BOP welds.

    Finally,analysis of variance (ANOVA)was performed to fi nd out the effect of each parameter on the desired weld bead characteristics and to arrive at an optimal set of parameters.

    2.3.Con fi rmation experiments and weld characterisation

    Based on the ANOVA,the optimum welding parameters were found.Since the optimum parameters obtained were out of the set of trials performed,the con fi rmation experiments were carried out by conducting BOP trials on P92 plate using the optimum parameters obtained from the analysis.The welds were characterised for macrostructure and bead geometry values as described before.The welds were subjected to post weld heat treatment (PWHT)at a temperature of 760 °C for 3 hours.After PWHT,the hardness survey was conducted across the weld to check the presence of any soft intercritical zone in the HAZ/BM boundary.Microhardness measurements were taken using an automatic microhardness tester with a load of 200 g and inter indent spacing of 150 μm.Furthermore,microstructuresoftheweldsweretaken using optical microscope at a magnif i cation of 200× and 500× to study the phases and to check for the presence of any undesirable phases.

    3.Results and discussion

    Macrostructures of the weld for all the parameters experimented are given in Fig.1 and the bead geometry responses are given in Table 3.

    Table 3L9orthogonal array with values of responses.

    Table 4Grey relational generation of each performance characteristics.

    3.1.Optimisation of laser welding parameters

    3.1.1.Evaluation of optimal process condition

    In the evaluation process,initially,normalisation is used to convert the parameters with different units into a nondimensional value.This could be done using Eqs. (1)and (2). This has been performed considering “Larger the Better”for depth of penetration and “Smaller the Better”for both top weld width and HAZ width.Normalised values for top bead width,penetration and heat affected zone are given in Table 4.Table 5 shows the Δoivalues.

    The value of grey relational coeff i cient is given in Table 6,which will be used for calculating grey relational grade.In case of laser welding,the maximum depth of penetration achievable in single pass in the most desirable output and the width of the weld bead and HAZ should be kept as minimal as possible. Accordingly,the weightage used for top bead width is 0.2;and for depth of penetration,0.6;and HAZ,0.2.Weightage has been allotted considering the importance of these responses especially,whilst welding heat sensitive P92 materials.With the assigned weightage,the grey relational coeff i cient was calculated and the values are given in Table 6.Table 7 shows the value of grey relational grade which will be used for calculating S/N ratio.

    Table 8 shows the S/N ratio based on the larger the better criterion for overall grey relational grade and Fig.2 shows theS/N curve,which is the graphical representation to f i nd out the optimal sets of parameters.S/N ratio is the signal to noise ratio,so if the ratio is high,the desired effect is maximum with very minimal noise.From Fig.2,where A represents laser power,B represents welding speed and C represents focal plane position,it can be seen that the maximum value of S/N ratio is occurring at power 3 kW,speed 1 m/min and focal position of-4 mm.

    Table 5Evaluation of Δoifor each of the responses.

    Table 6Grey relational coeff i cient of each performance characteristics (βTBW=0.2,βpenetration=0.6,βHAZ=0.2).

    From the response table (Table 9),it can be seen that the range for welding speed is maximum followed by power and focal position,which means welding speed has highest impact on responses.This is in line with the f i ndings observed by other researchers elsewhere [8,12]on other materials during CO2laser welding.Based on the analysis,the optimal set ofparameter will be power 3 kW,speed 1 m/min and focal position of-4 mm.The optimal set of parameter obtained using grey relational grade is not in L9 orthogonal array used for carrying out the trials and hence,conf i rmation test has to be carried out by performing laser welding with the optimal parameters obtained from the analysis.

    Table 7Grey relational grade.

    Table 8 S/N ratio.

    Fig.2.S/N plot.

    3.2.Analysis of variance (ANOVA)

    ANOVA was performed to f i nd out the parameter that is most inf l uencing to the bead geometry values in the desirable manner.For analysing the effect of laser welding process parameters (power,welding speed,focal position)on total variation of response,the mean data of the overall grey relational grade were used.ANOVA results are shown in Table 10. As can be seen from the ANOVA table,all parameters have considerable F value,hence,all parameters are important. However,amongst the parameters,welding speed has the highest effect on the responses followed by laser power and then focal position.In any fusion welding process,the weld bead geometry values are highly dependent on the heat input and the heat input will be highly dependent on the welding speed rather than the power.Hence,in the present case also,the welding speed has the highest effect on the responses,which matches the f i ndings of other researchers for some other materials. However,the penetration capability of the laser will be directlyproportional to the power density,which depends on the given laser power and focal area.Since the laser is having near Gaussian beam quality with very high depth of focus,the focal spot size will not vary much with the focal plane variation.Hence,the variation in focal plane position has the least effect on the responses.Also,since focal spot size is almost constant,the power density is directly proportional to the laser power.Hence,laser power has turned out to be the second most inf l uencing parameter.

    Table 9Response table for grey relational grade.

    Table 10Analysis of variance.

    Fig.3.Macrostructure of the weld.

    3.3.Results of conf i rmation experiments

    Conf i rmation welding experiment was carried out in BOP mode using the optimal set of parameter,i.e.laser power-3 kW,welding speed-1 m/min and focal plane position of -4 mm.The macrostructure of the weld carried out using the optimal parameters is given in Fig.3.The bead geometry values obtained with the optimal parameters are given in Table 11. Macrostructure of the weld is uniform with no defects like cracks,porosities,etc.Grey relational grade is calculated for these sets of parameter and the value is 0.7688,which is the maximum amongst all the other 9 parameters experimented. This conf i rms that for the given set of conditions,the optimisation of parameters arrived at is correct.From the bead geometry analysis,the depth of penetration in this case is maximum.It can also be seen that from the microstructure(Fig.3)that the penetration in this case is maximum.

    The microstructures across different zones of the weld obtained with the optimised set of parameters across different zones are given in Fig.4.

    The microstructure contains tempered lath like martensite structure with carbides decorating the boundaries and also thegrains in all the three regions.The microstructure is found to be uniform with the average grain size in the range of 25 μm in base material,18 μm in the weld and around 15 μm in the HAZ. The microstructure is also found to be free from deleterious phases like δ-ferrite.Power beam welding processes,even though with very high cooling rates,do not form δ-ferrite if welding is carried out with optimum parameters.Since δ-ferrite is stable over a very narrow range of temperature during solidif i cation [21],in power beam welding process like laser welding,the region would have been crossed rapidly,and hence,there is no suff i cient time available for δ-ferrite to form or to grow even if it forms.Hence,this further conf i rms that the parameters are optimum.The microhardness variation across weld taken at top and bottom of the weld is given in Fig.5.

    Table 11Bead geometry values with optimised parameters.

    Fig.4.Microstructures across different zones of the weld.

    Microhardness values were in the range of 270-320 HV0.2in welds and 240-265 HV0.2in HAZ against 220-240 HV0.2in the base metal.Hardness survey has indicated that weld and HAZ are stronger than the base material and have not shown any signif i cant softening in the HAZ-BM boundary,which indicates that with optimum parameters,in laser welding,formation of soft intercritical zone can be avoided.Laser welding due to its cooling rate could suppress the formation of this soft undesirable zone.It could be observed from Fig.5 that the hardness values in the welds are more in the bottom side compared to the top side even after 3 h of soaking at 7600C during post weld heat treatment.Usually,the bottom of the welds will be even narrow and hence,the cooling rates will be much higher in the bottom region compared to the top.This higher cooling rate results in elevated hardness in the bottom portion.This conf i rms two things.First,laser welding with narrow weld and HAZ will be a potential candidate for welding such materials and with optimisation of laser welding parameters,good mechanical and microstructural properties could be obtained. Second,the use of ″Smaller the Better″rule for both weld and HAZ width in such heat sensitive materials is proved to be right.

    Fig.5.Microhardness variation across weld.

    4.Conclusions

    From the study and analyses,the following conclusions could be made:

    1)Taguchi based optimisation of laser welding parameters for autogenous laser welding of P92 material has shown that for the given conditions,3 kW of laser power,1 m/ min welding speed and positioning the focal plane of the laser at 4 mm from the surface of the base material have evolved as the optimal parameters.

    2)From ANOVA,amongst the parameters experimented,welding speed has the most signif i cant contribution with 74.39%followed by laser power with 14.63%and focal length with 10.97%

    3)Microhardness survey across welds with optimised parameter did not indicate any softening in the HAZ/BM boundary and microstructural analysis did not reveal any deleterious phases,which conf i rms that the parameters obtained through optimisation are valid.

    Acknowledgment

    We sincerely thank the management of Bharat Heavy Electricals Ltd.,for funding this research programme.We extend our gratitude to Mr.R.Easwaran,General Manager,WRI&Labs,for guiding us throughout the research work.

    [1]Viswanathan R,Purgert R,Goodstine S,Tanzosh J,Stanko G,Shingledecker JP,et al.U.S.program on materials technology for ultrasupercritical coal-f i red boilers.Advances in materials technology for fossil power plants.In:Proceedings of the 5th international conference. 2008;05226G:1-16.

    [2]Viswanathan R,Purgert R,Rao U.Materials for ultra-supercritical coal-f i red power plant boilers.In:Proceedings of 2nd regional conference on energy technology towards a clean environment;2003.p.1-14.

    [3]Hamada K,Tokuno K,Takeda T.Dispersion hardening effects of Nb-V precipitates in Mod.9Cr-1Mo steels.Nucl Eng Des 1993;139:277-81.

    [4]Naoi H,Ohgami M,Hasegawa Y,Mimura H,F(xiàn)ujita T.Advanced heat resistant steel for power generation.London:The Institute of Materials;1999.p.259-69.

    [5]Onoro J.Martensitic microstructure of 9-12%Cr steel weld metals.J Mat Proc Technol 2006;180:137-42.

    [6]Francis JA,Mazur W,Bhadeshia HKDH.Type IV cracking in ferritic power plant steels.Mat Sci Technol 2006;22:1387-95.

    [7]Lee WH,Shiue RK,Chen C.Mechanical properties of modif i ed 9Cr-1Mo steel welds with notches.Mat Sci Eng A 2003;A356:153-61.

    [8]Shanmugarajan B,Padmanabham G,Kumar H,Albert SK,Bhaduri AK. Autogenous laser welding investigations on modif i ed 9Cr-1Mo (P91)steel.Sci Technol Weld Joining 2011;16:528-34.

    [9]Ajith PM,Barik BK,Sathiya P,Aravindan S.Multiobjective optimization of friction welding of UNSS32205 duplex stainless steel.Def Technol 2015;11:157-65.

    [10]Magudeeswaran G,Nair SR,Sundar L,Harikannan N.Optimisation of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds.Def Technol 2014;10: 251.

    [11]Tamrin KF,Nukuman Y,Sheikh NA,Harizam MZ.Determination of optimum parameters using grey relational analysis for multi-performance characteristics in CO2laser joining of dissimilar materials.Opt Lasers Eng 2014;57:40-7.

    [12]Zhao Y,Zhang Y,Hu W,Lai X.Optimization of laser welding thin-gage galvanized steel via response surface methodology.Opt Lasers Eng 2012;50:1267-73.

    [13]Reisgen U,Schleser M,Markov O,Ahmed E.Optimization of laser welding of DP/TRIP steel sheets using statistical approach.Opt Laser Technol 2012;44:255-62.

    [14]Olabi AG,Casalino G,Benyounis KY,Hashmi MSJ.An ANN and Taguchi algorithms integrated approach to the optimization of CO2laser welding.Adv Eng Softw 2006;37:643-8.

    [15]RuggieroA,Tricarico L,Olabi AG,Benyounis KY.Weld-bead prof i le and costs optimization of the CO2dissimilar laser welding process of low carbon steel and austenitic steel AISI316.Opt Laser Technol 2011;43: 82-90.

    [16]Anawa EM,Olabi AG.Optimization of tensile strength of ferritic/ austenitic laser-welded components.Opt Lasers Eng 2008;46:571-7.

    [17]Anawa EM,Olabi AG.UsingTaguchi method to optimize welding pool of dissimilar laser-welded components.Opt Laser Technol 2008;40:379-88.

    [18]Kumar N,Ramesh R,Pal PK.Multi-objective optimization in through laser transmission welding of thermoplastics using grey-based Taguchi method.Proc Mat Sci 2014;5:2178-87.

    [19]Pan LK,Wang CC,Hsiao YC,Ho KC.Optimization of Nd:YAG laser welding onto magnesium alloy via Taguchi analysis.Opt Laser Technol 2004;37:33-42.

    [20]Benyounis KY,Olabi AG,Hashmi MSJ.Effect of laser welding parameters on the heat input and weld-bead prof i le.J Mat Proc Technol 2005;164-165:978-85.

    [21]Jeyaganesh B,Raju S,Rai AK,Mohandas E,Vijayalakshmi M,Rao BS,et al.Differential scanning calorimetry of diffusional and martensitic phase transformations in some 9 wt-%Cr low carbon ferritic steels.Mat Sci Technol 2011;27:500-12.

    Received 3 March 2016;revised 10 April 2016;accepted 11 April 2016 Available online 22 April 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+91-94890 56100.

    E-mail address:bsrajan@bheltry.co.in (Shanmugarajan B.).

    http://dx.doi.org/10.1016/j.dt.2016.04.001

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    伊人久久精品亚洲午夜| 欧美成人a在线观看| 国产av码专区亚洲av| 亚洲精品一区蜜桃| 欧美日韩国产mv在线观看视频 | 一本色道久久久久久精品综合| 久久久久久九九精品二区国产| 小蜜桃在线观看免费完整版高清| 亚洲国产色片| 自拍欧美九色日韩亚洲蝌蚪91 | 成年女人在线观看亚洲视频| 人妻少妇偷人精品九色| 一本色道久久久久久精品综合| av在线蜜桃| 久久精品熟女亚洲av麻豆精品| av女优亚洲男人天堂| 校园人妻丝袜中文字幕| 中国三级夫妇交换| 欧美日韩在线观看h| 大话2 男鬼变身卡| 看免费成人av毛片| 久久精品久久久久久久性| 亚洲va在线va天堂va国产| 99九九线精品视频在线观看视频| 最黄视频免费看| 国产探花极品一区二区| 亚洲av免费高清在线观看| 国产精品人妻久久久影院| 你懂的网址亚洲精品在线观看| 另类亚洲欧美激情| 亚洲人成网站在线播| 王馨瑶露胸无遮挡在线观看| 一本色道久久久久久精品综合| 亚洲无线观看免费| 亚洲国产毛片av蜜桃av| 国产精品伦人一区二区| 日韩免费高清中文字幕av| 久久久成人免费电影| 精品人妻偷拍中文字幕| 伦理电影大哥的女人| 人妻 亚洲 视频| 超碰97精品在线观看| 久久青草综合色| 日本wwww免费看| 亚洲成人中文字幕在线播放| 午夜日本视频在线| 国产在线视频一区二区| 国产一区有黄有色的免费视频| 亚洲精品第二区| 久久午夜福利片| 免费观看无遮挡的男女| 亚洲av.av天堂| 99热国产这里只有精品6| 日韩av不卡免费在线播放| 久久久久久久久久人人人人人人| 在线精品无人区一区二区三 | 熟女av电影| 国产91av在线免费观看| 插阴视频在线观看视频| 一级二级三级毛片免费看| 91久久精品国产一区二区成人| 亚洲国产欧美在线一区| 久久久午夜欧美精品| 一级毛片黄色毛片免费观看视频| 国产伦理片在线播放av一区| 涩涩av久久男人的天堂| 建设人人有责人人尽责人人享有的 | 亚洲第一区二区三区不卡| 欧美日韩视频高清一区二区三区二| 久久久亚洲精品成人影院| av天堂中文字幕网| 精品视频人人做人人爽| 蜜桃久久精品国产亚洲av| 成年人午夜在线观看视频| 久久99热这里只频精品6学生| 亚洲精品国产成人久久av| 爱豆传媒免费全集在线观看| 亚洲精品色激情综合| 精品国产一区二区三区久久久樱花 | 成人二区视频| 国产精品熟女久久久久浪| 欧美zozozo另类| 夫妻午夜视频| 国内揄拍国产精品人妻在线| 精品人妻偷拍中文字幕| 永久免费av网站大全| 欧美一级a爱片免费观看看| 亚洲精品国产av成人精品| 欧美日韩视频高清一区二区三区二| 草草在线视频免费看| 永久免费av网站大全| 精品国产一区二区三区久久久樱花 | 欧美xxxx性猛交bbbb| 亚洲aⅴ乱码一区二区在线播放| 一级二级三级毛片免费看| 中国三级夫妇交换| 婷婷色综合大香蕉| 国产高潮美女av| 秋霞伦理黄片| av在线老鸭窝| 美女视频免费永久观看网站| 丝袜脚勾引网站| 亚洲高清免费不卡视频| 观看美女的网站| 少妇的逼好多水| 少妇人妻一区二区三区视频| 汤姆久久久久久久影院中文字幕| 亚洲激情五月婷婷啪啪| 国内揄拍国产精品人妻在线| 我的女老师完整版在线观看| 中国三级夫妇交换| 日韩大片免费观看网站| 制服丝袜香蕉在线| 国产成人精品久久久久久| 成人免费观看视频高清| 尾随美女入室| 成年女人在线观看亚洲视频| 成年女人在线观看亚洲视频| 热re99久久精品国产66热6| 亚洲综合精品二区| 免费看日本二区| 国产亚洲av片在线观看秒播厂| 在线观看人妻少妇| 国产 一区 欧美 日韩| 精品久久久噜噜| 日韩在线高清观看一区二区三区| 人妻 亚洲 视频| 亚洲精品乱码久久久v下载方式| 国产中年淑女户外野战色| 欧美日韩视频高清一区二区三区二| 亚洲内射少妇av| 国产精品免费大片| 超碰av人人做人人爽久久| 成人漫画全彩无遮挡| 各种免费的搞黄视频| 亚州av有码| 久久久久久伊人网av| 一本色道久久久久久精品综合| www.色视频.com| 免费播放大片免费观看视频在线观看| 天堂中文最新版在线下载| 亚洲av二区三区四区| 伦理电影大哥的女人| 国产欧美亚洲国产| 欧美+日韩+精品| 国产高清不卡午夜福利| 日韩,欧美,国产一区二区三区| 欧美日本视频| 精品一品国产午夜福利视频| 又爽又黄a免费视频| 观看免费一级毛片| 国产伦理片在线播放av一区| 人人妻人人澡人人爽人人夜夜| 日日啪夜夜撸| 五月伊人婷婷丁香| 国产精品人妻久久久影院| 在线观看免费高清a一片| 久久久久精品性色| 内地一区二区视频在线| 国产深夜福利视频在线观看| 特大巨黑吊av在线直播| 性高湖久久久久久久久免费观看| 成人毛片60女人毛片免费| 亚洲精品亚洲一区二区| 哪个播放器可以免费观看大片| 九九久久精品国产亚洲av麻豆| 亚洲av成人精品一二三区| 欧美日韩视频精品一区| 亚洲美女黄色视频免费看| 黄片无遮挡物在线观看| 亚洲精品日韩av片在线观看| 日韩精品有码人妻一区| 亚洲av男天堂| 男女边吃奶边做爰视频| 国产精品精品国产色婷婷| 久久精品久久精品一区二区三区| 在线观看免费高清a一片| 久久国内精品自在自线图片| 一本久久精品| 中文字幕精品免费在线观看视频 | 亚洲av国产av综合av卡| 午夜福利高清视频| 国产女主播在线喷水免费视频网站| 寂寞人妻少妇视频99o| 永久网站在线| 国产爱豆传媒在线观看| 国产高潮美女av| 自拍偷自拍亚洲精品老妇| www.色视频.com| 99久久中文字幕三级久久日本| 日本wwww免费看| 色婷婷av一区二区三区视频| 边亲边吃奶的免费视频| 中文欧美无线码| 最新中文字幕久久久久| 亚洲美女视频黄频| 国产成人91sexporn| 亚洲一级一片aⅴ在线观看| 精品国产乱码久久久久久小说| 久久精品久久久久久噜噜老黄| 精品久久久久久电影网| 免费不卡的大黄色大毛片视频在线观看| 精品午夜福利在线看| 亚洲内射少妇av| 美女国产视频在线观看| 久久ye,这里只有精品| 日韩三级伦理在线观看| 噜噜噜噜噜久久久久久91| 国产一区亚洲一区在线观看| 啦啦啦在线观看免费高清www| 亚洲伊人久久精品综合| 国产成人91sexporn| 精品久久久久久久久亚洲| 免费不卡的大黄色大毛片视频在线观看| 少妇的逼好多水| 激情 狠狠 欧美| 成人漫画全彩无遮挡| 王馨瑶露胸无遮挡在线观看| 狂野欧美激情性xxxx在线观看| 免费大片18禁| 观看美女的网站| 亚洲高清免费不卡视频| 一本一本综合久久| 高清欧美精品videossex| 国产精品久久久久久精品电影小说 | 大片免费播放器 马上看| av不卡在线播放| 乱系列少妇在线播放| 亚洲欧美日韩另类电影网站 | 日韩欧美一区视频在线观看 | 国产色爽女视频免费观看| 乱码一卡2卡4卡精品| 免费看不卡的av| 国产精品久久久久久久电影| 亚洲av日韩在线播放| 黄片wwwwww| 九色成人免费人妻av| 一区二区三区四区激情视频| 久久国内精品自在自线图片| 美女高潮的动态| 丝袜喷水一区| 免费看光身美女| 亚洲精品亚洲一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 嫩草影院入口| 热re99久久精品国产66热6| 老师上课跳d突然被开到最大视频| 日本黄色日本黄色录像| 久久精品人妻少妇| 亚州av有码| 亚洲高清免费不卡视频| 乱系列少妇在线播放| 国产精品久久久久久久久免| 免费少妇av软件| 欧美日本视频| 久久人妻熟女aⅴ| 国产真实伦视频高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久亚洲国产成人精品v| 一级毛片aaaaaa免费看小| 国产有黄有色有爽视频| 国产精品国产三级专区第一集| 亚州av有码| 男人和女人高潮做爰伦理| 久久久a久久爽久久v久久| 一级毛片黄色毛片免费观看视频| 色吧在线观看| 美女xxoo啪啪120秒动态图| 日本欧美国产在线视频| 成人二区视频| 精品一区二区三卡| 色综合色国产| 男女边摸边吃奶| 久久久久精品久久久久真实原创| 一级a做视频免费观看| 国产成人免费无遮挡视频| 国产老妇伦熟女老妇高清| 亚洲精品国产av蜜桃| 青春草视频在线免费观看| 欧美人与善性xxx| 亚洲欧美精品自产自拍| 国产真实伦视频高清在线观看| 美女国产视频在线观看| 狂野欧美激情性xxxx在线观看| 好男人视频免费观看在线| 韩国高清视频一区二区三区| 国产精品麻豆人妻色哟哟久久| 国产欧美亚洲国产| 日韩av不卡免费在线播放| 国产伦精品一区二区三区视频9| 舔av片在线| 欧美精品亚洲一区二区| 精品久久久噜噜| 国产av精品麻豆| 少妇丰满av| 亚洲国产精品一区三区| 麻豆乱淫一区二区| 夜夜爽夜夜爽视频| 国产黄片美女视频| 成人黄色视频免费在线看| 久久综合国产亚洲精品| 2021少妇久久久久久久久久久| 国产一级毛片在线| 久久久精品免费免费高清| 我的老师免费观看完整版| 99热国产这里只有精品6| 欧美日韩视频高清一区二区三区二| a 毛片基地| 国产av一区二区精品久久 | 国产高清不卡午夜福利| 国产永久视频网站| 亚洲美女视频黄频| 久久人人爽av亚洲精品天堂 | 精品国产露脸久久av麻豆| av播播在线观看一区| 国产亚洲91精品色在线| 国产精品熟女久久久久浪| 国产久久久一区二区三区| 中国美白少妇内射xxxbb| 亚洲av欧美aⅴ国产| 高清日韩中文字幕在线| 久久青草综合色| 成年免费大片在线观看| 久久久久久久亚洲中文字幕| 熟女电影av网| 我的女老师完整版在线观看| 国产片特级美女逼逼视频| 精品视频人人做人人爽| 1000部很黄的大片| 91aial.com中文字幕在线观看| 舔av片在线| a级毛色黄片| 少妇的逼水好多| 男人舔奶头视频| 国产亚洲午夜精品一区二区久久| 亚洲国产色片| 亚洲三级黄色毛片| 免费观看在线日韩| 国产亚洲最大av| 国产欧美日韩一区二区三区在线 | 亚洲精品久久久久久婷婷小说| 草草在线视频免费看| 久久 成人 亚洲| 高清毛片免费看| 大香蕉久久网| 国产爱豆传媒在线观看| 九色成人免费人妻av| 99久国产av精品国产电影| 大又大粗又爽又黄少妇毛片口| 久久久亚洲精品成人影院| 久久99热这里只频精品6学生| a级毛色黄片| 久久亚洲国产成人精品v| 日韩一本色道免费dvd| 久久ye,这里只有精品| 简卡轻食公司| 日韩电影二区| 男女免费视频国产| 日韩强制内射视频| 成年av动漫网址| 天堂中文最新版在线下载| 舔av片在线| 高清在线视频一区二区三区| 久久精品人妻少妇| 人人妻人人添人人爽欧美一区卜 | 大又大粗又爽又黄少妇毛片口| 免费高清在线观看视频在线观看| 少妇 在线观看| 永久免费av网站大全| 日韩欧美精品免费久久| 久久久久久久久久人人人人人人| 王馨瑶露胸无遮挡在线观看| av天堂中文字幕网| 97热精品久久久久久| 久久久久国产网址| 国产黄片视频在线免费观看| 伊人久久精品亚洲午夜| 色视频在线一区二区三区| 国产精品不卡视频一区二区| 国产综合精华液| 在线播放无遮挡| a级毛片免费高清观看在线播放| 国产成人精品一,二区| 色吧在线观看| 少妇的逼水好多| 黄片wwwwww| 99久久综合免费| 国产成人a区在线观看| av网站免费在线观看视频| 视频中文字幕在线观看| 高清毛片免费看| 两个人的视频大全免费| 视频中文字幕在线观看| 日日啪夜夜爽| 亚洲精品乱码久久久久久按摩| 男人和女人高潮做爰伦理| 国产av码专区亚洲av| 97热精品久久久久久| .国产精品久久| 欧美成人a在线观看| 伦理电影大哥的女人| 女人十人毛片免费观看3o分钟| 国产一区二区三区综合在线观看 | 免费大片黄手机在线观看| 久久 成人 亚洲| 国产黄片美女视频| 亚洲国产最新在线播放| 亚洲国产高清在线一区二区三| 99久久综合免费| 欧美日韩综合久久久久久| 天堂8中文在线网| 欧美日本视频| 观看美女的网站| 尾随美女入室| 女人十人毛片免费观看3o分钟| 国产成人一区二区在线| 久久 成人 亚洲| www.av在线官网国产| 久久6这里有精品| 久久鲁丝午夜福利片| 久久 成人 亚洲| 国产黄片美女视频| 在线观看免费高清a一片| 精品视频人人做人人爽| 又粗又硬又长又爽又黄的视频| 联通29元200g的流量卡| 夫妻午夜视频| 久久亚洲国产成人精品v| 国产精品一区二区在线不卡| 伊人久久精品亚洲午夜| 天天躁日日操中文字幕| 亚洲国产高清在线一区二区三| 2021少妇久久久久久久久久久| 亚洲欧美一区二区三区黑人 | 联通29元200g的流量卡| 舔av片在线| 麻豆成人av视频| 久久青草综合色| 精品酒店卫生间| 亚洲成人手机| 插逼视频在线观看| 国产片特级美女逼逼视频| 我的老师免费观看完整版| 在线免费十八禁| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| 26uuu在线亚洲综合色| 亚洲av在线观看美女高潮| 亚洲av.av天堂| 丝袜喷水一区| 国产精品三级大全| 伊人久久精品亚洲午夜| 王馨瑶露胸无遮挡在线观看| 天堂中文最新版在线下载| 亚洲人成网站高清观看| 国产精品一二三区在线看| 伊人久久精品亚洲午夜| 国产精品一及| 欧美精品亚洲一区二区| 亚洲国产精品999| 日本色播在线视频| 美女福利国产在线 | 午夜免费观看性视频| 久久精品久久久久久噜噜老黄| 国产片特级美女逼逼视频| 国产精品一区二区三区四区免费观看| 色哟哟·www| 国产精品一二三区在线看| 色综合色国产| 高清日韩中文字幕在线| 97精品久久久久久久久久精品| 国产又色又爽无遮挡免| av免费观看日本| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 3wmmmm亚洲av在线观看| 老司机影院成人| 欧美一级a爱片免费观看看| 日日啪夜夜撸| 亚洲国产最新在线播放| 久久精品熟女亚洲av麻豆精品| 欧美日韩在线观看h| 在线 av 中文字幕| 亚洲国产精品999| 国产精品国产三级国产av玫瑰| 国产乱来视频区| 九九在线视频观看精品| 国产精品女同一区二区软件| 国产 一区 欧美 日韩| 国产极品天堂在线| 六月丁香七月| 国产成人午夜福利电影在线观看| 久久久久精品久久久久真实原创| 在现免费观看毛片| 国产在线视频一区二区| 亚洲国产精品专区欧美| 中文乱码字字幕精品一区二区三区| 亚洲丝袜综合中文字幕| 精品久久久久久久久亚洲| 大香蕉97超碰在线| 国产成人一区二区在线| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久久久免| 全区人妻精品视频| 超碰av人人做人人爽久久| 国产色爽女视频免费观看| 亚洲av日韩在线播放| 日本爱情动作片www.在线观看| 少妇精品久久久久久久| 日本午夜av视频| 国产美女午夜福利| 国产精品一区二区在线观看99| 男女边吃奶边做爰视频| 人妻系列 视频| 久久久久久久久久人人人人人人| 国产亚洲最大av| 又黄又爽又刺激的免费视频.| 亚洲真实伦在线观看| 久久国内精品自在自线图片| 成人高潮视频无遮挡免费网站| 国产男女内射视频| 高清毛片免费看| 国产乱人视频| 亚洲成人手机| 国产精品国产av在线观看| 精华霜和精华液先用哪个| 免费观看无遮挡的男女| 国产精品人妻久久久久久| 大片电影免费在线观看免费| 欧美成人午夜免费资源| 国产黄频视频在线观看| 国产美女午夜福利| 成人毛片a级毛片在线播放| 男人爽女人下面视频在线观看| 夫妻性生交免费视频一级片| 成人漫画全彩无遮挡| 美女中出高潮动态图| 亚洲美女视频黄频| 下体分泌物呈黄色| 亚洲精华国产精华液的使用体验| 免费播放大片免费观看视频在线观看| 久久久久国产精品人妻一区二区| 免费大片黄手机在线观看| 激情五月婷婷亚洲| 亚洲三级黄色毛片| 精品一区二区免费观看| 纯流量卡能插随身wifi吗| 亚洲精品亚洲一区二区| 99久久精品国产国产毛片| 一个人看的www免费观看视频| 男女国产视频网站| 精品亚洲成a人片在线观看 | 看十八女毛片水多多多| 日韩中字成人| 男人和女人高潮做爰伦理| 国产一区有黄有色的免费视频| 欧美亚洲 丝袜 人妻 在线| 亚洲高清免费不卡视频| 男女无遮挡免费网站观看| 26uuu在线亚洲综合色| av不卡在线播放| 精品少妇黑人巨大在线播放| 日韩av免费高清视频| 国产精品久久久久久精品古装| 久久女婷五月综合色啪小说| 免费播放大片免费观看视频在线观看| 高清欧美精品videossex| 97超碰精品成人国产| 精品久久久久久久久亚洲| 国产美女午夜福利| 女人久久www免费人成看片| 欧美精品国产亚洲| 99热这里只有是精品50| 欧美日韩精品成人综合77777| 18禁裸乳无遮挡免费网站照片| 国产黄片美女视频| 国产亚洲欧美精品永久| 色视频www国产| 色综合色国产| 日本爱情动作片www.在线观看| 欧美一级a爱片免费观看看| 精品国产乱码久久久久久小说| 美女高潮的动态| 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| 久久国产精品男人的天堂亚洲 | 日韩中文字幕视频在线看片 | 赤兔流量卡办理| 日韩制服骚丝袜av| 亚洲人与动物交配视频| 身体一侧抽搐| 亚洲欧美清纯卡通| 日本黄色日本黄色录像| 亚洲怡红院男人天堂| 中文字幕制服av| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 人妻一区二区av| 色哟哟·www| 97在线人人人人妻| 男女免费视频国产| 免费大片18禁| 免费少妇av软件| 日本与韩国留学比较| 狂野欧美白嫩少妇大欣赏| 国产探花极品一区二区| 一级a做视频免费观看| 国产精品国产av在线观看| 国产成人精品婷婷| 欧美97在线视频| 高清日韩中文字幕在线| 嘟嘟电影网在线观看| 亚洲欧洲国产日韩| 美女高潮的动态| 五月伊人婷婷丁香|