李 夢(mèng), 李志國(guó), 和靜芳, 蘇松坤
(福建農(nóng)林大學(xué)蜂學(xué)學(xué)院,福州 福建 350002)
?
新煙堿類殺蟲劑對(duì)蜜蜂行為與生理影響的研究進(jìn)展
李夢(mèng), 李志國(guó), 和靜芳, 蘇松坤
(福建農(nóng)林大學(xué)蜂學(xué)學(xué)院,福州 福建 350002)
在過去的30年間,世界上農(nóng)藥種類的發(fā)展已經(jīng)從有機(jī)磷酸酯類和氨基甲酸酯類轉(zhuǎn)變成能夠與昆蟲乙酰膽堿受體結(jié)合的新煙堿類.新煙堿類殺蟲劑通過作用于昆蟲的乙酰膽堿受體,釋放乙酰膽堿受體抑制劑,阻礙昆蟲神經(jīng)傳導(dǎo),影響昆蟲正常生理行為,最終導(dǎo)致昆蟲麻痹死亡.蜜蜂作為重要的授粉昆蟲,在采集過程中,會(huì)經(jīng)常接觸到這類農(nóng)藥,不僅會(huì)對(duì)蜜蜂個(gè)體造成影響,蜜蜂采集歸巢后,殺蟲劑還會(huì)污染整個(gè)蜂群,這無疑給世界養(yǎng)蜂業(yè)帶來了很大威脅.本文從蜜蜂的行為與生理方面進(jìn)行綜述,總結(jié)近年來有關(guān)新煙堿類殺蟲劑對(duì)蜜蜂健康影響的報(bào)道,以期為后續(xù)相關(guān)研究與實(shí)踐提供理論基礎(chǔ).
新煙堿類殺蟲劑; 西方蜜蜂; 中華蜜蜂; 急性致死毒性; 亞致死劑量
近年來有關(guān)新煙堿類殺蟲劑對(duì)于蜜蜂影響的報(bào)道越來越多,研究也越來越深入.目前,有關(guān)新煙堿類殺蟲劑對(duì)西方蜜蜂急性致死毒性的評(píng)估已有了一個(gè)明確的認(rèn)識(shí),且對(duì)農(nóng)業(yè)生產(chǎn)實(shí)踐有一定指導(dǎo)意義.亞致死劑量的新煙堿類殺蟲劑對(duì)蜜蜂的采集行為和學(xué)習(xí)記憶行為都有一定損害,致使蜂群采集能力、歸巢定位能力和傳遞信息的能力都受到影響,甚至影響幼蟲發(fā)育,從而影響蜂群健康.同時(shí),新煙堿類殺蟲劑在與其它病原微生物作用于蜜蜂產(chǎn)生協(xié)同效應(yīng)時(shí),會(huì)放大原本的影響,對(duì)蜜蜂造成更大的威脅.但目前對(duì)于新煙堿類殺蟲劑作用于蜜蜂的內(nèi)在原理和蜜蜂對(duì)于此類殺蟲劑的解毒機(jī)制和能力,尚無較為清晰的認(rèn)識(shí).
新煙堿類殺蟲劑是一類新興的農(nóng)藥,具有高效率,高選擇性,高持效性,對(duì)哺乳動(dòng)物低毒等特點(diǎn)被廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn)中.新煙堿類殺蟲劑包括吡蟲啉(imidacloprid)、啶蟲脒(acetamiprid)、噻蟲胺(clothianidin)、噻蟲嗪(thiamethoxam)、噻蟲啉(thiacloprid)、呋蟲胺(dinotefuran)及烯啶蟲胺(nitenpyram)等.隨著這類殺蟲劑在田間的大量使用,雖然可以有效防控有害昆蟲,但對(duì)不屬于靶標(biāo)的授粉類昆蟲也有一定危害[1].蜜蜂作為社會(huì)性昆蟲的模式生物,在采集花蜜和花粉的過程中,會(huì)接觸到暴露在空氣中或者植物表面的殘留殺蟲劑,影響蜜蜂的行為、營(yíng)養(yǎng)物質(zhì)代謝及免疫系統(tǒng).此外,新煙堿類殺蟲劑與生物性致病因子(蜜蜂微孢子蟲、病毒等)協(xié)同作用于蜜蜂時(shí),對(duì)蜜蜂健康會(huì)產(chǎn)生更大的威脅,并可能是近年來全球蜂群數(shù)量下降的原因之一.同時(shí),與蜜蜂處于相同生態(tài)位的其它授粉昆蟲的健康可能也面臨著新煙堿類殺蟲劑不同程度的威脅.
1.1新煙堿類殺蟲劑的作用原理
生物堿尼古丁是一種由煙草屬植物產(chǎn)生,能夠在生物體內(nèi)充當(dāng)類似神經(jīng)遞質(zhì)乙酰膽堿的活性物質(zhì).新煙堿類殺蟲劑具有與生物堿尼古丁相同的藥效官能團(tuán),其作用原理是作用于昆蟲神經(jīng)肌肉功能的基礎(chǔ)——膽堿能信號(hào),通過阻礙膽堿能信號(hào)的傳導(dǎo),控制昆蟲行為,使昆蟲過度興奮或麻痹,從而致使昆蟲喪失控制行為的能力.蜜蜂在采集食物過程中表現(xiàn)出精細(xì)復(fù)雜的行為,如通過舞蹈行為等形式傳遞食物的距離和方向信息,新煙堿類殺蟲劑通過影響蜜蜂的采集行為而導(dǎo)致蜂群正?;顒?dòng)紊亂,采集能力下降,甚至影響卵、幼蟲和蜂蛹等健康發(fā)育,最終導(dǎo)致蜂群的消亡[2].
1.2新煙堿類殺蟲劑在農(nóng)作物中的殘留
新煙堿類殺蟲劑常被用于田間拌種劑,即經(jīng)過殺蟲劑處理的種子在生長(zhǎng)期間能夠有效抵抗病蟲害[4].然而在抵御蟲害的同時(shí),農(nóng)作物的花蜜、花粉或者枝葉分泌液中殘留的殺蟲劑對(duì)蜜蜂等授粉昆蟲的影響亦引起了科學(xué)家的廣泛關(guān)注.昆蟲在授粉過程中可能接觸或誤食新煙堿類殺蟲劑,導(dǎo)致神經(jīng)麻痹,喪失控制行為的能力,最終死亡[5].同時(shí),此類殺蟲劑會(huì)隨著植物生長(zhǎng)而產(chǎn)生代謝物,同樣對(duì)昆蟲具有毒害作用[6].
有學(xué)者調(diào)查發(fā)現(xiàn),經(jīng)過吡蟲啉處理的玉米種子,在其花期收集的玉米花粉中,吡蟲啉的殘留濃度在1~3 μg·g-1[7-9].經(jīng)過噻蟲嗪、啶蟲脒和噻蟲啉處理的油菜種子,65%、64%和51%的花蜜中和37%、62%和45%的花粉中都分別含有一定量的農(nóng)藥殘留[10].經(jīng)過殺蟲劑處理的作物,其花蜜、花粉可能通過授粉昆蟲傳播到更廣泛的區(qū)域,同時(shí)污染空氣、土壤和水分,使污染面積不斷增大.更應(yīng)該引起注意的是,在面對(duì)含有新煙堿類殺蟲劑的蜜粉源和不含有殺蟲劑的蜜粉源時(shí),蜜蜂更傾向于采集含有殺蟲劑的植物蜜粉源[11],這就使蜜蜂在采集過程中接觸到殺蟲劑的可能性增加,進(jìn)而影響蜜蜂健康.
研究農(nóng)藥對(duì)蜜蜂急性致死毒性的一個(gè)重要生理指標(biāo)是半數(shù)致死劑量(median lethal dose,LD50)[12],不同實(shí)驗(yàn)條件下測(cè)定的LD50有很大差異, Laurino et al[13]測(cè)定噻蟲胺對(duì)單只西方蜜蜂24 h內(nèi)口試LD50為3.53 ng,吡蟲啉為118.74 ng,噻蟲嗪為4.40 ng.吡蟲啉對(duì)西方蜜蜂24 h內(nèi)接觸LD50在7.8~242 ng.吡蟲啉對(duì)單只無刺蜂24 h內(nèi)口試LD50為23.54 ng[14],48 h內(nèi)LD50為24.5 ng[15].總結(jié)文獻(xiàn)中數(shù)據(jù),吡蟲啉對(duì)一只西方蜜蜂的口試急性致死劑量范圍在3~120 ng[16].每只西方蜜蜂在取食少于3 ng吡蟲啉時(shí)并未表現(xiàn)出明顯的急性致死毒性特征.可能是由于實(shí)驗(yàn)條件如氣候,溫濕度,測(cè)定方法等因素及世界范圍內(nèi)蜜蜂遺傳背景的差異而造成新煙堿類殺蟲劑對(duì)蜜蜂急性致死劑量的差異性.
當(dāng)蜜蜂接觸或誤食一定劑量的殺蟲劑后,雖沒有立即死亡,但殺蟲劑對(duì)其行為與生理卻已經(jīng)造成了一定影響,這個(gè)劑量叫做慢性亞致死劑量,造成的影響叫做慢性亞致死效應(yīng)[17,18].殺蟲劑在蜜蜂體內(nèi)經(jīng)過20 min即可代謝70%,4~5 h后產(chǎn)生的代謝物會(huì)繼續(xù)影響蜜蜂的生理功能[19].代謝物可能隨著蜜蜂的代謝而消失,也可能由于蜜蜂自身免疫功能不足而對(duì)蜜蜂的行為和生理造成不良影響.通過新煙堿類殺蟲劑在田間的殘留量和蜜蜂每天采食的花蜜和花粉量來看,大多數(shù)田間殘留并不能使蜜蜂立即死亡,而會(huì)對(duì)其造成慢性影響[16].因此,新煙堿類殺蟲劑對(duì)蜜蜂的慢性亞致死效應(yīng)更應(yīng)該引起人們的關(guān)注.
3.1新煙堿類殺蟲劑對(duì)蜜蜂學(xué)習(xí)和記憶行為影響
蜜蜂的認(rèn)知能力包括很多方面,比如學(xué)習(xí)能力、記憶行為、生理知覺和對(duì)信息的處理能力等.受殺蟲劑影響的蜜蜂,在做出一些行為反應(yīng)時(shí)很容易被忽視且易被誤認(rèn)為是正常的生理反應(yīng),因此新煙堿類殺蟲劑對(duì)蜜蜂基于學(xué)習(xí)與記憶的認(rèn)知能力影響的研究顯得意義重大[5].
不同種類的殺蟲劑對(duì)蜜蜂行為的影響有所不同.亞致死劑量的呋蟲胺對(duì)西方蜜蜂嗅覺學(xué)習(xí)行為影響顯著,西方蜜蜂食用含有LD50/20(48 h)呋蟲胺的糖水后,伸吻反應(yīng)能力和學(xué)習(xí)能力都有所下降[20].飼喂每只蜜蜂1 μg啶蟲脒后,其對(duì)蔗糖溶液的敏感程度增加,飼喂0.1 μg啶蟲脒后,嗅覺記憶力受到損害.與口試毒性相比,啶蟲脒的觸殺毒性較小,每只蜜蜂接觸0.1或0.5 μg的啶蟲脒后,其學(xué)習(xí)記憶能力并沒有受到顯著影響,但在接觸1 μg啶蟲脒后,西方蜜蜂的運(yùn)動(dòng)機(jī)能有所提高.在相同條件下,蜜蜂食用或接觸亞致死劑量的噻蟲嗪,并沒有表現(xiàn)出異常行為[21].單種殺蟲劑作用于蜜蜂的實(shí)驗(yàn)可以說明此種殺蟲劑對(duì)蜜蜂的影響,但在農(nóng)業(yè)生產(chǎn)中,授粉昆蟲往往會(huì)接觸到2種或2種以上的殺蟲劑.因此,從實(shí)際角度出發(fā),多種殺蟲劑的協(xié)同效應(yīng)應(yīng)作為此方面研究的重點(diǎn).Williamson et al[22]研究了吡蟲啉與蠅毒磷對(duì)蜜蜂嗅覺記憶行為的影響,研究表明,經(jīng)過吡蟲啉與蠅毒磷單獨(dú)處理的蜜蜂,嗅覺記憶能力下降,但經(jīng)過兩種殺蟲劑的混合物處理的蜜蜂,其嗅覺記憶能力基本喪失.亞致死劑量的吡蟲啉對(duì)于東方蜜蜂的嗅覺記憶行為影響并不顯著,但當(dāng)與其它殺蟲劑混合后作用于東方蜜蜂,會(huì)嚴(yán)重影響蜜蜂的嗅覺.蜜蜂在幼蟲時(shí)期食用亞致死劑量的吡蟲啉,發(fā)育至成年蜜蜂后,其短期嗅覺記憶力受到一定程度的損壞,對(duì)其長(zhǎng)期嗅覺記憶力則沒有損傷[23].由此可見,殺蟲劑間的協(xié)同效應(yīng)對(duì)于授粉昆蟲的影響不容小覷,此方面還有很大的研究空間.
3.2新煙堿類殺蟲劑對(duì)蜜蜂采集行為的影響
蜜蜂等授粉昆蟲通過采集行為傳播花粉,采集過程中對(duì)蜜粉源的定位和歸巢能力直接影響采集效率和蜂群生活.西方蜜蜂正常的采集時(shí)間為300 s,但食用了亞致死劑量的吡蟲啉和噻蟲嗪后,定位能力受到損傷,歸巢時(shí)間增加,且1天之內(nèi)的往返次數(shù)也有所減少[16,24-27].Bortolotti et al[28]研究了西方蜜蜂在取食100 μg·kg-1的吡蟲啉后,發(fā)現(xiàn)該劑量對(duì)蜂群采集蜂的數(shù)量沒有影響,但會(huì)延遲采集蜂采集回巢的時(shí)間.
同時(shí),西方蜜蜂在接觸一定量的殺蟲劑后,還會(huì)導(dǎo)致其舞蹈行為紊亂,影響其擺尾舞的持續(xù)時(shí)間和方向,導(dǎo)致蜜蜂無法準(zhǔn)確獲得蜜粉源的位置與方向信息[29].中華蜜蜂在食用含有34 ng·μL-1吡蟲啉的糖水后,采集蜂數(shù)量減少23%,采集質(zhì)量減少46%[30].雖然這些結(jié)果還沒有在相關(guān)條件下的田間實(shí)驗(yàn)中得到進(jìn)一步證實(shí),但均明確說明了亞致死劑量新煙堿類殺蟲劑對(duì)蜜蜂采集行為的負(fù)面影響.
3.3新煙堿類殺蟲劑對(duì)蜜蜂幼蟲的影響
蜜蜂在采集過程中接觸到的新煙堿類殺蟲劑一部分會(huì)通過自身免疫機(jī)制分解,另一部分仍會(huì)殘留在體內(nèi),在飼喂幼蟲或蜂王時(shí),通過分泌的王漿而將殺蟲劑傳遞給幼蟲.因此,有學(xué)者研究了蜜蜂幼蟲在食用含有殺蟲劑的飼料后,對(duì)其生長(zhǎng)發(fā)育的影響.
用含有吡蟲啉的飼料飼喂西方蜜蜂幼蟲,每只幼蟲取食24~8 000 ng吡蟲啉時(shí),會(huì)導(dǎo)致幼蟲封蓋數(shù)量減少.每只幼蟲取食0.4 ng吡蟲啉后,蜜蜂羽化率沒有變化,但會(huì)對(duì)其成年后的嗅覺器官造成傷害[31].然而中華蜜蜂每只幼蟲食用0.24 ng吡蟲啉后,孵化率并沒有受到顯著影響[23].用同樣的方法將尼古丁飼喂給蜜蜂幼蟲,也沒有發(fā)現(xiàn)尼古丁對(duì)蜜蜂化蛹率和出房率有顯著性影響[32].結(jié)果表明蜜蜂幼蟲對(duì)外源合成性非生物性致病因子具有一定的解毒作用,但對(duì)親和力較高的生物堿類殺蟲劑則沒有很有效的解毒機(jī)制.
與哺乳動(dòng)物相比,昆蟲具有較為特殊的免疫系統(tǒng),一般靠體液免疫和細(xì)胞免疫抵抗外源性致病因子.蜜蜂免疫系統(tǒng)中參與解毒過程的重要酶類物質(zhì)有谷胱甘肽-s-轉(zhuǎn)移酶,多酚氧化酶,乙酰膽堿酯酶和羧酸酯酶等.Laurino和Badawy et al[13,33]先后測(cè)定了西方蜜蜂在接觸啶蟲脒,呋蟲胺24 h后,西方蜜蜂體內(nèi)的谷胱甘肽-s-轉(zhuǎn)移酶(glutathione S-transferase, GST),多酚氧化酶(polyphenol oxidase, PPO),乙酰膽堿酯酶(acetylcholinesterase, AChE)和羧基酯酶(carboxylesterase)的比活度,發(fā)現(xiàn)殺蟲劑對(duì)蜜蜂急性毒性的大小直接影響這4種酶在體內(nèi)的活性.羧基酯酶和GST能夠分解低劑量的啶蟲脒,對(duì)于呋蟲胺則沒有分解效果.由此看來,呋蟲胺相比啶蟲脒對(duì)蜜蜂急性毒性要大,這為評(píng)估新煙堿類殺蟲劑對(duì)蜜蜂的急性毒性提供了數(shù)據(jù)基礎(chǔ),同時(shí)也說明蜜蜂對(duì)于新煙堿類殺蟲劑并沒有很好的解毒機(jī)制.另有理論指出,蜜蜂對(duì)于新煙堿類殺蟲劑格外敏感可能是由于在細(xì)胞色素P450抑制條件下,無論是啶蟲脒還是噻蟲啉的毒性都可能會(huì)從250倍增加到1 100倍[34].P450同樣是蜜蜂主要的免疫細(xì)胞,但其對(duì)新煙堿類殺蟲劑的作用機(jī)制有待進(jìn)一步研究.
此外,大部分新煙堿類殺蟲劑在進(jìn)入昆蟲體內(nèi)都會(huì)被迅速代謝,產(chǎn)生的代謝物會(huì)保留藥效官能團(tuán),繼續(xù)對(duì)昆蟲產(chǎn)生作用.吡蟲啉的五種代謝物中,有兩種與蜜蜂的乙酰膽堿受體有很高的親和力,同時(shí)也會(huì)提高蜜蜂的死亡率.相比之下,啶蟲脒代謝物的毒性就大大下降.噻蟲嗪雖然與蜜蜂神經(jīng)系統(tǒng)有較差的親和力,但其進(jìn)入蜜蜂體內(nèi)后,會(huì)迅速被代謝轉(zhuǎn)換成尼古丁,從而對(duì)蜜蜂造成影響[35].噻蟲胺等作為第二代新煙堿類殺蟲劑,在蜜蜂體內(nèi)的代謝物尚不明確.相比于吡蟲啉,噻蟲胺對(duì)嚼吸式口器昆蟲的毒性更大,因此其代謝物對(duì)于蜜蜂的影響應(yīng)該引起關(guān)注.同時(shí),吡蟲啉還會(huì)抑制蜜蜂頭部和胸部線粒體的正常呼吸,導(dǎo)致ATP耗盡,使蜜蜂缺氧死亡[36].最新研究報(bào)道指出,用含有2 μg·L-1吡蟲啉的飼料飼喂西方蜜蜂幼蟲,連續(xù)飼喂15 d,發(fā)現(xiàn)其體內(nèi)熱休克蛋白90(heat shock protein 90,Hsp90)的表達(dá)量有所下降,但免疫基因P450的表達(dá)量有所增加[37].說明蜜蜂體內(nèi)的免疫基因能夠識(shí)別新煙堿類殺蟲劑,并對(duì)其產(chǎn)生免疫反應(yīng),但并不能將其有效的分解.這些現(xiàn)象初步解釋了新煙堿類殺蟲劑對(duì)蜜蜂產(chǎn)生毒性的內(nèi)在機(jī)制.
蜜蜂在接觸新煙堿類殺蟲劑后,不僅在短期內(nèi)有顯著影響,對(duì)蜂群的長(zhǎng)期發(fā)展也會(huì)造成一定傷害.通過2年的統(tǒng)計(jì)研究后發(fā)現(xiàn),經(jīng)過5、20和100 μg·kg-1吡蟲啉處理的蜂群,越冬后存活率分別為72.4%、61.2%和59.2%,對(duì)照組存活率則為85.7%.蜜蜂取食含有20~100 μg·kg-1的食物后,可以導(dǎo)致蜂王產(chǎn)卵力下降,甚至出現(xiàn)斷子現(xiàn)象[38].在實(shí)驗(yàn)室條件下,給蜜蜂接種東方蜜蜂微孢子蟲并同時(shí)使蜜蜂長(zhǎng)期接觸吡蟲啉,噻蟲啉,發(fā)現(xiàn)蜜蜂壽命顯著性縮短,但并沒有發(fā)現(xiàn)腸道寄生微生物的數(shù)量有顯著性增加[39,40].同時(shí),西方蜜蜂在幼蟲時(shí)期食用一定劑量的殺蟲劑后,會(huì)增加體內(nèi)攜帶病毒的幾率,對(duì)成年蜜蜂接種兩種病原微生物(蜜蜂微孢子蟲和黑蜂王臺(tái)病毒)或者兩種病原與噻蟲啉的混合物都會(huì)提高蜜蜂死亡率,兩種病原比微孢子蟲與噻蟲啉混合物引起的蜜蜂死亡率要高[41].由此可見,雖然常見的病原微生物仍是蜜蜂面臨的主要威脅,但亞致死劑量的殺蟲劑可增加病原微生物對(duì)幼蟲和成年蜜蜂健康的危害程度,同時(shí)新煙堿類殺蟲劑可以削弱蜜蜂自身免疫機(jī)制,使其對(duì)其它病原微生物抵抗力下降.
無刺蜂和熊蜂是歐美和熱帶地區(qū)國(guó)家的重要授粉昆蟲,全球范圍內(nèi)新煙堿類殺蟲劑的廣泛使用,導(dǎo)致這些授粉蜂種的健康也受到一定程度的影響.與作用于蜜蜂的形式相似,吡蟲啉會(huì)使無刺蜂和非洲蜜蜂大腦蘑菇體失活,凱尼恩細(xì)胞(Kenyon cells)凋亡,同時(shí)還會(huì)影響其呼吸和飛行[14,42,43],并且使獨(dú)居蜂和熊蜂蜂王的繁殖力下降[44,45].熊蜂哺育蜂對(duì)吡蟲啉比較敏感,取食亞致死劑量吡蟲啉的熊蜂,經(jīng)過其飼喂的幼蟲表現(xiàn)出出房率下降,壽命縮短的跡象[46].總而言之,新煙堿類殺蟲劑對(duì)除蜜蜂以外的授粉昆蟲的健康也有著一定程度的損害.
數(shù)據(jù)顯示不同種類新煙堿類殺蟲劑對(duì)于同一蜂種的LD50存在很大差異,這說明由于蜜粉源環(huán)境的差異以及蜜蜂自身遺傳背景的差異,不同地區(qū)蜂群內(nèi)在的解毒機(jī)制可能不同.此方面可進(jìn)一步探究在不同遺傳背景下的蜜蜂其免疫系統(tǒng)之間的差異,從分子層面解釋LD50之間存在的差異的原因,并通過田間試驗(yàn)驗(yàn)證,使實(shí)驗(yàn)結(jié)果更具有實(shí)際意義.西方蜜蜂與其它授粉物種處于同一個(gè)生態(tài)位,由于環(huán)境污染造成的西方蜜蜂損失可能也是其它授粉物種同樣正面臨的問題.目前大部分研究工作都集中在新煙堿類殺蟲劑對(duì)西方蜜蜂的影響,對(duì)于其它授粉昆蟲比如熊蜂,切葉蜂,無刺蜂等,尤其是我國(guó)特種蜂種——中華蜜蜂的研究相對(duì)較少.由于中華蜜蜂個(gè)體小,采集大宗蜜源能力較弱,其對(duì)于新煙堿類殺蟲劑的抵抗力相比于西方蜜蜂可能更低.因此,此類殺蟲劑對(duì)于中華蜜蜂的影響需要更深入的研究,從而能夠更好的保護(hù)我們本土的蜂種.同時(shí),可通過新煙堿類殺蟲劑對(duì)不同蜂種造成的不同影響,來進(jìn)一步分析各蜂種之間解毒機(jī)制和免疫系統(tǒng)的差異,使得我們對(duì)蜜蜂的了解更進(jìn)一步.
目前市場(chǎng)上對(duì)于新煙堿類殺蟲劑的需求量與日俱增,2010年新煙堿類殺蟲劑銷售額占世界農(nóng)藥市場(chǎng)的6%,殺蟲劑市場(chǎng)的21.8%[47].這個(gè)比例證明新煙堿類殺蟲劑已在世界農(nóng)業(yè)生產(chǎn)中占據(jù)著主導(dǎo)地位.并且新煙堿類殺蟲劑能滿足水稻對(duì)于防治害蟲的要求,水稻是我國(guó)第一大農(nóng)作物,因此新煙堿類殺蟲劑在我國(guó)的使用前景占有相當(dāng)大的優(yōu)勢(shì).
在同時(shí)面對(duì)農(nóng)作物對(duì)于新煙堿類殺蟲劑的大量需求及新煙堿類殺蟲劑嚴(yán)重影響授粉昆蟲健康的形勢(shì)下,研究慢性亞致死劑量的新煙堿類殺蟲劑對(duì)授粉昆蟲的影響程度及作用機(jī)理顯得尤為重要,希望通過此方面研究找到一個(gè)農(nóng)藥使用量與昆蟲授粉互相作用影響最低的平衡點(diǎn),以此實(shí)現(xiàn)農(nóng)業(yè)與蜂業(yè)共同發(fā)展.
[1] GOULSON D, NICHOLLS E, BOTIAS C, et al. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers[J]. Science, 2015,347:165-174.
[2] JOHNSON R M. Honey bee toxicology[J]. Annu Rev Entomol, 2015,60:415-434.
[3] SINGARAVELAN N, INBAR M, NE′EMAN G, et al. The effects of nectar-nicotine on colony fitness of caged honeybees[J]. Journal of Chemical Ecology, 2006,32:49-58.
[4] JESCHKE P, NAUEN R, SCHINDLER M, et al. Overview of the status and global strategy for neonicotinoids[J]. Journal of Agricultural and Food Chemistry, 2011,59:2 897-2 908.
[5] BELZUNCES L P, TCHAMITCHIAN S, BRUNET J L. Neural effects of insecticides in the honey bee[J]. Apidologie, 2012,43:348-370.
[6] CASIDA J E. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance[J]. J Agric Food Chem, 2011,59:2 923-2 931.
[7] BONMATIN J M, MOINEAU I, CHARVET R, et al. A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens[J]. Analytical Chemistry, 2003,75:2 027-2 033.
[8] GIROLAMI V, MAZZON L, SQUARTINI A, et al. Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: A novel way of intoxication for bees[J]. Journal of Economic Entomology, 2009,102:1 808-1 815.
[9] THOMPSON H M. Risk assessment for honey bees and pesticides-recent developments and ‘new issues’[J]. Pest Manag Sci, 2010,66:1 157-1 162.
[10] POHORECKA K, SKUBIDA P, MISZCZAK A, et al. Residues of neonicotinoid insecticides in bee collected plant materials from oilseed rape crops and their effect on bee colonies[J]. Journal of Apicultural Science, 2012,56:115-134.
[11] KESSLER S C, TIEDEKEN E J, SIMCOCK K L, et al. Bees prefer foods containing neonicotinoid pesticides[J]. Nature, 2015,521:74-145.
[12] MEDRZYCKI P, GIFFARD H, AUPINEL P, et al. Standard methods for toxicology research inApismellifera[J]. Journal of Apicultural Research, 2013,52(4):1-60.
[13] LAURINO D, MANINO A, PATETTA A, et al. Toxicity of neonicotinoid insecticides on different honey bee genotypes[J]. Bulletin of Insectology, 2013,66:119-126.
[14] TOME H V V, BARBOSA W F, MARTINS G F, et al. Spinosad in the native stingless beeMeliponaquadrifasciata: Regrettable non-target toxicity of a bioinsecticide[J]. Chemosphere, 2015,124:103-109.
[15] SOARES H M, JACOB C R O, CARVALHO S M, et al. Toxicity of imidacloprid to the stingless bee scaptotrigona postica latreille, 1807 (Hymenoptera: Apidae)[J]. Bulletin of Environmental Contamination and Toxicology, 2015,94:675-680.
[16] CRESSWELL J E. A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees[J]. Ecotoxicology, 2011,20:149-157.
[17] DESNEUX N, DECOURTYE A, DELPUECH J M. The sublethal effects of pesticides on beneficial arthropods[J]. Annual Review of Entomology, 2007,52:81-106.
[18] PAN H S, LIU Y Q, LIU B, et al. Lethal and sublethal effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the mirid bugApolyguslucorum[J]. Journal of Pest Science, 2014,87:731-738.
[19] SUCHAIL S, DEBRAUWER L, BELZUNCES L P. Metabolism of imidacloprid inApismellifera[J]. Pest Management Science, 2004,60:291-296.
[20] DECOURTYE A, DEVILLERS J, GENECQUE E, et al. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybeeApismellifera[J]. Archives of Environmental Contamination and Toxicology, 2005,48:242-250.
[21] EL HASSANI A K, DACHER M, GARY V, et al. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apismellifera)[J]. Archives of Environmental Contamination and Toxicology, 2008,54:653-661.
[22] WILLIAMSON S M, WRIGHT G A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees[J]. Journal of Experimental Biology, 2013,216:1 799-1 807.
[23] TAN K, CHEN W W, DONG S H, et al. A neonicotinoid impairs olfactory learning in Asian honey bees (Apiscerana) exposed as larvae or as adults[J]. Scientific Reports, 2015,5:445-451.
[24] YANG E C, CHUANG Y C, CHEN Y L, et al. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae)[J]. Journal of Economic Entomology, 2008,101:1 743-1 748.
[25] HENRY M, BEGUIN M, REQUIER F, et al. A common pesticide decreases foraging success and survival in honey bees[J]. Science, 2012,336:348-350.
[26] BLACQUIERE T, SMAGGHE G, VAN GESTEL C A, et al. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment[J]. Ecotoxicology, 2012,21:973-992.
[27] SCHNEIDER C W, TAUTZ J, GRUNEWALD B, et al. RFID Tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior ofApismellifera[J]. Plos One, 2012,7(1):303-312.
[28] BORTOLOTTI L, SBRENNA A M, SBRENNA G. Action of fenoxycarb on metamorphosis and cocoon spinning inChrysoperlacarnea(Neuroptera: Chrysopidae): identification of the JHA-sensitive period[J]. European Journal of Entomology, 2005,102:27-32.
[29] GARBUZOV M, COUVILLON M J, SCHURCH R. Honey bee dance decoding and pollen-load analysis show limited foraging on spring-flowering oilseed rape, a potential source of neonicotinoid contamination[J]. Agriculture Ecosystems & Environment, 2015,203:62-68.
[30] TAN K, CHEN W W, DONG S H, et al. Imidacloprid alters foraging and decreases bee avoidance of predators[J]. Plos One, 2014,9(7):732-745.
[31] YANG E C, CHANG H C, WU W Y. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage[J]. Plos One, 2012,7(11):143-165.
[32] HUMAN H, ARCHER C R, DU RAND E E, et al. Resistance of developing honeybee larvae during chronic exposure to dietary nicotine[J]. Journal of Insect Physiology, 2014,69:74-79.
[33] BADAWY M E I, NASR H M, RABEA E I. Toxicity and biochemical changes in the honey beeApismelliferaexposed to four insecticides under laboratory conditions[J]. Apidologie, 2015,46:177-193.
[34] IWASA T, MOTOYAMA N, AMBROSE J T. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee,Apismellifera[J]. Crop Protection, 2004,23:371-378.
[35] TOMIZAWA M, CASIDA J E. Neonicotinoid insecticide toxicology: Mechanisms of selective action[J]. Annual Review of Pharmacology and Toxicology, 2005,45:247.
[36] NICODEMO D, MAIOLI M A, MEDEIROS H C D, et al. Fipronil and imidacloprid reduce honeybee mitochondrial activity[J]. Environmental Toxicology and Chemistry, 2014,33:2 070-2 075.
[37] DERECKA K, BLYTHE M J, MALLA S, et al. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae[J]. Plos One, 2013,8(7):425-436.
[38] DIVELY G P, EMBREY M S, KAMEL A, et al. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One, 2015,10:104-111.
[39] VIDAU C, DIOGON M, AUFAUVRE J, et al. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected byNosemaceranae[J]. Plos One, 2011,6(6):349-356.
[40] ALAUX C, BRUNET J L, DUSSAUBAT C, et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apismellifera)[J]. Environ Microbiol, 2010,12:774-782.
[41] DOUBLET V, LABARUSSIAS M, MIRANDA J D R, et al. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle[J]. Environmental Microbiology, 2015,17:969-983.
[42] OLIVEIRA R A, ROAT T C, CARVALHO S M, et al. Side-effects of thiamethoxam on the brain andmidgut of the africanized honeybeeApismellifera(Hymenopptera: Apidae)[J]. Environ Toxicol, 2014,29:1 122-1 133.
[43] JACOB C R O, SOARES H M, NOCELLI R C F, et al. Impact of fipronil on the mushroom bodies of the stingless beeScaptotrigonapostica[J]. Pest Management Science, 2015,71:114-122.
[44] WHITEHORN PR, O′CONNOR S, WACKERS F L, et al. Neonicotinoid pesticide reduces bumble bee colony growth and queen production[J]. Science, 2012,336:351-352.
[45] SANDROCK C, TANADINI L G, PETTIS J S, et al. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success[J]. Agricultural and Forest Entomology, 2014,16:119-128.
[46] LAYCOCK I, COTTERELL K C, O′SHEA-WHELLER T A, et al. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees[J]. Ecotoxicol Environ Saf, 2014,100:153-158.
[47] VAIKKINEN A, SCHMIDT H S, KIISKI Ⅰ, et al. Analysis of neonicotinoids from plant material by desorption atmospheric pressure photoionization-mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2015,29:424-430.
(責(zé)任編輯:吳顯達(dá))
Advances in effect of neonicotinoid insecticides on behavior and physiology of honey bees
LI Meng, LI Zhiguo, HE Jingfang, SU Songkun
(College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China)
Over the past 30 years, types of pesticides have changed from organic phosphate and carbamic acid ester to neonicotinoid across the world. Neonicotinoid insecticides interfere nerve conduction of insects by releasing inhibitors of nicotinic acetylcholine receptors. Symptoms include retarded physiological activities, paralysis, and even death. However, honey bees, an important pollinator for plants, are collaterally damaged when foraging in the field. What′s worse, the contaminated honey bees are likely to contaminate the whole colony when they home in, which pose tremendous threat to apiculture industry. To alleviate this problem, effect of neonicotinoid insecticides on health of honeybee were summarized in this review in terms of behavior and physiology, so that further study on countermeasures can be undertaken.
neonicotinoid insecticides;Apismellifera;Apiscerana; acute toxicity; sub-lethal dose
2015-10-28
2016-01-04
國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(蜜蜂)項(xiàng)目(CARS-45).
李夢(mèng)(1990-),女,碩士研究生.研究方向:殺蟲劑對(duì)蜜蜂健康影響.Email:fjfzlimeng@163.com.通訊作者蘇松坤(1970-),男,研究員,博士生導(dǎo)師.研究方向:蜜蜂科學(xué).Email:susongkun@zju.edu.cn.
S895.9
A
1671-5470(2016)05-0490-06
10.13323/j.cnki.j.fafu(nat.sci.).2016.05.002