何 軍,劉衍民
(遵義師范學(xué)院數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,貴州遵義,563002)
自然科學(xué)研究
廣義鞍點(diǎn)問(wèn)題的塊對(duì)角預(yù)條件子
何 軍,劉衍民
(遵義師范學(xué)院數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,貴州遵義,563002)
研究了廣義鞍點(diǎn)問(wèn)題新的塊預(yù)條件子,給出了預(yù)處理后矩陣特征值的一些性質(zhì).數(shù)值例子表明,新的預(yù)條件子是非常有效的.
預(yù)處理;鞍點(diǎn)問(wèn)題;特征值
考慮如下的鞍點(diǎn)系統(tǒng):
在文獻(xiàn)[1]中,Benzi、Golub和Liesen討論了解決鞍點(diǎn)系統(tǒng)的一系列的數(shù)值方法,并且給出了一些預(yù)條件子來(lái)解決系統(tǒng)(1),如:塊對(duì)角預(yù)條件子[2-8],塊三角預(yù)條件子[9,10],HSS類(lèi)型的預(yù)條件子[1,11,12].
其中 .可以發(fā)現(xiàn),當(dāng)D=0,文獻(xiàn)[4,7,8]中介紹了非確定的塊對(duì)角預(yù)條件子.
基于上面的分析,本文主要研究下面的正定的塊對(duì)角預(yù)條件子:
考慮如下的預(yù)條件子:
展開(kāi)(2)式有:
帶入(4)式可得:
那么可得:
直接計(jì)算可得:
因?yàn)?/p>
有:
直接計(jì)算可得:
證明完畢.
注:所有的預(yù)處理后的矩陣的特征值都包含在兩個(gè)狹窄的區(qū)間中,并且可以發(fā)現(xiàn)其中的一些界可以用文獻(xiàn)[14]中的定理2.1來(lái)表示矩陣的界.但是,至少其中的一個(gè)界表現(xiàn)得更好,如正特征值的上界.
考慮下面的Stokes類(lèi)型問(wèn)題:
如果用穩(wěn)定有限元或者有限差分方法來(lái)離散上面的問(wèn)題,可以得到廣義的鞍點(diǎn)線性系統(tǒng).本文用Silvester、Elman和Ramage編寫(xiě)的IFISS軟件包[15]來(lái)離散系統(tǒng),所采用的混合有限元是雙線性速度一常數(shù)壓力: 對(duì)有限元,得到系數(shù)矩陣的(1,1)塊的矩陣是對(duì)稱(chēng)正定的,(1,2)塊的矩陣是滿(mǎn)秩的.例子中用32×32的網(wǎng)格來(lái)離散系統(tǒng)(也就是說(shuō),D≠0,且穩(wěn)定系數(shù)為 =0.25),其中表示矩陣中非零元的個(gè)數(shù).
表1 相關(guān)矩陣的規(guī)模及非零元的個(gè)數(shù)
表2 對(duì)不同的W,MINRES迭代的迭代步數(shù)
圖1 當(dāng)W=0.1I,對(duì)于32×32網(wǎng)絡(luò)預(yù)處理后的矩陣P-1A的特征值分布情況
圖2 當(dāng)W=2diag(BBT),對(duì)于32×32網(wǎng)絡(luò)預(yù)處理后的矩陣P-1A的特征值分布情況
圖3 對(duì)不同的W,32×32網(wǎng)絡(luò)MINRES迭代的迭代曲線及步數(shù)
表1描述了不同網(wǎng)格鞍點(diǎn)問(wèn)題的規(guī)模和稀疏情況,表2給出了不同矩陣WMINRES子空間迭代的迭代步數(shù).
[1]M Benzi,G H Golub,J Liesen.Numerical solution of saddle point problems[J].Acta Numerica,2005,(14):1-137.
[2]E de Sturler,J Liesen.Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems,part I:Theory[J].SIAM J Sci Comput,2005,(26):1598-1619.
[3]C Siefert,E de Sturler.Preconditioners for generalized saddlepointproblems[J].SIAMJ Numer Anal,2006,44(3):1275-1296.
[4]T Rees,C Greif.A preconditioner for linear systems arising frominterior pointoptimization methods[J].SIAM J Sci Comput,2007,(29):1992-2007.
[5]G H Golub,C Greif,James M Varah.An algebraig analysis of a block diagonal preconditioner for saddle point sysytems[J]. SIAM J Sci Comput,2006,(27):779-792.
[6]M F Murphy,G H Golub,A J Wathen.A note on preconditioning for indefinite linear systems[J].SIAM J Sci Comput, 2000,(21):1969-1972.
[7]C Greif,D Schotzau.Preconditioners for saddle point linear systems with highly singular(1,1)blocks[J].Electron Trans Numer Anal,2006,(22):114-121.
[8]C Greif,D Schotzau.Preconditioners for the discretized timeharmonic Maxwell equations in mixed form[J].Numerical Linear Algebra Appl,2007,(14):281-297.
[9]A Klawonn.Block-triangular preconditioners for saddle point problems with a penalty term[J].SIAM J Sci Comput,1998, (19):172-184.
[10]Z H Cao.Augmentation block preconditioners for saddle point-type matrices for singular(1,1)blocks[J].Numerical Linear Algebra Appl,2008,(15):515-533.
[11]Z Z Bai,G H Golub,M K Ng.Hermitian and skew-hermitian splitting methods for non-hermitian positive definite linear systems[J].SIAM J Matrix Anal Appl,2003,(24):603-626.
[12]V Simoncini,M Benzi.Spectral properties of the hermitian and skew-hermitian splitting preconditioner for saddle point problems[J].SIAM J Matrix Anal Appl,2004,(26):377-389.
[13]Ilse C F Ipsen.A note on preconditioning nonsymmetric matrices[J].SIAM J Sci Comput,2001,(23):1050-1051.
[14]D Silvester,A Wathen.Fast iterative solution of stabilized Stokes systems part II:using generalblock preconditioners[J]. SIAM J Numer Anal,1994,(31):1352-1367.
[15]H Elman,G H Golub.Inexact and preconditioned Uzawa algorithms for saddle point problems[J].SIAM J Numer Anal, 1994,(31):1645-1661.
(責(zé)任編輯:朱 彬)
Block Diagonal Pre-conditioners for Generalized Saddle Point Problems
HE Jun,LIU Yan-min
(School of Mathematics and Computer Science,Zunyi Normal College,Zunyi 563002,China)
In this paper,we consider block diagonal preconditioners for solving saddle point linear systems;we show properties of eigenvalues of the preconditioned matrix.Finally,numerical experiments are also reported for illustrating the efficiency of the presented preconditioners.
saddle point system;preconditioning;eigenvalue
O211.4
A
1009-3583(2016)-0111-03
2016-05-11
國(guó)家自然科學(xué)基金資助項(xiàng)目(71461027);貴州省科學(xué)技術(shù)基金(黔科合基礎(chǔ)[2016]1161);遵義師范學(xué)院博士基金資助項(xiàng)目(遵師BS[2015]09)
何 軍,男,四川資陽(yáng)人,遵義師范學(xué)院數(shù)學(xué)與計(jì)算科學(xué)學(xué)院教師,博士,主要從事數(shù)值代數(shù)的研究。
遵義師范學(xué)院學(xué)報(bào)2016年6期