• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      轉(zhuǎn)錄因子HIF-1α及其信號(hào)通路在疾病發(fā)生中的作用研究進(jìn)展

      2016-04-11 20:41:30楊夢(mèng)思周娜王志鋼郝慧芳
      生物技術(shù)通報(bào) 2016年8期
      關(guān)鍵詞:泛素低氧調(diào)控

      楊夢(mèng)思 周娜 王志鋼 郝慧芳

      (內(nèi)蒙古大學(xué)生命科學(xué)學(xué)院,呼和浩特 010021)

      轉(zhuǎn)錄因子HIF-1α及其信號(hào)通路在疾病發(fā)生中的作用研究進(jìn)展

      楊夢(mèng)思 周娜 王志鋼 郝慧芳

      (內(nèi)蒙古大學(xué)生命科學(xué)學(xué)院,呼和浩特 010021)

      缺氧誘導(dǎo)因子-1α(hypoxia inducible factor-1α,HIF-1α)是缺氧條件下廣泛存在于哺乳動(dòng)物和人體內(nèi)的一種轉(zhuǎn)錄因子,是應(yīng)答缺氧應(yīng)激的關(guān)鍵因子。HIF-1α是缺氧誘導(dǎo)因子-1(hypoxia inducible factor-1,HIF-1)的一個(gè)亞單位,受缺氧調(diào)控并調(diào)節(jié)HIF-1的活性。在缺氧條件下,HIF-1α轉(zhuǎn)移到細(xì)胞核內(nèi)結(jié)合HIF-1β形成有活性的HIF-1,通過與靶基因上的缺氧反應(yīng)元件結(jié)合調(diào)節(jié)多種基因的轉(zhuǎn)錄。HIF-1α可以與上下游多種蛋白組成不同的信號(hào)通路,介導(dǎo)低氧信號(hào),調(diào)控細(xì)胞產(chǎn)生一系列對(duì)缺氧的代償反應(yīng),在機(jī)體的生長(zhǎng)發(fā)育及生理和病理過程中發(fā)揮重要作用,是生物醫(yī)學(xué)研究的一個(gè)焦點(diǎn)。對(duì)轉(zhuǎn)錄因子HIF-1α及其信號(hào)通路在疾病發(fā)生中的作用進(jìn)行了綜述,介紹了HIF-1α在動(dòng)物生長(zhǎng)發(fā)育、炎癥和腫瘤中的研究概況,并進(jìn)行了展望,以便更好地應(yīng)用于生物醫(yī)學(xué)。

      缺氧誘導(dǎo)因子-1α;信號(hào)通路;疾病

      缺氧現(xiàn)象普遍存在于細(xì)胞和組織中,它會(huì)導(dǎo)致細(xì)胞和組織的新陳代謝紊亂,甚至造成細(xì)胞死亡。為了應(yīng)對(duì)缺氧脅迫,機(jī)體形成了復(fù)雜的反應(yīng)機(jī)制,缺氧誘導(dǎo)因子-1(Hypoxia inducible factor-1,HIF-1)及其信號(hào)通路在其中發(fā)揮著重要的作用。1992年,Semenza和Wang[1]在缺氧的肝癌細(xì)胞株Hep3B的提取物中發(fā)現(xiàn)了HIF,其是由120 kD的HIF-1α亞單位和91-94 kD的HIF-1β亞單位組成的異源二聚體。HIF-1β穩(wěn)定存在于胞漿或核質(zhì)中,起結(jié)構(gòu)性作用。HIF-1α在細(xì)胞質(zhì)中,是HIF-1的活性亞基,是應(yīng)答缺氧應(yīng)激的關(guān)鍵因子[2]。HIF-1α是目前發(fā)現(xiàn)的唯一一個(gè)特異性缺氧狀態(tài)下發(fā)揮活性的轉(zhuǎn)錄因子,廣泛存在于哺乳動(dòng)物細(xì)胞中,其參與了多條細(xì)胞信號(hào)通路,是介導(dǎo)缺氧信號(hào)的轉(zhuǎn)導(dǎo)中樞。研究發(fā)現(xiàn),HIF-1α在動(dòng)物心血管系統(tǒng)的生成、軟骨系統(tǒng)的發(fā)育和神經(jīng)胚的形成過程中都有表達(dá),可以調(diào)控細(xì)胞的生長(zhǎng)、增殖、遷移和凋亡等過程,與人的多種生理、病理過程相關(guān)。對(duì)HIF-1α及其信號(hào)通路的研究,對(duì)于人們了解細(xì)胞生理調(diào)控的分子機(jī)制以及控制疾病的發(fā)生與發(fā)展意義重大。

      1 HIF-1α分子結(jié)構(gòu)及活性調(diào)控

      HIF-1α由826個(gè)氨基酸構(gòu)成,人的HIF-1α基因定位于14號(hào)染色體q21-24區(qū)。HIF-1α屬于螺旋-環(huán)-螺旋(basic-helix-loop-helix,bHLH)/PER-ARNTSIM(PAS)蛋白家族。其N端含有堿性的bHLH構(gòu)型,是與DNA結(jié)合所必需的結(jié)構(gòu),下游的脯氨酸-絲氨酸-蘇氨酸(Pro/Ser/Thr)是形成異源二聚體并與靶基因結(jié)合的特異性結(jié)構(gòu)[3]。HIF-1α的C端含有3個(gè)結(jié)構(gòu)域,一個(gè)是反式激活結(jié)構(gòu)域-C(transactivation domain-terminal,TAD-C),具有調(diào)節(jié)轉(zhuǎn)錄的作用。另一個(gè)是反式激活結(jié)構(gòu)域-N(transactivation domain-N terminal,TAD-N),能夠激活轉(zhuǎn)錄。還有一個(gè)是富含Pro/Ser/Thr的氧依賴降解結(jié)構(gòu)域(oxygendependent degradation domain,ODDD)[4],能夠通過泛素化通路降解HIF-1α蛋白。C末端還有核定位信號(hào)(nuclear localization signal,NLS),它能協(xié)助HIF-1α蛋白和核孔蛋白結(jié)合入核。N末端的激活域與HIF-1β結(jié)合,形成異源二聚體HIF-1,并結(jié)合到缺氧反應(yīng)原件(hypoxia response elements,HRE)的順式作用元件進(jìn)行轉(zhuǎn)錄。

      在正常氧飽和度下,基本檢測(cè)不到HIF-1α的表達(dá),當(dāng)氧氣濃度低于5%時(shí),HIF-1α穩(wěn)定存在于細(xì)胞中[5]。HIF-1α的半衰期不足5 min,HIF-1α蛋白通過羥基化、乙?;?、磷酸化等的調(diào)節(jié)和信號(hào)轉(zhuǎn)導(dǎo)途徑來提高蛋白質(zhì)的穩(wěn)定性并增強(qiáng)其活性。在正常氧飽和度下HIF-1α由ODDD介導(dǎo)的泛素蛋白酶體途徑迅速降解;但在缺氧條件下,泛素化和羥基化水平下降,HIF-1α的降解被抑制。目前證實(shí)主要有兩條氧依賴的途徑調(diào)節(jié)HIF-1α蛋白穩(wěn)定性和轉(zhuǎn)錄活性:一是利用低氧誘導(dǎo)因子1抑制因子(factorinhibiting hypoxia-inducible factor,F(xiàn)IH-1),將HIF-1α C末端反式激活結(jié)構(gòu)域內(nèi)第803位的天冬氨酸殘基羥基化,并阻止HIF-1α與轉(zhuǎn)錄輔助激活因子(CREB-binding protein,CBP)/p300結(jié)合,從而抑制HIF-1α的轉(zhuǎn)錄激活功能[6];二是通過脯氨酸羥化酶(prolyl hydroxylase,PHDs)使HIF-1α的第564位和第402位的脯氨酸殘基羥基化,C末端的ODDD與腫瘤抑制蛋白(von hippel-lindau protein,pVHL)結(jié)合,聚集多種泛素蛋白,共同組成泛素連接蛋白酶復(fù)合體,從而將HIF-1α亞基泛素化,并經(jīng)泛素連接蛋白酶復(fù)合體途徑降解[7]。HIF-1α在轉(zhuǎn)錄后可被泛素樣修飾蛋白(small ubiquitin-like modifier,SUMO)修飾降解,這是一個(gè)被SUMO特異性連接酶催化和被SUMO特異性蛋白酶(sentrin-specific proteins,SENPs)逆轉(zhuǎn)的動(dòng)態(tài)過程。低氧可以增加HIF-1α的SUMO修飾,而SUMO修飾能通過脯氨酸殘基的羥基化來增強(qiáng)HIF-1α和VHL的結(jié)合,導(dǎo)致HIF-1α的泛素化降解。相反SENPs參與的HIF-1α去SUMO修飾可以避免其在低氧條件下被降解[8]。氧分壓是調(diào)節(jié)HIF-1α的主要生理因素。

      2 HIF-1α及其信號(hào)通路

      在低氧環(huán)境中,HIF-1α在細(xì)胞內(nèi)積聚并與HIF-1β結(jié)合形成HIF-1,HIF-1與HRE結(jié)合,參與多條信號(hào)轉(zhuǎn)導(dǎo)通路,引起細(xì)胞對(duì)缺氧的反應(yīng)。

      2.1PI-3K/Akt/HIF-1α通路

      磷脂酰激醇3-激酶(phosphatidylinositol-3kinase,PI-3K)信號(hào)通路在細(xì)胞增殖和凋亡中發(fā)揮作用。在低氧環(huán)境下,PI-3K被激活,并與下游的Akt結(jié)合,使得Akt磷酸化,增強(qiáng)HIF-1α活性,啟動(dòng)下游靶基因轉(zhuǎn)錄,使得細(xì)胞增殖增加而細(xì)胞凋亡減少[9]。這一途徑與細(xì)胞糖酵解水平有一定關(guān)系,己糖激酶II(hexokinase II,HKII)/葡萄糖轉(zhuǎn)運(yùn)體1(glucose transporter 1,GLUT1)和乳酸脫氫酶(lactate dehydrogenase,LDHA)可能是該通路下游的作用位點(diǎn),缺氧條件下表皮生長(zhǎng)因子(epidermal growth factor,EGF)激活PI3K/Akt途徑并通過HIF-1α參與對(duì)糖酵解的調(diào)控;抑制PI3K/Akt-HIF-1α途徑能夠顯著減少多種細(xì)胞的糖酵解[10]。這一機(jī)制對(duì)腫瘤治療具有潛在的價(jià)值。

      2.2SENP1/HIF-1α信號(hào)通路

      SENP1(sentrin-specific protease 1,SENP1)是SUMO特異性蛋白酶家族成員,HIF-1α是SUMO修飾的靶蛋白。缺氧能夠抑制PHD的活性,且夠激活SENP1。PHD的活性降低使得HIF-1α的表達(dá)增加,同時(shí)激活的SENP1使HIF-1α去SUMO化,HIF-1α得以穩(wěn)定表達(dá),并激活下游靶基因[11]。抑制SENP1/HIF-1α通路對(duì)控制腫瘤生長(zhǎng)有重要意義。

      2.3HIF-1α/BNIP3/Bcline-1信號(hào)通路

      Bal-2/腺病毒E1B 19kD相關(guān)蛋白3(BCL-2/interacting protein3,BNIP3)信號(hào)通路在缺氧誘導(dǎo)的自噬激活過程中扮演著重要的角色。缺氧條件下HIF-1α表達(dá)水平增高,與BNIP3的缺氧反應(yīng)元件結(jié)合,促進(jìn)BNIP3的表達(dá)。BNIP3屬于Bal-2蛋白家族中的BH3-only亞家族,它不僅介導(dǎo)非caspases依賴性細(xì)胞凋亡,而且能夠與Bcline-1相互作用調(diào)控細(xì)胞的自噬過程。BNIP3表達(dá)升高時(shí),產(chǎn)生大量的游離Beclin-1,Beclin-1介導(dǎo)其他自噬蛋白定位于吞噬泡,調(diào)控自噬體的形成與成熟。在醫(yī)療方面加強(qiáng)腫瘤細(xì)胞和炎癥細(xì)胞的自噬是靶向治療癌癥和炎癥的一個(gè)新手段[12]。

      2.4MAPK/HIF-1α信號(hào)通路

      絲裂原活化蛋白激酶(mitogen-activated prorein kinase,MAPK)能夠促進(jìn)細(xì)胞增殖,抗凋亡,細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular regulated kinase,ERK)是MAPK蛋白家族成員,低氧能夠誘ERK磷酸化,進(jìn)而激活癌基因,產(chǎn)生癌細(xì)胞。Ras是ERK的上游調(diào)控因子,Raf的N端結(jié)構(gòu)域與之結(jié)合并激活,Raf激活下游的MAPK/ERK激酶(MAPK/ERK/Kinase,MEK),使得ERK磷酸化,提高HIF-1α的表達(dá)水平[13]。對(duì)該通路的研究有助于腫瘤的抑制。

      2.5HIF-1α相關(guān)的其他信號(hào)通路

      近年發(fā)現(xiàn),pVHL、熱休克蛋白90(heat shock proteins 90,Hsp90)及環(huán)氧合酶-2(cyclooxygenase-2,COX-2)等蛋白也可與HIF-1α形成介導(dǎo)低氧信號(hào)的通路。實(shí)驗(yàn)發(fā)現(xiàn),腎透明癌細(xì)胞中pVHL的表達(dá),導(dǎo)致HIF-1α和血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)的表達(dá)減少,抑制了癌細(xì)胞增殖,轉(zhuǎn)移和血管再生[14]。其機(jī)制是在常氧下HIF-1α的關(guān)鍵脯氨酸殘基羥基化,使得HIF-1α 被pVHL/E3泛素連接酶復(fù)合物識(shí)別,多泛素化降解,進(jìn)而影響細(xì)胞的代謝活性。在缺氧時(shí),HIF-1α的脯氨酸殘基不會(huì)被pVHL識(shí)別,這使得HIF-1α穩(wěn)定存在于缺氧環(huán)境中,進(jìn)而激活下游VEGF基因,誘導(dǎo)產(chǎn)生血管[15]。Hsp90信號(hào)通路在肝癌、胰腺癌和乳腺癌中有重要作用,缺氧條件下Hsp90結(jié)合HIF-1α 的bHLH-PAS結(jié)構(gòu)域,激活HIF-1α的表達(dá),從而對(duì)其下游靶基因進(jìn)行調(diào)節(jié),促進(jìn)癌細(xì)胞的生長(zhǎng)[16]。缺氧條件下,HIF-1α大量表達(dá),與COX-2啟動(dòng)子上的缺氧反應(yīng)元件結(jié)合,從而促進(jìn)COX-2的表達(dá)。該通路對(duì)腫瘤細(xì)胞的增殖,血管的生長(zhǎng)及抗凋亡有重要意義[17]。

      3 HIF-1α在胚胎及成體生長(zhǎng)發(fā)育中的作用

      HIF-1α與動(dòng)物的生長(zhǎng)發(fā)育有密切關(guān)系,低氧是機(jī)體正常發(fā)育的一個(gè)重要生理因素,并誘導(dǎo)HIF-1α在整個(gè)胚胎發(fā)育期間呈現(xiàn)波動(dòng)性表達(dá)[18]。在大鼠胚胎的晶狀體中,HIF-1α的表達(dá)呈現(xiàn)出由低到高,再由高到低的變化趨勢(shì)。晶狀體細(xì)胞分裂增生旺盛的地方,HIF-1α表達(dá)增加,反之減弱。晶狀體胚胎發(fā)育過程中,HIF-1α的表達(dá)與形態(tài)學(xué)變化相吻合[19]。在非洲爪蟾胚胎的晶狀體形成過程中,HIF-1α也扮演著重要的角色。晶狀體的形成與HIF-1α的表達(dá)有重要的關(guān)系,HIF-1α能夠調(diào)控VEGF的表達(dá),從而控制晶狀體細(xì)胞的分化增殖及遷移。而HIF-1α受晶狀體周圍的氧分壓控制,氧分壓增高,導(dǎo)致HIF-1α降解,致其下游的VEGF等因子表達(dá)減少,VEGF表達(dá)的改變會(huì)影響晶狀體的發(fā)育。相反,氧分壓降低,HIF-1α增多,VEGF因子表達(dá)增加,也使得晶狀體發(fā)育異常[20]。HIF-1α可以通過調(diào)控VEGF來控制胚胎血管生成,HIF-1α也可以影響缺氧環(huán)境下的能量代謝及滋養(yǎng)層細(xì)胞功能等來調(diào)節(jié)早期妊娠的胚胎生長(zhǎng),其表達(dá)水平的高低直接影響著胚胎的生長(zhǎng)發(fā)育[21]。HIF-1α在人類妊娠早期的胚胎發(fā)育中也扮演著重要的角色。

      在骨髓、腎臟和大腦等成體組織器官中,也有HIF-1α的表達(dá)。在骨的生成過程中,HIF-1α可以調(diào)控成體細(xì)胞的增殖和遷移。HIF-1α能促進(jìn)骨形態(tài)發(fā)生蛋白2(Bone morphogenetic protein-2,BMP-2)誘導(dǎo)干細(xì)胞的成軟骨分化,促進(jìn)軟骨細(xì)胞外基質(zhì)的分泌。HIF-1α也能減少BMP2誘導(dǎo)的成骨標(biāo)志物堿性磷酸酶(alkaline phosphatase,ALP)的表達(dá),進(jìn)而抑制BMP2的成骨活性。HIF-1α和LIM礦化蛋白1(LIM mineralization protein-1,LMP-1)基因同時(shí)表達(dá),能夠增加BMP-2和核心結(jié)合因子α1(runt related transcription factor 2,also previously called Core binding factor α1,RunX2)的表達(dá)。RunX2是成骨特異性轉(zhuǎn)錄因子,它的表達(dá)水平與成骨細(xì)胞發(fā)育、分化和骨形成過程關(guān)系密切[22]。

      4 HIF-1α在疾病發(fā)生發(fā)展中的作用

      4.1HIF-1α與炎癥

      在免疫性炎癥、細(xì)菌感染、巨噬細(xì)胞代謝和病毒感染等炎癥性疾病中都能檢測(cè)到HIF-1α的表達(dá)。免疫細(xì)胞聚集在炎癥部位,處在一個(gè)快速缺氧的環(huán)境中,進(jìn)而誘導(dǎo)免疫細(xì)胞轉(zhuǎn)錄HIF-1α。大量的炎癥信號(hào),如脂多糖能夠增強(qiáng)HIF基因轉(zhuǎn)錄。核因子κB (nuclear factor Kappa B,NF-κB)是關(guān)鍵性的免疫調(diào)節(jié)因子,通過正調(diào)控下游的HIF-1α,增強(qiáng)HIF-1α在炎癥中的作用[23],具有調(diào)控免疫細(xì)胞存活和促炎因子表達(dá)的功能,HIF-1α在促炎因子白細(xì)胞介素1β(Interleukin-1β,IL-1β)的合成中起關(guān)鍵作用[24]。脂多糖可誘導(dǎo)巨噬細(xì)胞表達(dá)HIF-1α,在炎癥過程中維持免疫細(xì)胞HIF-1α穩(wěn)定性發(fā)揮重要作用[25]。

      4.2HIF-1α與腫瘤

      HIF-1α與腫瘤的關(guān)系是目前研究的熱點(diǎn),已發(fā)現(xiàn)與多種惡性腫瘤的發(fā)生發(fā)展有關(guān)。用HIF-1α抑制劑處理體外培養(yǎng)的腫瘤細(xì)胞,細(xì)胞的增殖、生長(zhǎng)和侵襲受到抑制。在實(shí)體腫瘤內(nèi)缺氧或低氧區(qū)域都不同程度地表達(dá)HIF-1α,且分布不均勻。用HIF-1α抑制劑處理體外培養(yǎng)的腫瘤細(xì)胞,細(xì)胞的增殖、生長(zhǎng)、轉(zhuǎn)移和侵襲受到抑制。實(shí)體腫瘤的迅速增長(zhǎng)易產(chǎn)生局部缺氧,誘導(dǎo)產(chǎn)生的HIF-1α可激活下游的靶基因VEGF,誘發(fā)腫瘤細(xì)胞生成血管,為腫瘤細(xì)胞帶來氧和營(yíng)養(yǎng)物質(zhì),促進(jìn)腫瘤細(xì)胞的生長(zhǎng)和增殖,是腫瘤細(xì)胞侵襲和轉(zhuǎn)移的基礎(chǔ)。有研究表明HIF-1α在結(jié)直腸癌早期出現(xiàn)高表達(dá),且與病情進(jìn)展呈正相關(guān)。Wang等[26]采用Western bolt測(cè)得結(jié)直腸癌患者的HIF-1α及轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3,STAT3)的表達(dá)趨勢(shì)相同,且當(dāng)二者同時(shí)過表達(dá)時(shí),患者易出現(xiàn)結(jié)直腸肝癌轉(zhuǎn)移現(xiàn)象。STAT3協(xié)同HIF-1α激活下游基因并驅(qū)動(dòng)低氧環(huán)境下的HIF-1α依賴性的腫瘤發(fā)生,且有助于腫瘤細(xì)胞的轉(zhuǎn)移。腫瘤細(xì)胞侵襲轉(zhuǎn)移能力與其產(chǎn)生或誘導(dǎo)基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)的能力密切相關(guān),HIF-1α引發(fā)MMPs的表達(dá)增加,促進(jìn)實(shí)體性腫瘤的侵襲轉(zhuǎn)移[27]。HIF-1α與腫瘤細(xì)胞的凋亡也有密切關(guān)系,既能促進(jìn)凋亡,也能抑制凋亡。BNIP3能夠誘導(dǎo)腺樣囊性癌細(xì)胞凋亡,當(dāng)腫瘤細(xì)胞處于缺氧狀態(tài)時(shí),HIF-1α表達(dá)水平的增高能夠激活BNIP3的表達(dá),從而誘導(dǎo)細(xì)胞凋亡[12]。Survivin是一種抗凋亡因子,在成神經(jīng)細(xì)胞瘤中,Survivin的表達(dá)與HIF-1α的表達(dá)呈正相關(guān),HIF-1α可通過活化Survivin來抑制細(xì)胞的凋亡[28]。HIF-1α是腫瘤增殖和遷移等過程的關(guān)鍵轉(zhuǎn)錄因子,是腫瘤靶向治療潛在的靶點(diǎn)。

      4.3HIF-1α與其他疾病

      HIF-1α除了與炎癥、腫瘤等疾病相關(guān)外,還與一些骨類和血管類疾病有關(guān)。肢體遠(yuǎn)端缺血后處理(limb remote ischemic postconditioning,LRIP)可以改善大腦的缺血再灌注損傷(ischemia reperfusion injury,IRI),HIF-1α是腦缺血損傷應(yīng)答的重要轉(zhuǎn)錄因子。利用中動(dòng)脈閉塞(middle cerebral artery occlusion,MCAO)的大鼠模型來研究LRIP對(duì)神經(jīng)的保護(hù)作用,表明HIF-1α可誘導(dǎo)IRI過度表達(dá),并可通過LRIP抑制[28]。在慢性阻塞性肺疾?。╟hronic obstructive pulmonary disease,COPD)患者的體內(nèi),檢測(cè)到HIF-1α和VEGF高表達(dá)。將患有COPD的大鼠暴露在香煙煙霧中,HIF-1α、VEGF高表達(dá),通過促進(jìn)肺血管重構(gòu)加重COPD的病情。改善缺氧狀態(tài),拮抗HIF-1α、VEGF的表達(dá),可以減輕COPD的肺血管重構(gòu),減緩其到肺動(dòng)脈高壓的進(jìn)展[29]。

      在急性T淋巴細(xì)胞白血病(T-cell acute lymphoblastic leukemia,T-ALL)患者中,缺氧環(huán)境下檢測(cè)到T-ALL細(xì)胞中HIF-1α蛋白表達(dá)增加,且HIF-1α能夠調(diào)控Notch1信號(hào)通路,進(jìn)而增加Cyclin D1、CDK2和p21蛋白的表達(dá),使T-ALL細(xì)胞增殖;Notch1信號(hào)通路也能調(diào)節(jié)MMP2和MMP9蛋白增加,進(jìn)而增加細(xì)胞的侵襲能力[30,31]。

      5 結(jié)語

      HIF-1α作為缺氧條件下的重要轉(zhuǎn)錄因子,調(diào)節(jié)血管的生成,葡萄糖代謝及細(xì)胞的凋亡和自噬,并參與調(diào)節(jié)多條信號(hào)通路。通過對(duì)HIF-1α結(jié)構(gòu)和功能、信號(hào)通路和信號(hào)通路間串話的研究,對(duì)HIF-1α在人體生理病理過程中的作用有了一定的認(rèn)識(shí),但是還有許多具體問題不太清楚。如HIF-1α如何與COX-2共同作用于腫瘤細(xì)胞,STAT3與HIF-1α同時(shí)表達(dá)是否存在某些聯(lián)系,以及PKM2和HIF-1α在腫瘤發(fā)生發(fā)展過程中相互作用機(jī)制等。對(duì)HIF-1α信號(hào)通路的研究已從單一的信號(hào)轉(zhuǎn)導(dǎo)研究向信號(hào)通路網(wǎng)絡(luò)轉(zhuǎn)變,未來會(huì)建立更健全的網(wǎng)絡(luò)系統(tǒng),為疾病預(yù)防與治療開辟一個(gè)新方向。

      [1]Semenza GL, Wang L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to he human erythropoietin geneenhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12(12):5447-5454.

      [2]Wang GL, Semenza GL. Purification and characlerization of hypoxiainducible factor 1[J]. J Biol Chem, 1995, 270(3):1230-1237.

      [3] Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2tension[J]. Proc Natl Acad Sci USA, 1995, 92(12):5510-5514.

      [4]Jiang BH, Zheng JZ, Leung SW, et al. Transactivation and inhibitory domains of hypoxia-inducible factor 1 alpha Modulation of ranscriptional activity by oxygen tension[J]. J BiolChem, 1997,272(31):19253-19260.

      [5]Borsi E, Perrone G, Terragna C, et al. HIF-1αinhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment[J]. Exp Cell Res, 2014, 328(2):444-455.

      [6]Lendahl U, Lee KL, Yang H, et al. Generating specificity and diversity in the transcriptional response to hypoxia[J]. Nat Rev Genet, 2009, 10(12):821-832.

      [7]Kondo K, Kaelin WG JR. The von Hippel-Lindau tumor suppressor gene[J]. Exp Cell Res, 2001, 264(1):117-125.

      [8]Cheng J, Kang X, Zhang S, et al. SUMO-specific protease 1 is essential for stabilization of HIF-1 alpha during hypoxia[J]. Cell,2007, 131(3):584-595.

      [9]Chen J, Bai M, Ning C, et al. Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/ AKT/HIF-1α/cyclin D1 pathway[J]. Oncogene, 2015, 35(19):2506-2517.

      [10] Wang H, Zhao L, Zhu LT, et al. Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt Signaling pathway[J]. Mol Cancinog, 2014, 53(S1):E107-E118.

      [11]Ao Q, Su W, Guo S, et al. SENP1 desensitizes hypoxic ovarian cancer cells to cisplatin by up-regulating HIF-1α[J]. Sci Rep,2015, 5:16396.

      [12]Wu H, Huang S, Chen Z, et al. Hypoxia-induced autophagy contributes to the invasion of salivary adenoid cystic carcinoma through the HIF-1α/BNIP3 signaling pathway[J]. Mol Carcinog,2015, 12(5):6467-6474.

      [13]Huang CY, Hsieh YL, Ju DT, et al. Attenuation of magnesium sulfate on CoCl2-induced cell death by activating ERK1/2/MAPK and inhibiting HIF-1α via mitochondrial apoptotic signaling suppression in a neuronal cell line[J]. Chin J Physiol, 2015, 58 (4):244-253.

      [14]Gao L, Wu GW, Liu B, et al. Up-Regulation of pVHL along with down-regulation of HIF-1α by NDRG2 expression attenuates proliferation and invasion in renal cancer cells[J]. PLoS One,2013, 8(12):e84127.

      [15]Yokoe S, Nakagawa T, Kojima Y, et al. Indomethacin-induced intestinal epithelial cell damage is mediated by pVHL activation through the degradation of collagen I and HIF-1α[J]. Biochem Biophys Res Commun, 2015, 468(4):671-676.

      [16]Minet E, Mottet D, Michel G, et al. Hypoxia-induced activation ofHIF-1:role of HIF-1alpha-Hsp90 interaction[J]. FEBS Lett,1999, 460(2):251-256.

      [17]Liu N, Zhao N, Cai N. The effect and mechanism of celecoxib in hypoxia-induced survivin up-regulation in HUVECs[J]. Cell Physiol Biochem, 2015, 37(3):991-1001.

      [18]Liu YV, Semenza GL. RACK1 vs. HSP90:competition for HIF-1 alpha degradation vs. stabilization[J]. Cell Cycle, 2007, 6(6):656-659.

      [19]Shui YB, Arbeit JM, Johnson RS, et al. HIF-1:an age-dependent regulator of lens cell proliferation[J]. Invest Ophthalmol Vis Sci,2008, 49(11):4961-4970.

      [20]Baba K, Muraguchi T, Imaoka S. Role of the hypoxia response pathway in lens formation during embryonic development of Xenopus laevis[J]. FEBS Open Bio, 2013, 3(1):490-495.

      [21]Cindrova-Davies T, van Patot MT, Gardner L, et al. LEnergy status and HIF signalling in chorionic villi show no evidence of hypoxic stress during human early placental development[J]. Mol Hum Reprod, 2015, 21(3):296-308.

      [22]Pan WM, Cao Z, Jia SJ, et al. Syergistic enhancement of bone regeneration by LMP-1 and HIF-1α delivered by adipose derived stem cells[J]. Biotechnol Lett, 2016, 38(3):377-384.

      [23]Cai XH, Huang YT, Zhang X, et al. Cloning, characterization,hypoxia and heat shock response of hypoxia inducible factor-1 (HIF-1)from the small abalone Haliotis diversicolor[J]. Gene,2014, 534(2):256-264.

      [24]Sheu SY, Hong YW, Sun JS, et al. Radix Scrophulariae extracts (harpagoside)suppresses hypoxia-induced microglial activation and neurotoxicity[J]. BMC Complement Altern Med, 2015, 15(1):1-9.

      [25]Palazon A, Goldrath AW, Nizet V, et al. HIF transcription factors,inflammation, and immunity[J]. Immunity, 2014, 41(4):518-528.

      [26]Wang Q, Guo DZ, Liu YW, et al. The prognostic value of HIF-1α combined with STAT3 for early predicting the heterochrony CRLM in colorectal cancer[J]. Journal of GuiYang Medical College,2015, 40(07)692-695.

      [27]Lee KJ, Lee JY, Lee SH, et al. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea[J], Bmb Rep, 2013, 46(4):195-200.

      [28]Zhang B, Yin CP, Zhao Q, et al. Upregulation of HIF-1α by hypoxia protect neuroblastoma cells from apoptosis by promoting survivin expression[J]. APJCP, 2014, 15(19):8251-8257.

      [29]Zong Y, Jiang L, Zhang M, et al. Limb remote ischemic postconditioning protects cerebral ischemia from injury associated with expression of HIF-1α in rats[J]. BMC Neurosci, 2015, 16 (1):1-8.

      [30]Takeuchi Y, Takahashi M, Fuchikami J. Vulnerability of gastric mucosa to prednisolone in rats chronically exposed to cigarette smoke[J]. J Pharmacol Sci, 2008, 106(4):585-592.

      [31]Zou J, Li P, Lu F, et al. Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells[J]. J Hematol Onco, 2013, 6(2):403-415.

      (責(zé)任編輯 馬鑫)

      Research Progress on the Role of Transcription Factor HIF-1α and Its Signal Pathway in the Pathogenesis

      YANG Meng-si ZHOU Na WANG Zhi-gang HAO Hui-fang
      (College of Life Sciences,Inner Mongolia University,Hohhot 010021)

      Hypoxia inducible factor-1α(HIF-1α)is a transcription factor under hypoxia condition,which widely exists in mammals and human body. It is a key factor responding to hypoxic stress. HIF-1α is a subunit of hypoxia inducible factor-1(HIF-1)and considered as the master transcriptional regulator of cellular and developmental response to hypoxia,and regulates the activity of HIF-1. During hypoxia,HIF-1α translocates from the cytoplasm to the nucleus,where it dimerizes with HIF-1β and the transcriptionally active HIF-1 complex is formed;the activated HIF complex then associates with HREs in the regulatory regions of target genes to induce gene expression. Forming varied signal pathways with multiple proteins in up- and down- streams,HIF-1α mediates hypoxic signals,then regulates a series of hypoxic compensatory response of cell,which plays a crucial role in body growth,physiological and pathological processes,thus it is a focus of biomedical research. We reviewed the role of transcription factors HIF-1α and its signaling pathway in the occurrence of disease , and introduced to the relationship among HIF-1α and growth, development, inflammation and tumor , then carryed out the prospect, in order to better be used in biomedical.

      hypoxia inducible factor-1α;signal pathway;disease

      10.13560/j.cnki.biotech.bull.1985.2016.08.002

      2016-03-24

      國(guó)家自然基金項(xiàng)目(31360561),內(nèi)蒙古自然基金項(xiàng)目(2015MS0327),內(nèi)蒙古自治區(qū)高等學(xué)??茖W(xué)研究項(xiàng)目(NJZZ002)

      楊夢(mèng)思,女,本科,研究方向:基因工程;E-mail:707890870@qq.com

      郝慧芳,女,講師,研究方向:炎癥與腫瘤;E-mail:haohf@life.imu.edu.cn

      猜你喜歡
      泛素低氧調(diào)控
      間歇性低氧干預(yù)對(duì)腦缺血大鼠神經(jīng)功能恢復(fù)的影響
      如何調(diào)控困意
      經(jīng)濟(jì)穩(wěn)中有進(jìn) 調(diào)控托而不舉
      Wnt/β-catenin信號(hào)通路在低氧促進(jìn)hBMSCs體外增殖中的作用
      順勢(shì)而導(dǎo) 靈活調(diào)控
      蛋白泛素化和類泛素化修飾在植物開花時(shí)間調(diào)控中的作用
      SUMO修飾在細(xì)胞凋亡中的調(diào)控作用
      泛RNA:miRNA是RNA的“泛素”
      泛素結(jié)合結(jié)構(gòu)域與泛素化信號(hào)的識(shí)別
      裸鼴鼠不同組織中低氧相關(guān)基因的表達(dá)
      哈巴河县| 南京市| 桃园市| 白朗县| 夏河县| 金门县| 措勤县| 绥江县| 桦南县| 墨玉县| 沂源县| 勐海县| 涿州市| 新源县| 亳州市| 曲水县| 吴江市| 原阳县| 普兰店市| 郴州市| 香格里拉县| 海宁市| 汤阴县| 枣阳市| 喜德县| 商南县| 元氏县| 临西县| 荥阳市| 沅陵县| 青川县| 南溪县| 扶风县| 贵港市| 泸州市| 沅江市| 濮阳市| 长寿区| 湘潭市| 海安县| 五河县|