• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses,Structures and DNA Interaction of Zn(Ⅱ)and Pb(Ⅱ)Complexes Based on Imidazo-phenanthrolin-phenoxy Acetic Acid

    2016-04-05 08:11:19SHENWeiHUWeiJiWUXiaoYongZHAOGuoLiang
    無機化學(xué)學(xué)報 2016年6期
    關(guān)鍵詞:網(wǎng)狀結(jié)構(gòu)浙江師范大學(xué)配位

    SHEN WeiHU Wei-JiWU Xiao-YongZHAO Guo-Liang

    (1College of Chemistry and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    (2Xingzhi College,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    Syntheses,Structures and DNA Interaction of Zn(Ⅱ)and Pb(Ⅱ)Complexes Based on Imidazo-phenanthrolin-phenoxy Acetic Acid

    SHEN Wei1HU Wei-Ji1WU Xiao-Yong1ZHAO Guo-Liang*,,2

    (1College of Chemistry and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    (2Xingzhi College,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    Two novel complexes[Zn(PIMPHC)2]n(1),{[Pb(OIMPHC)2]·4H2O}n(2)were synthesized under hydrothermal reactions by using 2-(4-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid(HPIMPHC)and 2-(2-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid(HOIMPHC).Complex 1 crystallizes in orthorhombic system with space group Pbcn.Zn(Ⅱ)is six-coordinated by two PIMPHC-anions,forming a distorted octahedral coordination geometry.Complex 2 crystallizes in monoclinic system with space group P21/n,Pb(Ⅱ)is seven-coordinated,forming a distorted pentagonal bipyramid coordination geometry.The fluorescence spectra indicate that the interaction of the complexes with DNA are stronger than ligands.CCDC:1476033,1;1476034,2.

    2-(4-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid;2-(2-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl) phenoxy)acetic acid;Zn(Ⅱ);Pb(Ⅱ);DNA-binding

    Rational designs and syntheses of coordination polymers have attracted great interests in recent decades,owing to their rich structural aesthetics[1-5]and functionalities[6-9].According to some factors of formation,molecularstructuresandpropertiesof coordination polymers can be speculated,such asmetal ions(nodes),ligands(linkers),metal-ligand ratio,supramolecular interaction,reaction conditions. Therefore,itispossibletodevelopatargeted architecture through the choice of organic ligands and metal ions.

    So far,extensive work has been carried out by using heterocycliccarboxylate ligands[10-17],because these ligands containing both N-and O-donors are good choices to build multi-configurations.Carboxylate groups often play important roles in many organic ligands,which have different coordinating modes, such as monodentate terminal,bidentate bridging, bidentate chelating modes.The coordination modes make the expected structures much more robust.What is more,the flexibility of carboxylate groups offers the possibilities to form different topologies.Deprotonated carboxylategroupscanformhydrogenbondsto participateinsupermolecularself-assemblywith coordination bonds as acceptors.Heterocyclic rings are expected to show robust coordination modes in the construction,andtheπ-πstackinginteractions between heterocyclic rings make the whole framework further stable.

    Asismentionedabove,theadvantagesof heterocyclic carboxylate ligands offer a self-assembly solution that can be expected and controlled in certain extent.In this paper,two novel ligands(2-(4-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid(HPIMPHC)and 2-(2-(1H-imidazo-2-[4,5-f][1,10] phenanthrolinyl)phenoxy)acetic acid(HOIMPHC))were designed and synthesized,thereby two novel complexes ([Zn(PIMPHC)2]n(1),{[Pb(OIMPHC)2]·4H2O}n(2))were synthesized by hydrothermal reaction method.The interaction between complexes,ligands and ct-DNA were studied by EtBr fluorescence probe.

    1 Experimental

    1.1 Chemical and materials

    All of the reagents were of analytical grade and used without further purification.Calf thymus DNA (ct-DNA)was prepared with 0.1 mol·L-1NaCl.The concentration of ct-DNA was 200 μg·mL-1(cDNA= 3.72×10-4mol·L-1).The ct-DNA solutions were stored at 4℃and gave a ratio of UV-Vis absorbance at 260 and 280 nm,A260/A280=1.8,indicating that DNA was sufficiently free of protein.The buffer solution,0.0l mol·L-1Tris-HCl(tris(hydroxymethyl)aminomethane hydrochloride(pH=7.4)),was prepared with doubledistilled water.

    ElementalanalysiswasperformedonCHN elemental analyzer,Elementar Vario ELⅢ.FTIR spectra was recorded on a Nicolet NEXUS 670 FTIR spectrophotometer,using KBr discs in the range of 4 000~400 cm-1.Crystallographic data of the complexes were collected on a Bruker Smart ApexⅡCCD diffractometer.A Mettler Toledo thermal analyzer TGA/SDTA 851ewas used to carry out the thermoanalytical analysis with a heating rate of 10℃·min-1from 30 to 800℃in air atmosphere.Fluorescence spectra were measured at room temperature with an Edinburgh FL-FS920 TCSPC system.1H NMR spectra of ligands were acquired with Bruker AV400 NMR instrument in DMSO-d6solution with TMS as internal standard.

    1.2 Synthesis of ligands

    2-(4-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl) phenoxy)acetic acid(HPIMPHC)and 2-(2-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid(HOIMPHC)were synthesized according to literature(Fig.1)[18-20].

    1.2.1 2-(4-formylphenoxy)acetic acid[18]

    Chloracetic acid(2.5 mL,50%)was added to 4-hydroxybenzaldehyde(1 g)and NaOH solution(3.5 mL,33%),and gently heated on water bath(80℃)for 1 h.Then the mixture was immediately acidified with concentratedHCl,extractedwithetherand5% Na2CO3solution.Na2CO3extract was acidified with concentrated HCl.White powder was isolated and separated by filtration.The product thus obtained was recrystallized from ethanol.Yield:86%.

    1.2.2 1,10-phenanthroline-5,6-dione[19]

    1,10-phenanthroline(1.20 g,6 mmol)was added to concentrated H2SO4(20 mL)and concentrated HNO3(10 mL)at 0℃.The mixture was refluxing at 80℃for 2 h,then cooled to room temperature.The contents were diluted with deionized water(400 mL),and neutralized with NaHCO3,then extracted with methylene chloride,and dried over anhydrous Na2SO4. Yellow-brown powder was obtained.Yellow-brown crystals were recrystallized from methanol.Yield: 90%.

    Fig.1Synthesis of HPIMPHC and HOIMPHC

    1.2.32 -(4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)acetic acid(HPIMPHC)[20]

    1,10-phenanthroline-5,6-dione(5 mmol,1.05 g) and 2-(4-formylphenoxy)acetic acid(5 mmol,0.90 g) were added in the NH4Ac-HAc buffer solution(10%, 20 mL).The mixture was heated in the open flask at 80℃.Deionized water was required to control the volume of solution.Yield:80%.Anal.Calcd.for C21H13N4O3(%):C,68.29;H,3.54;N,15.17;Found (%):C,68.25;H,3.58;N,15.23.IR(KBr,cm-1):3 418 (br),2 358(w),1 611(s),1 579(m),1 559(m),1 538 (m),1484(m),1 458(m),1 422(m),1 362(w),1 338(w), 1 315(w),1 295(w),1 254(m),1 190(m),1 127(w), 1 059(m),958(w),846(w),822(w),742(w),721(m), 694(w).1H NMR(400MHz,DMSO-d6):δ 8.90~9.03 (4H)for phenanthroline-H,7.83~7.84(2H)for phenanthroline-H,7.17~7.19(2H)for benzene-H,8.21~8.23 (2H)for benzene-H,4.83(2H,s,-CH2-),13.66(H,-OH).

    1.2.32 -(2-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)acetic acid(HOIMPHC)

    The synthetic process of HOIMPHC is the same as HPIMPHC.2-hydroxybenzaldehyde was used instead of 4-hydroxybenzaldehyde.Yellow-brown powder was recrystallized from methanol.Yield:70.1%,Anal. Calcd.for C21H13N4O3(%):C,68.29;H,3.54;N,15.17; Found(%):C,68.22;H,3.53;N,15.32.IR(KBr,cm-1): 3 440(br),2 362(w),1 680(s),1 584(m),1 562(m),1 544 (m),1488(m),1 462(m),1 433(m),1 375(w),1 345(w), 1 323(w),1 294(w),1 252(m),1 195(m),1132(w),1 065 (m),959(w),841(w),805(w),752(w),735(m),704(w).1H NMR(400 MHz,DMSO-d6):δ 8.42~8.94(4H)for phenanthroline-H,7.73~7.79(2H)for phenanthroline-H,7.15,7.24,7.51,7.76(4H)for benzene-H,4.76(2H, s,-CH2-),14.45(H,-OH).

    1.3 Synthesis of complexes

    [Zn(PIMPHC)2]n(1):A mixture of HPIMPHC (0.148 g,0.4 mmol),NaOH(0.016 g,0.4 mmol),ZnSO4·7H2O(0.058 g,0.2 mmol),and H2O/EtOH(20 mL,1∶1,V/V)was sealed in a 25 mL Teflon-lined stainless steel vessel and heated at 160℃for 3 d.Then the mixture was cooled to room temperature at a rate of 10℃·h-1,with colorless crystals appearing at the bottomoftheTeflonvessel.Afterwashedwith distilled water and dried in air,the crystals suitable for single-crystal analysis and physical measurements were obtained.Yield:45%(based on HPIMPHC). Anal.Calcd.for C42H26N8O6Zn(%):C,62.68;H,3.23; N,13.93;Found(%):C,62.54;H,3.19;N,13.87;IR (KBr,cm-1):3 072(w),2 354(w),1 608(s),1 527(m), 1 479(s),1 454(m),1 362(m),1 075(m),837(m),812 (m),733(m),694(m),635(m).

    {[Pb(OIMPHC)2]·4H2O}n(2):The preparation of 2 was similar to 1 using HOIMPHC and Pb(NO3)2instead of HPIMPHC andYield:38%(based on HOIMPHC).Anal.Calcd.for C42H34N8O10Pb(%):C, 49.51;H,3.34;N,11.00;Found(%):C,49.40;H, 3.29;N,10.96;IR(KBr,cm-1):3 424(w),2 361(w),1 607(s),1 514(s),1 481(s),1 446(m),1 388(m),1 358(m), 1 259(m),1 224(m),1 067(m),836(m),817(m),740 (m),701(m),638(m).

    1.4 Single X-ray crystallographic study

    The single crystal of the complexes with approximate dimensions were mounted on a Bruker Smart Apex CCD diffractometer.A graphite monochromated Mo Kα radiation(λ=0.071 073 nm)was used to collect the diffraction data at 296 K.The structures were solved by SHELXS-97 program package[21-22]and refined with the full-matrix least-squares technique based on F2using the SHELXTL-97 program package[23].All non-H atoms were anisotropically refined.Remaining hydrogen atoms were added in calculated positons and refined as riding atoms with a common fixed isotropic thermal parameter.Hydrogen atoms on water molecules were located in a difference Fourier map and included in the subsequent refinement using restrains(d(O-H)= 0.085 nm)with Uiso(H)=1.5 Ueq(O).Detail information about the crystal data is summarized in Table 1. Selected interatomic distances and bond angles are given in Table 2 and Table 3.

    CCDC:1476033,1;1476034,2.

    Table 1Crystallographic data for complex 1 and complex 2

    Table 2Selected bond lengths(nm)and angle(°)for 1

    Continued Table 2

    Table 3Selected bond lengths(nm)and angle(°)for 2

    2 Results and discussion

    2.1 Crystal structure of[Zn(PIMPHC)2]n(1)

    Single-crystal analysis shows that 1 crystallizes in orthorhombic system with space group Pbcn.The asymmetric unit cell contains one Zn(Ⅱ)ion and two PIMPHC-anions.The Zn(Ⅱ)exhibits distorted sixcoordinatedgeometrybyconsideringshort-range atomic interactions.Each Zn(Ⅱ)is bound to four nitrogen atoms(N1,N2,N1iii,N2iii,Zn-N 0.220 1(2)~0.221 2(3)nm)and two oxygen atoms(O2i,O2ii,Zn-O 0.203 4(2)nm).PIMPHC-adopts a μ2-κO∶κ2N coordination fashion to connect two Zn(Ⅱ)ions.The selected distances and bond angles for complex 1 fall in the normal regions which are comparable to the values reported in literatures[24-26].

    Fig.2Coordinated environment of complex 1

    Intheμ2-κO∶κ2Ncoordinationfashion,the phenanthroline unit chelates to one Zn(Ⅱ)and the deprotonated carboxylate unit is bound to another. The coordination mode of the μ2-PIMPHC-forms metallacyclic rings,which can be described as a 2D (2,4)-connected binodal network with the Schl?fli symbol of(84·122)2·(8)2.Every plane is parallel to each other.Through π…π stacking interaction of ligands and hydrogen bonds,2D polymers form 3D structures.

    2.2 Crystal structure of{[Pb(OIMPHC)2]·4H2O}n(2)

    Fig.3(a)Single-layer 2D structure of complex 1;(b)3D packing diagram of complex 1;(c)2D topological structure of complex 1

    Single-crystal analysis shows that 2 crystallizes in monoclinic crystallographic system with space group P21/n.The asymmetric unit cell contains one Pb(Ⅱ) ion,two crystallographically independent OIMPHC-anions and four water molecules.The Pb(Ⅱ)exhibits highly distorted seven-coordinated geometry by considering short-range atomic interactions.Each Pb(Ⅱ)is bound to four nitrogen atoms(N1,N2,N3,N4,Pb-N 0.253 5(4)~0.259 2(4)nm)and three oxygen atoms (O2,O4,O5,Pb-O 0.281 4(4)~0.299 8(3)nm)of ligands.OIMPHC-adopts μ2-κO∶κ2N and μ2-κ2O∶κ2N coordination fashions to connect two Pb(Ⅱ)ions.The selected distances and bond angles for complex 2 fall in the normal regions which are comparable to the values reported in literatures[27-32].In μ2-κO∶κ2N coordination fashion,the phenanthroline unit chelates to one Pb(Ⅱ)ion and the deprotonated carboxylate unit is bound to another.In μ2-κ2O∶κ2N coordination fashion, the phenanthroline unit chelates to one Pb(Ⅱ),and the deprotonated carboxylate unit chelates to another. These coordination modes forms metallacyclic rings, which can be described as a 2D(2,2,3)network with the Schl?fli symbol of(83)2·(8).Every plane is parallel to each other.

    In the 2D polymers,the coordinating competition between phenanthroline unit and carboxylate unit need to be considered.To simplify the demonstration, the ligand coordinated by one oxygen atom and two nitrogen atoms(O2,N1,N2)is labelled as A,the other as B.The different coordinating modes result in the considerable dihedral anglar difference between the benzeneringandthephenanthrolinering.The dihedral angle of A and B are 0.980°and 5.299°, respectively,which are attributed to different coordinating modes of ligands.One interpretation may be attributedtoπ-πstackinginteractionsbetween conjugate rings of ligands.The distance between adjacent imidazo-phenanthroline rings is 0.337 5 nm. According to Table 3,Bond distances of Pb-O are much longer than usual(Pb1-O2i0.281 6(4)nm,Pb1-O4ii0.299 8(3)nm,Pb1-O5ii0.281 4(4)nm).The long Pb-O bonds can be ascribed to different coordinating modesasfive-memberchelatingmodeismuch stronger than monodentate mode and four-member chelating mode.While the four-member chelating mode still has some effects on the structure,some toision angles(Pb1-N1-C15-C16 23.9(5)°,Pb1-N2-C16-C15-23.1(5)°,Pb1-N3-C35-C36 22.9(5)°,Pb1-N4-C36-C35-20.9(5)°)can be recognized.

    Fig.4Coordinated environment of complex 2

    Fig.5(a)2D structure of complex 2;(b)Topological structure of complex 2

    Fig.6(a)1D water chain of complex 2;(b)Ligands linked via hydrogen bonds;(c)Hydrogen-bonded packing diagram of complex 2

    A self-assemble chain of water molecules(O2Wi-H2WAi…O1Wiv,O1W-H1WA…O4W,O4W-H4WA…O2Wi,O4W-H4WB…O1W,O3Wii-H3WBii…O4W) are observed in Table 4.Water chains are fixed by hydrogen bonds(O1W-H1WB…O1iii,O2Wi-H2WBi…O4i,O3Wii-H3WAii…N7ii)and interconnect adjacency 2D networks to form 3D constructures.A side view of the same part of the structure along the direction is shown in Fig.6(c),where water chains parallel to this direction and crossing into the space of 2D networks are clearly seen.

    2.3 IR analysis

    The stretching vibration of C=O(1 611 cm-1)for HPIMPHC is much smaller than usual[33],which may be owing to intermolecular hydrogen bonds among carboxylate groups.In complex 1,This characteristicstretching vibration of C=O and O-H are absent and the asymmetric and symmetric stretchings of COO-appear at 1 608 cm-1(ν(OCO)asym)and 1 362 cm-1(ν(OCO)sym)respectively,showing the presence of mono -dentate carboxylate linkage.The C=N characteristic stretching vibration of HPIMPHC is 1 483 cm-1,while it shifts to 1 479 cm-1in complex 1.It is concluded that the chelating mode of phenanthroline groups reduces the frequency of C=N stretching vibration.

    Table 4Hydrogen bond distances(nm)and angles(°)in complex 2

    So is the complex 2,the characteristic stretching vibrations of O-H and C=O for HOIMPHC are absent and the asymmetric and symmetric stretchings of COO-appear at 1 607 cm-1(ν(OCO)asym),1 388 cm-1(ν(OCO)sym) and 1 358 cm-1(ν(OCO)sym)respectively,which shows the presence of two different carboxylate linkage.The carboxylate groups act as both bidenate and monodenate coordination modes.The C=N characteristic stretching vibration of HOIMPHC is 1 483 cm-1,while it shifts to 1 481 cm-1in complex 2,which is similar to complex 1.

    2.4 Thermal decomposition of complexes

    The TG curves of the title complexes are shown in Fig.7.No weight loss of complex 1 was observed below 200℃,indicating that there is no small solvent molecules in complex 1.The decomposition of complex 1 starts at 200℃and ended at 440℃,and the observed weight loss(89.98%)accompanied with the decomposition of PIMPHC-(Calcd.89.88%).The residual weight 10.02%might correspond to ZnO (Calcd.10.12%).Complex 2 experiences two steps of weight loss.The first step is from 72 to 129℃with a weight loss of 7.17%,which corresponds to the loss of four water molecules(Calcd.7.07%).The second step in the range of 220~527℃with a weight loss of 71.14%corresponds to the decomposition of OIMPHC-(Calcd.71.00%).Finally,the remaining weight of 21.69%,seems likely to correspond to PbO(Calcd. 21.93%).

    Fig.7TG curves for complex 1(a)and 2(b)

    2.5 EB-DNA binding study by fluorescence spectrum

    The effects of the ligands and complexes on the fluorescence spectra of EB-DNA system are presented in Fig.8,the fluorescence intensities of EB bound to ct-DNA at 592 nm show remarkable decreasing trends with the increasing concentration of the complexes, indicating that some EB molecules are released into solution after the exchange with the compounds which resulted in the fluorescence quenching of EB.The quenching of EB bound to DNA by the compounds is in agreement with the linear Stern-Volmer equation: I0/I=1+Ksqr[34],where I0and I represent the fluorescence intensities in the absence and presence of quencher, respectively.Ksqis the linear Stern-Volmer quenchingconstant,r is the ratio of the concentration of quencher and DNA.In the quenching plots(insets in Fig.8)of I0/I versus r,Ksqvalues are given by the slopes.The Ksqvalues for the compounds are 0.270,1.497 for HPIMPC and complex 1,0.318,1.854 for HOIMPC and complex 2,respectively.The results indicate that interaction of the complexes with DNA are stronger than ligands,because the complexes have higher rigidity to bind the base pairs along DNA,thus increasing their binding abilities.

    Fig.8Emission spectra of EB-DNA system in the absence and presence of ligands and complexes

    3 Conclusions

    Insummary,newligandsHPIMPHCand HOIMPHC were purposely synthesized based on 1, 10-phenanthroline.Both of ligands were successfully appliedto constructing[Zn(PIMPHC)2]n(1), {[Pb(OIMPHC)2]·4H2O}n(2).The complex 1 is a 2D framework with(2,4)-connected topology.The complex 2 is a 2D framework with(2,2,4)-connected topology. Because of the competition among monodentate mode, four-member chelating mode and five-member chelating mode,bond distances of Pb-O are much longer than usual.Complex 2 has stronger interaction with DNA, which can release more free EB molecules from EBDNA.

    [1]Li H J,Zhao B,Ding R,et al.Cryst.Growth Des.,2012,12 (8):4170-4179

    [2]Lin J D,Cheng J W,Du S W.Cryst.Growth Des.,2008,8(9): 3345-3353

    [3]Venkataraman D,Gardner G B,Lee S,et al.J.Am.Chem. Soc.,1995,117(46):11600-11601

    [4]Batten S R,Robson R.Angew.Chem.Int.Ed.,1998,37(11): 1460-1494

    [5]James S L.Chem.Soc.Rev.,2003,32(5):276-288

    [6]Huang Z,White P S,Brookhart M.Nature,2010,465(7298): 598-601

    [7]Lü L L,Yang J,Zhang H M,et al.Inorg.Chem.,2015,54(4): 1744-1755

    [8]Wang J C,Liu Q K,Ma J P,et al.Inorg.Chem.,2014,53 (20):10791-10793

    [9]Gong Y N,Huang Y L,Jiang L,et al.Inorg.Chem.,2014,53 (18):9457-9459

    [10]Panella B,Hirscher M,Pütter H,et al.Adv.Funct.Mater., 2006,16(4):520-524

    [11]Stock N,Biswas S.Chem.Rev.,2011,112(2):933-969

    [12]Arstad B,Fjellvg H,Kongshaug K O,et al.Adsorption,2008, 14(6):755-762

    [13]Janiak C,Vieth J K.New J.Chem.,2010,34(11):2366-2388

    [14]Henninger S K,Habib H A,Janiak C.J.Am.Chem.Soc., 2009,131(8):2776-2777

    [15]Torrisi A,Bell R G,Mellot-Draznieks C.Cryst.Growth Des., 2010,10(7):2839-2841

    [16]Li K,Olson D H,Lee J Y,et al.Adv.Funct.Mater.,2008, 18(15):2205-2214

    [17]Lee C Y,Farha O K,Hong B J,et al.J.Am.Chem.Soc., 2011,133(40):15858-15861

    [18]Nikalje A P G,Deshpande D,Une H D.Eur.J.Exp.Biol., 2012,2:343-353

    [19]Guo W,Engelman B J,Haywood T L,et al.Talanta,2011, 87:276-283

    [20]Lee Y S,Cho Y H,Lee S J,et al.Tetrahedron,2015,71(4): 532-538

    [21]Scheldrick G M.SADABS,University of G?ttingen,G?ttingen, Germany,1996.

    [22]Sheldrick G M.SHELXS-97,Program for the Solution of CrystalStructure,UniversityofG?ttingen,G?ttingen, Germany,1997.

    [23]Sheldrick G M.SHELXTL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,G?ttingen, Germany,1997.

    [24]Starikov A G,Minkin V I,Minyaev R M,et al.J.Phys. Chem.A,2010,114(29):7780-7785

    [25]Ivakhnenko E P,Starikov A G,Minkin V I,et al.Inorg. Chem.,2011,50(15):7022-7032

    [26]Tian Z,Lin J,Su Y,et al.Cryst.Growth Des.,2007,7(9): 1863-1867

    [27]Alvarado R J,Rosenberg J M,Andreu A,et al.Inorg.Chem., 2005,44(22):7951-7959

    [28]Kavallieratos K,Rosenberg J M,Bryan J C.Inorg.Chem., 2005,44(8):2573-2575

    [29]Gabriel C,Vangelis A A,Raptopoulou C P.Cryst.Growth Des.,2015,15(11):5310-5326

    [30]Peedikakkal A M P,Vittal J J.Cryst.Growth Des.,2011,11 (10):4697-4703

    [31]TANG Long(唐龍),WU Ya-Pan(吳亞盤),FU Feng(付峰), et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2011,27(11): 2287-2290

    [32]LI Chun-Xiang(李春香),WANG Jian(王艱),LIU Chun-Bo (劉春波),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報), 2009,25(12):2211-2214

    [33]Larkin P.Infrared and Raman Spectroscopy:Principles and Spectral Interpretation.Waltham:Elsevier,2011.

    [34]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4161-4170

    咪唑-菲咯啉-苯氧乙酸鋅、鉛配合物的合成,結(jié)構(gòu)及與DNA的相互作用

    沈偉1胡未極1吳小勇1趙國良*,1,2
    (1浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)
    (2浙江師范大學(xué)行知學(xué)院,金華321004)

    以2-4-(1H-咪唑-2-[4,5-f][1,10]菲咯啉基)苯氧乙酸(HPIMPHC)和2-2-(1H-咪唑-2-[4,5-f][1,10]菲咯啉基)苯氧乙酸(HOIMPHC)為配體,水熱合成了2種新型配合物[Zn(PIMPHC)2]n(1)和{[Pb(OIMPHC)2]·4H2O}n(2)。配合物1屬正交晶系,空間群為Pbcn;Zn(Ⅱ)的配位數(shù)為6,配位構(gòu)型為變形的八面體,形成2D網(wǎng)狀結(jié)構(gòu)。配合物2屬單斜晶系,空間群為P21/n;Pb(Ⅱ)的配位數(shù)為7,配位構(gòu)型為變形的五角雙錐,形成2D網(wǎng)狀結(jié)構(gòu)。熒光光譜的結(jié)果表明,配合物與DNA的相互作用強于配體。

    2-4-(1H-咪唑-2-[4,5-f][1,10]菲咯啉基)苯氧乙酸;2-2-(1H-咪唑-2-[4,5-f][1,10]菲咯啉基)苯氧乙酸;Zn(Ⅱ);Pb(Ⅱ);DNA作用

    O614.24+1;O614.43+3

    A

    1001-4861(2016)06-1101-10

    2016-01-17。收修改稿日期:2016-04-23。

    10.11862/CJIC.2016.132

    浙江省自然科學(xué)基金(No.LY12B01003)資助項目。

    *通信聯(lián)系人。E-mail:sky53@zjnu.cn

    猜你喜歡
    網(wǎng)狀結(jié)構(gòu)浙江師范大學(xué)配位
    [Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
    浙江師范大學(xué)行知學(xué)院手繪作品選登
    LiBa0.95-yBO3∶0.05Tb3+,yBi3+熒光粉的制備及熒光性質(zhì)
    于昕卉作品
    Application of “Process Approach” in Middle School English Writing-Teaching
    德不配位 必有災(zāi)殃
    美國高等教育治理體系的結(jié)構(gòu)與特征
    論《紅高粱家族》的藝術(shù)特質(zhì)
    《清水洗塵》的網(wǎng)狀結(jié)構(gòu)分析
    利用純化組分重建小管內(nèi)質(zhì)網(wǎng)網(wǎng)狀結(jié)構(gòu)
    久99久视频精品免费| 女人十人毛片免费观看3o分钟| 国产精品人妻久久久久久| 亚洲婷婷狠狠爱综合网| 综合色av麻豆| 91午夜精品亚洲一区二区三区| 婷婷精品国产亚洲av| 国产伦一二天堂av在线观看| 成人精品一区二区免费| 尤物成人国产欧美一区二区三区| 精品久久久久久成人av| 亚洲一区高清亚洲精品| 中国美女看黄片| 最好的美女福利视频网| 亚洲中文日韩欧美视频| 老司机影院成人| 久久久久久大精品| av在线观看视频网站免费| 亚洲最大成人中文| 国产又黄又爽又无遮挡在线| 99riav亚洲国产免费| 国产一区二区在线av高清观看| 国产一区二区三区av在线 | 日本黄色视频三级网站网址| 高清毛片免费观看视频网站| 欧美一区二区亚洲| 国产精品爽爽va在线观看网站| 亚洲欧美成人综合另类久久久 | 精品国产三级普通话版| 国产一区二区在线观看日韩| 免费看a级黄色片| 悠悠久久av| 天天躁夜夜躁狠狠久久av| 日日摸夜夜添夜夜添av毛片| 99热这里只有是精品在线观看| 久久国内精品自在自线图片| 欧美在线一区亚洲| 69av精品久久久久久| 日日干狠狠操夜夜爽| 毛片一级片免费看久久久久| 亚洲欧美日韩无卡精品| 久久精品人妻少妇| 1000部很黄的大片| 欧美一区二区精品小视频在线| av在线老鸭窝| 成年免费大片在线观看| 一区二区三区四区激情视频 | 日韩精品中文字幕看吧| 99热这里只有精品一区| 久久天躁狠狠躁夜夜2o2o| 午夜亚洲福利在线播放| 亚洲国产高清在线一区二区三| 亚洲在线观看片| 麻豆av噜噜一区二区三区| 国产日本99.免费观看| 成人性生交大片免费视频hd| 简卡轻食公司| 国产成人aa在线观看| 久久午夜亚洲精品久久| 日韩高清综合在线| 免费不卡的大黄色大毛片视频在线观看 | 最新中文字幕久久久久| h日本视频在线播放| 精品国内亚洲2022精品成人| 成年女人毛片免费观看观看9| 男人和女人高潮做爰伦理| 亚洲av熟女| 色综合站精品国产| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 日韩三级伦理在线观看| ponron亚洲| 国内精品一区二区在线观看| 日韩国内少妇激情av| 欧美不卡视频在线免费观看| 伦理电影大哥的女人| 看十八女毛片水多多多| 亚洲,欧美,日韩| 国产白丝娇喘喷水9色精品| 日韩在线高清观看一区二区三区| 99热这里只有是精品50| 色尼玛亚洲综合影院| 免费黄网站久久成人精品| 精品午夜福利视频在线观看一区| 干丝袜人妻中文字幕| 亚洲国产色片| 亚洲欧美清纯卡通| 一本一本综合久久| 成人av在线播放网站| 人妻少妇偷人精品九色| 久久人人爽人人片av| 久久久久性生活片| 亚洲成a人片在线一区二区| 啦啦啦啦在线视频资源| 精品免费久久久久久久清纯| 国产精品人妻久久久影院| 亚洲精品在线观看二区| 日日摸夜夜添夜夜添av毛片| 国产精品久久电影中文字幕| 在线免费观看不下载黄p国产| 亚洲七黄色美女视频| 精品人妻熟女av久视频| av国产免费在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲精品日韩av片在线观看| 久久精品国产自在天天线| 国产三级中文精品| 精华霜和精华液先用哪个| 久久国产乱子免费精品| 丰满的人妻完整版| 久久久久久久午夜电影| 嫩草影院新地址| а√天堂www在线а√下载| 俄罗斯特黄特色一大片| 国产精品,欧美在线| 人妻夜夜爽99麻豆av| 伦理电影大哥的女人| 99久久精品一区二区三区| 别揉我奶头 嗯啊视频| 老司机午夜福利在线观看视频| 国产中年淑女户外野战色| 好男人在线观看高清免费视频| 一本久久中文字幕| 久久天躁狠狠躁夜夜2o2o| 成人午夜高清在线视频| 欧美在线一区亚洲| 狠狠狠狠99中文字幕| 99九九线精品视频在线观看视频| 我要看日韩黄色一级片| 听说在线观看完整版免费高清| 久久久久久久久久黄片| 99久久精品热视频| 亚洲av.av天堂| 97超视频在线观看视频| 亚洲最大成人av| 夜夜爽天天搞| 最近在线观看免费完整版| 午夜激情福利司机影院| 久久久久久久久久久丰满| av专区在线播放| 大又大粗又爽又黄少妇毛片口| 日本在线视频免费播放| 一本精品99久久精品77| 国产色婷婷99| 伊人久久精品亚洲午夜| 老熟妇乱子伦视频在线观看| 久久鲁丝午夜福利片| 波野结衣二区三区在线| 精品不卡国产一区二区三区| 国产成人精品久久久久久| 国产三级中文精品| 一级a爱片免费观看的视频| 国产成人91sexporn| 亚洲熟妇中文字幕五十中出| 18禁在线播放成人免费| 麻豆国产97在线/欧美| 免费不卡的大黄色大毛片视频在线观看 | 中文在线观看免费www的网站| 国产麻豆成人av免费视频| 最后的刺客免费高清国语| 中国美女看黄片| 性插视频无遮挡在线免费观看| 免费搜索国产男女视频| 最后的刺客免费高清国语| 在线看三级毛片| 久久久久精品国产欧美久久久| 国产在线男女| av福利片在线观看| 又粗又爽又猛毛片免费看| 成人国产麻豆网| 欧美性猛交黑人性爽| 一级毛片我不卡| 能在线免费观看的黄片| 日本在线视频免费播放| 91狼人影院| 国产精品人妻久久久久久| 中文字幕久久专区| 欧美高清成人免费视频www| 国产亚洲精品av在线| 国产欧美日韩精品一区二区| 国内精品久久久久精免费| 日韩大尺度精品在线看网址| 免费观看精品视频网站| 国产精品电影一区二区三区| 波多野结衣巨乳人妻| 日韩成人伦理影院| 久久鲁丝午夜福利片| 日本成人三级电影网站| 老熟妇仑乱视频hdxx| 男人舔奶头视频| 免费看a级黄色片| 香蕉av资源在线| 97在线视频观看| 淫秽高清视频在线观看| 欧美xxxx黑人xx丫x性爽| 给我免费播放毛片高清在线观看| 欧美3d第一页| 联通29元200g的流量卡| 成年版毛片免费区| 日产精品乱码卡一卡2卡三| 美女黄网站色视频| 久久韩国三级中文字幕| 国产精品人妻久久久久久| 久久久久免费精品人妻一区二区| 欧美人与善性xxx| 国产精品综合久久久久久久免费| 亚洲乱码一区二区免费版| 欧美性猛交黑人性爽| 国产人妻一区二区三区在| 国产在视频线在精品| 日本熟妇午夜| 三级国产精品欧美在线观看| 中文字幕av成人在线电影| 久久这里只有精品中国| 狂野欧美激情性xxxx在线观看| 欧美成人a在线观看| 三级毛片av免费| 久久久久精品国产欧美久久久| av在线亚洲专区| 两个人的视频大全免费| 精华霜和精华液先用哪个| 色吧在线观看| 岛国在线免费视频观看| 一级毛片久久久久久久久女| 亚洲欧美日韩卡通动漫| 欧美一区二区亚洲| 我要看日韩黄色一级片| 偷拍熟女少妇极品色| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 一个人观看的视频www高清免费观看| 成人午夜高清在线视频| 久99久视频精品免费| 99热6这里只有精品| 乱码一卡2卡4卡精品| 国产精品一区二区三区四区免费观看 | 中文字幕av成人在线电影| 国产精品一及| 狠狠狠狠99中文字幕| 精品无人区乱码1区二区| 欧美一级a爱片免费观看看| 国产精品国产高清国产av| 国产一级毛片七仙女欲春2| av在线观看视频网站免费| 国产精品久久久久久久电影| 国内精品一区二区在线观看| 久久久久久久久中文| 中文字幕av在线有码专区| 亚洲国产精品合色在线| 你懂的网址亚洲精品在线观看 | 国产成人a∨麻豆精品| 性色avwww在线观看| 午夜激情欧美在线| 别揉我奶头 嗯啊视频| 18+在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 国产高清视频在线播放一区| 99热网站在线观看| 中文字幕熟女人妻在线| 麻豆国产av国片精品| 在线播放国产精品三级| 免费av观看视频| av在线蜜桃| 九九久久精品国产亚洲av麻豆| 黑人高潮一二区| 性插视频无遮挡在线免费观看| 欧美丝袜亚洲另类| 国产大屁股一区二区在线视频| 亚洲av二区三区四区| 此物有八面人人有两片| 亚洲欧美成人综合另类久久久 | 欧美极品一区二区三区四区| 免费av观看视频| 国产三级中文精品| 久久精品影院6| 久久久久国内视频| 精品99又大又爽又粗少妇毛片| 熟妇人妻久久中文字幕3abv| 国产乱人视频| 欧美精品国产亚洲| 成人无遮挡网站| 性欧美人与动物交配| 看黄色毛片网站| 悠悠久久av| 国产私拍福利视频在线观看| 亚洲国产精品成人综合色| 给我免费播放毛片高清在线观看| 欧美色视频一区免费| 久99久视频精品免费| 国产色爽女视频免费观看| 亚洲欧美日韩高清在线视频| 尾随美女入室| 又黄又爽又免费观看的视频| 在线天堂最新版资源| 日韩av不卡免费在线播放| 美女免费视频网站| 一进一出好大好爽视频| 成人漫画全彩无遮挡| 51国产日韩欧美| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 我的女老师完整版在线观看| 毛片一级片免费看久久久久| 亚洲av电影不卡..在线观看| 亚洲国产日韩欧美精品在线观看| av天堂在线播放| 国产一区二区亚洲精品在线观看| 女人十人毛片免费观看3o分钟| 精品一区二区三区视频在线| 最近2019中文字幕mv第一页| 国产 一区 欧美 日韩| 老熟妇乱子伦视频在线观看| 亚洲欧美成人精品一区二区| 麻豆久久精品国产亚洲av| 国产一区二区亚洲精品在线观看| 丝袜美腿在线中文| 一进一出抽搐动态| 中文在线观看免费www的网站| 久久久久久久久久成人| 日本免费一区二区三区高清不卡| 久久中文看片网| 日本一二三区视频观看| 晚上一个人看的免费电影| 中国美白少妇内射xxxbb| 久久热精品热| 我要看日韩黄色一级片| 国产片特级美女逼逼视频| 亚洲丝袜综合中文字幕| 99久久久亚洲精品蜜臀av| 国产伦精品一区二区三区视频9| av在线播放精品| 极品教师在线视频| 国产成人一区二区在线| 亚洲美女黄片视频| 一个人免费在线观看电影| 国产单亲对白刺激| 国产成人freesex在线 | 禁无遮挡网站| 国产精品一区二区免费欧美| 成人亚洲欧美一区二区av| 一级a爱片免费观看的视频| 综合色丁香网| 精品午夜福利视频在线观看一区| 人妻制服诱惑在线中文字幕| 人人妻,人人澡人人爽秒播| 久久精品综合一区二区三区| 国产精品一区www在线观看| 99久久精品一区二区三区| 亚洲精品亚洲一区二区| 18禁在线播放成人免费| 又爽又黄无遮挡网站| 黄色一级大片看看| 久久这里只有精品中国| 最后的刺客免费高清国语| 欧美一级a爱片免费观看看| 91久久精品电影网| 露出奶头的视频| 国产麻豆成人av免费视频| 亚洲成av人片在线播放无| 最新中文字幕久久久久| 久久久久久国产a免费观看| 精品欧美国产一区二区三| 色视频www国产| 国产精品人妻久久久久久| 国产高清不卡午夜福利| 亚洲精品色激情综合| 欧美日韩乱码在线| 91精品国产九色| 真人做人爱边吃奶动态| 成人毛片a级毛片在线播放| 99热只有精品国产| 久久久久九九精品影院| 男女那种视频在线观看| 成人特级黄色片久久久久久久| 亚洲国产欧洲综合997久久,| 精品欧美国产一区二区三| 可以在线观看毛片的网站| 又粗又爽又猛毛片免费看| 黄色视频,在线免费观看| 国产精品伦人一区二区| 老熟妇乱子伦视频在线观看| 亚洲综合色惰| 免费观看的影片在线观看| 老师上课跳d突然被开到最大视频| 亚洲色图av天堂| 精华霜和精华液先用哪个| av在线播放精品| 91精品国产九色| 大香蕉久久网| 看非洲黑人一级黄片| 免费人成视频x8x8入口观看| 欧美成人精品欧美一级黄| 国产精品国产高清国产av| 一区福利在线观看| 久久午夜福利片| 一本精品99久久精品77| 亚洲国产高清在线一区二区三| 国产精品人妻久久久影院| 亚洲欧美日韩高清专用| av在线亚洲专区| 最新中文字幕久久久久| 性色avwww在线观看| 欧美一级a爱片免费观看看| 午夜福利高清视频| 国产精品一区二区三区四区久久| 美女 人体艺术 gogo| 少妇熟女aⅴ在线视频| 草草在线视频免费看| 国产精品久久久久久av不卡| 人妻丰满熟妇av一区二区三区| 国产av在哪里看| 美女内射精品一级片tv| 大又大粗又爽又黄少妇毛片口| 国产av在哪里看| 嫩草影院入口| 免费人成在线观看视频色| 国产一区二区三区av在线 | 国产成年人精品一区二区| 麻豆国产av国片精品| 人人妻人人看人人澡| 少妇人妻一区二区三区视频| 久久久久国内视频| 午夜免费男女啪啪视频观看 | aaaaa片日本免费| 亚洲av五月六月丁香网| 丰满人妻一区二区三区视频av| 1024手机看黄色片| 欧美绝顶高潮抽搐喷水| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 高清午夜精品一区二区三区 | 亚洲av美国av| 成年女人毛片免费观看观看9| 成年女人看的毛片在线观看| 美女xxoo啪啪120秒动态图| 亚洲第一电影网av| 又粗又爽又猛毛片免费看| 免费人成视频x8x8入口观看| 免费人成视频x8x8入口观看| 搡老岳熟女国产| 日韩欧美精品免费久久| 日本一本二区三区精品| 最好的美女福利视频网| 六月丁香七月| 亚洲av中文字字幕乱码综合| 一a级毛片在线观看| 国产精品嫩草影院av在线观看| 亚洲最大成人中文| 麻豆国产97在线/欧美| 亚洲成a人片在线一区二区| 免费无遮挡裸体视频| 亚洲一级一片aⅴ在线观看| 亚洲成a人片在线一区二区| 成人特级黄色片久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲丝袜综合中文字幕| eeuss影院久久| 日韩 亚洲 欧美在线| 伦理电影大哥的女人| 国产欧美日韩精品亚洲av| 国产亚洲欧美98| 变态另类成人亚洲欧美熟女| 变态另类丝袜制服| 免费看日本二区| 欧美日韩一区二区视频在线观看视频在线 | 此物有八面人人有两片| 日韩av在线大香蕉| 成人综合一区亚洲| 精品人妻视频免费看| 美女内射精品一级片tv| 99热这里只有是精品50| 亚洲国产精品sss在线观看| 一级毛片我不卡| 成人永久免费在线观看视频| 日韩三级伦理在线观看| 老司机福利观看| 国产高潮美女av| 国产成人影院久久av| 亚洲欧美成人精品一区二区| 久久国产乱子免费精品| 国产精品嫩草影院av在线观看| 99久久九九国产精品国产免费| 狂野欧美激情性xxxx在线观看| 老女人水多毛片| 搡老岳熟女国产| 别揉我奶头~嗯~啊~动态视频| 日韩精品中文字幕看吧| 欧美一区二区国产精品久久精品| 直男gayav资源| 2021天堂中文幕一二区在线观| 国产成人影院久久av| 熟妇人妻久久中文字幕3abv| 色吧在线观看| 如何舔出高潮| 国产爱豆传媒在线观看| 卡戴珊不雅视频在线播放| 亚洲成av人片在线播放无| 久久人人爽人人爽人人片va| 校园春色视频在线观看| 人人妻人人澡欧美一区二区| 亚洲va在线va天堂va国产| 久久久久免费精品人妻一区二区| 亚洲av.av天堂| 久久草成人影院| 亚洲激情五月婷婷啪啪| 久久国内精品自在自线图片| 日本熟妇午夜| or卡值多少钱| 国产在线精品亚洲第一网站| av国产免费在线观看| 久99久视频精品免费| 在线观看免费视频日本深夜| 一级毛片久久久久久久久女| 国产探花在线观看一区二区| 99久久精品热视频| 国产精品伦人一区二区| 欧美+亚洲+日韩+国产| 毛片女人毛片| 黄色日韩在线| 日韩欧美免费精品| 97超碰精品成人国产| 少妇丰满av| 国产淫片久久久久久久久| 成人高潮视频无遮挡免费网站| 黑人高潮一二区| 男人狂女人下面高潮的视频| 亚洲av二区三区四区| 精品久久国产蜜桃| 麻豆精品久久久久久蜜桃| 在线观看免费视频日本深夜| 91在线精品国自产拍蜜月| 成人综合一区亚洲| 最好的美女福利视频网| 春色校园在线视频观看| 黄色配什么色好看| 噜噜噜噜噜久久久久久91| 十八禁国产超污无遮挡网站| 少妇丰满av| 免费看av在线观看网站| 又粗又爽又猛毛片免费看| 插阴视频在线观看视频| 成年版毛片免费区| 日韩成人av中文字幕在线观看 | 少妇丰满av| 啦啦啦啦在线视频资源| av中文乱码字幕在线| 熟女人妻精品中文字幕| 国产成人精品久久久久久| 亚洲va在线va天堂va国产| 在线a可以看的网站| 夜夜爽天天搞| 国产探花极品一区二区| 我要看日韩黄色一级片| 看黄色毛片网站| 麻豆国产97在线/欧美| 国产成人a区在线观看| 日韩欧美一区二区三区在线观看| 成人二区视频| 蜜臀久久99精品久久宅男| 乱系列少妇在线播放| 寂寞人妻少妇视频99o| 国产精品久久视频播放| 欧美激情久久久久久爽电影| 我要看日韩黄色一级片| 天堂av国产一区二区熟女人妻| 五月玫瑰六月丁香| 日本一本二区三区精品| 丰满的人妻完整版| 亚洲精品乱码久久久v下载方式| 久久人人精品亚洲av| 久久精品国产亚洲网站| 日韩人妻高清精品专区| 亚洲国产色片| 老熟妇仑乱视频hdxx| 国产精品嫩草影院av在线观看| 夜夜看夜夜爽夜夜摸| 亚洲精品久久国产高清桃花| 亚洲色图av天堂| 色哟哟·www| 男人舔女人下体高潮全视频| 老司机影院成人| 国产高清视频在线播放一区| 一本一本综合久久| 婷婷亚洲欧美| 亚洲婷婷狠狠爱综合网| 精品福利观看| 国产高清有码在线观看视频| 久久久久国产网址| 欧美在线一区亚洲| 黄色一级大片看看| 欧美在线一区亚洲| 国产高清不卡午夜福利| 毛片女人毛片| 中文字幕av成人在线电影| 最近2019中文字幕mv第一页| 国产精品综合久久久久久久免费| 简卡轻食公司| 久久精品人妻少妇| 非洲黑人性xxxx精品又粗又长| 神马国产精品三级电影在线观看| 欧美xxxx性猛交bbbb| 悠悠久久av| 美女 人体艺术 gogo| 欧美又色又爽又黄视频| 国产日本99.免费观看| 无遮挡黄片免费观看| 一级av片app| 久久精品久久久久久噜噜老黄 | av福利片在线观看| 男人的好看免费观看在线视频| 亚洲电影在线观看av| 亚洲欧美中文字幕日韩二区| 中文字幕av成人在线电影| 中文字幕精品亚洲无线码一区| 日本五十路高清|