• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    低空低速植保無(wú)人直升機(jī)避障控制系統(tǒng)設(shè)計(jì)

    2016-03-21 12:37:32張遜遜許宏科長(zhǎng)安大學(xué)電子與控制工程學(xué)院西安710064
    關(guān)鍵詞:避障農(nóng)業(yè)機(jī)械控制

    張遜遜,許宏科,朱 旭(長(zhǎng)安大學(xué)電子與控制工程學(xué)院,西安 710064)

    ?

    低空低速植保無(wú)人直升機(jī)避障控制系統(tǒng)設(shè)計(jì)

    張遜遜,許宏科,朱旭
    (長(zhǎng)安大學(xué)電子與控制工程學(xué)院,西安 710064)

    摘要:針對(duì)低空低速植保無(wú)人直升機(jī)噴灑作業(yè)過(guò)程中地表障礙物的威脅,提出了一種基于改進(jìn)人工勢(shì)場(chǎng)的避障控制方法。將地表障礙物劃分為低矮型和高桿型,并制定不同的避障策略。將無(wú)人機(jī)與障礙物的相對(duì)運(yùn)動(dòng)速度引入到人工勢(shì)場(chǎng)中,給出基于改進(jìn)人工勢(shì)場(chǎng)的避障控制算法。設(shè)計(jì)自適應(yīng)反步飛行控制器,構(gòu)建含避障控制算法和飛行控制器的完整避障控制系統(tǒng)。仿真結(jié)果表明,與傳統(tǒng)人工勢(shì)場(chǎng)相比,對(duì)于低矮型障礙物,所提出的避障控制方法避障路徑縮短66.7%,避障時(shí)間減少31%;對(duì)于高桿型中的圓柱體型障礙物,避障路徑和避障時(shí)間差別不大;而對(duì)于高桿型中的長(zhǎng)方體型障礙物,避障路徑縮短約42%,避障時(shí)間減少25%。該研究可為植保無(wú)人直升機(jī)規(guī)?;瘧?yīng)用提供參考。

    關(guān)鍵詞:農(nóng)業(yè)機(jī)械;設(shè)計(jì);控制;植保無(wú)人直升機(jī);避障;最小安全區(qū)域;人工勢(shì)場(chǎng)

    張遜遜,許宏科,朱旭. 低空低速植保無(wú)人直升機(jī)避障控制系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):43-50.

    Zhang Xunxun, Xu Hongke, Zhu Xu. Design of obstacle avoidance control system for low altitude and low speed eppo unmanned helicopter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 43-50. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.007http://www.tcsae.org

    Email:zhangxunxun0427@163.com

    0 引 言

    植保無(wú)人直升機(jī)作業(yè)效率高、單位面積施藥量小,對(duì)推動(dòng)農(nóng)業(yè)規(guī)?;?、信息化、精細(xì)化建設(shè)有重要作用[1-2]。然而,低空低速植保無(wú)人直升機(jī)噴灑作業(yè)時(shí),地表障礙物嚴(yán)重威脅其飛行安全[3],因此增強(qiáng)無(wú)人機(jī)的避障能力是提高任務(wù)執(zhí)行精確度和成功率的關(guān)鍵[4]。

    針對(duì)無(wú)人機(jī)的避障問(wèn)題,國(guó)內(nèi)外學(xué)者進(jìn)行了大量的研究,并取得了一些成果[5-8],常用的避障控制方法有人工勢(shì)場(chǎng)法[9-11]、最優(yōu)化方法[12-13]、蟻群算法[14]、博弈法[15]、流水避石法[16]等。人工勢(shì)場(chǎng)法因其物理意義明了、算法簡(jiǎn)明、實(shí)時(shí)性好,引起了廣泛關(guān)注[17-18]。但傳統(tǒng)人工勢(shì)場(chǎng)中存在虛擬勢(shì)場(chǎng)作用區(qū)域固定、避障角度過(guò)大的問(wèn)題[19]。針對(duì)此問(wèn)題,Lee J等[20]優(yōu)化了安全避障中人工勢(shì)場(chǎng)中圓形虛擬力場(chǎng)作用域模型,實(shí)現(xiàn)了小角度避障,但僅限于平面避障。Mujumdar A等[21]考慮障礙物闖入的突然性,使用非線(xiàn)性預(yù)測(cè)控制與人工勢(shì)場(chǎng)相結(jié)合的方式,啟動(dòng)快速規(guī)避。彭建亮等[22]通過(guò)構(gòu)造不同威脅源的勢(shì)函數(shù)來(lái)解決多威脅交互問(wèn)題,但只是局部最優(yōu)。為避免人工勢(shì)場(chǎng)的局部極小值問(wèn)題,張濤等[23]通過(guò)構(gòu)建人工勢(shì)場(chǎng)函數(shù)和變權(quán)重函數(shù),提出了RHC-APF啟發(fā)粒子群算法。

    目前大多數(shù)人工勢(shì)場(chǎng)法將障礙物視為質(zhì)點(diǎn)或球形區(qū)域,忽略了障礙物自身形狀對(duì)人工勢(shì)場(chǎng)作用區(qū)域產(chǎn)生的影響[24]。然而,植保無(wú)人直升機(jī)噴灑作業(yè)過(guò)程中,地表障礙物種類(lèi)繁多且形狀各異,一概而論不利于高效精準(zhǔn)地作業(yè)。同時(shí),大多數(shù)文獻(xiàn)未清晰闡述如何將人工勢(shì)場(chǎng)法與無(wú)人直升機(jī)的飛行控制相結(jié)合,缺乏應(yīng)用價(jià)值。針對(duì)以上問(wèn)題,本文提出基于改進(jìn)人工勢(shì)場(chǎng)的植保無(wú)人直升機(jī)避障控制方法,旨在保障植保無(wú)人直升機(jī)作業(yè)安全。

    1 最小安全區(qū)域

    植保無(wú)人直升機(jī)在噴灑作業(yè)過(guò)程中,為規(guī)避地表障礙物,需要在障礙物周?chē)O(shè)定最小安全區(qū)域。當(dāng)無(wú)人機(jī)進(jìn)入該區(qū)域時(shí),會(huì)發(fā)生碰撞。地表障礙物種類(lèi)繁多且形狀各異,若最小安全區(qū)域設(shè)定為單一形狀,采取相同的規(guī)避方式,可能會(huì)出現(xiàn)不必要的大角度避障等,降低植保無(wú)人機(jī)的作業(yè)效率。需要對(duì)障礙物分類(lèi)劃分并分別確定其最小安全區(qū)域。

    障礙物則依據(jù)其高度分為2大類(lèi):低矮型和高桿型,記z0為障礙物的高度,m。當(dāng)z0≤zL時(shí),為低矮型;z0>zL時(shí),為高桿型。zL為劃分標(biāo)準(zhǔn),由植保無(wú)人直升機(jī)的作業(yè)高度zd而定,一般取zL=2zd~3zd。為提高避障效率,對(duì)不同類(lèi)型的障礙物,設(shè)置不同的最小安全區(qū)域,并采取不同的規(guī)避方式。對(duì)于低矮型障礙物,無(wú)人機(jī)通過(guò)爬升飛越之;而對(duì)于高桿型障礙物,無(wú)人機(jī)從側(cè)方繞過(guò)。

    1.1低矮型障礙物的最小安全區(qū)域

    田間低矮型障礙物大多呈圓錐狀,如土堆、墳?zāi)沟?,由此確定其最小安全區(qū)域?yàn)閳A錐體,在垂直面xoz內(nèi)投影為三角形。圖1描述了低矮型障礙物的最小安全區(qū)域,灰色三角形陰影區(qū)域?yàn)榈桶驼系K物最小安全區(qū)域在xoz平面的投影,點(diǎn)線(xiàn)為無(wú)人機(jī)規(guī)避障礙物的飛行軌跡示意。

    圖1 低矮型障礙物的最小安全區(qū)域Fig.1 Minimum safety area of low obstacles

    根據(jù)圖1中的幾何關(guān)系可得

    無(wú)人機(jī)規(guī)避障礙物過(guò)程中,有

    式中t0為無(wú)人機(jī)開(kāi)始機(jī)動(dòng)避障時(shí)刻,s;z0為障礙物的高度,m;zH(t0)為t0時(shí)刻無(wú)人機(jī)高度,m;α為障礙物最小安全區(qū)域斜面與水平面的夾角,(°);γl(t0)為無(wú)人機(jī)開(kāi)始機(jī)動(dòng)避障時(shí)最小安全區(qū)域在無(wú)人機(jī)飛行高度截面的半徑,m;V(t)為無(wú)人機(jī)與障礙物相對(duì)運(yùn)動(dòng)速度,m/s,靠近時(shí)為正,遠(yuǎn)離為負(fù);Vz(t)為V(t) z軸分量,m/s;t為時(shí)間,s;γl(t)為最小安全區(qū)域在無(wú)人機(jī)飛行高度截面半徑,m。

    由式(2)可得:無(wú)人機(jī)在爬升過(guò)程中,γl(t)是不斷減小的;從頂端到目標(biāo)點(diǎn)的過(guò)程中,γl(t)是不斷增大的。

    1.2高桿型障礙物的最小安全區(qū)域

    高桿型障礙物又可分為2類(lèi):圓柱體型(樹(shù)、電桿等)和長(zhǎng)方體型(房子、小型建筑物等)。

    1.2.1圓柱體型障礙物

    樹(shù)、電桿等障礙物大多呈圓柱狀,由此確定其最小安全區(qū)域?yàn)閳A柱體,在水平面xoy內(nèi)投影為圓形,如圖2。

    圖2 圓柱體型障礙物最小安全區(qū)域Fig.2 Minimum safety area of cylindrical obstacles

    無(wú)人機(jī)在規(guī)避障礙物過(guò)程中,任何時(shí)刻都滿(mǎn)足

    式中γc(t)為圓柱體型障礙物的最小安全區(qū)域的半徑,m;R是常數(shù)。

    1.2.2長(zhǎng)方體型障礙物

    房子、小型建筑物等障礙物大多呈長(zhǎng)方體狀,由此確定其最小安全區(qū)域?yàn)殚L(zhǎng)方體,如圖3所示:灰色陰影區(qū)域?yàn)殚L(zhǎng)方體型障礙物的最小安全區(qū)域在xoy平面的投影。

    圖3 長(zhǎng)方體型障礙物最小安全區(qū)域Fig.3 Minimum safety area of cuboid obstacles

    根據(jù)圖中幾何關(guān)系,分別得到H(t)的位置向量ρH(t)=[xH(t), yH(t), zH(t)]T和J(t)的位置向量ρJ(t)=[xJ(t),yJ(t),zJ(t)]T,其中H(t)為t時(shí)刻植保無(wú)人直升機(jī)所在的位置,J(t)為t時(shí)刻HT連線(xiàn)與最小安全區(qū)域的交點(diǎn)。

    相應(yīng)地

    式中xH(t)、yH(t)、zH(t)分別為ρH(t)的x、y、z三軸分量,m;xJ(t)、yJ(t)、zJ(t)分別為ρJ(t)的x、y、z三軸分量,m;xH(t0)、yH(t0)、zH(t0)分別為t0時(shí)刻ρH(t0)的x、y、z三軸分量,m;xT,yT,zT為障礙物中心位置ρT的x、y、z三軸分量,m;ψ(t)為t時(shí)刻無(wú)人直升機(jī)的偏航角,(°);D1、D2分別為最小安全區(qū)域的寬、長(zhǎng),m;k(t)為t時(shí)刻HT連線(xiàn)斜率的倒數(shù);γr(t)為T(mén)J連線(xiàn)長(zhǎng)度,m;根據(jù)圖3b,當(dāng)J與M、N、O、P任意一個(gè)重合時(shí),γr(t)達(dá)最大值為sqrt+)/2;當(dāng)HT⊥MN或HT⊥MP時(shí),γr(t)達(dá)最小值min(D1,D2)/2。

    2 基于改進(jìn)人工勢(shì)場(chǎng)的避障控制算法

    在定義了最小安全區(qū)域后,接著通過(guò)構(gòu)造改進(jìn)人工勢(shì)場(chǎng)來(lái)實(shí)現(xiàn)避障。針對(duì)不同的最小安全區(qū)域,給出相應(yīng)的斥力場(chǎng)使無(wú)人機(jī)規(guī)避障礙物。

    2.1改進(jìn)的人工勢(shì)場(chǎng)法

    植保無(wú)人直升機(jī)在規(guī)避障礙物過(guò)程中,只能主動(dòng)規(guī)避障礙物,而障礙物不能主動(dòng)規(guī)避無(wú)人機(jī)。也就是說(shuō)規(guī)避障礙物時(shí),只能單方面調(diào)整無(wú)人機(jī)的姿態(tài)和軌跡。因此,只需設(shè)計(jì)斥力場(chǎng),不設(shè)計(jì)引力場(chǎng);并將無(wú)人機(jī)與障礙物的相對(duì)運(yùn)動(dòng)速度考慮到斥力場(chǎng)中,對(duì)傳統(tǒng)的人工勢(shì)場(chǎng)加以改進(jìn)。構(gòu)建斥力場(chǎng)函數(shù)為廣義Morse函數(shù)

    式中Jr(‖ρHT‖,V(t))為人工勢(shì)場(chǎng)函數(shù);f(V(t))為由相對(duì)運(yùn)動(dòng)速度V(t)產(chǎn)生的補(bǔ)償系數(shù),無(wú)量綱,當(dāng)V(t)>0時(shí),f(V(t))為遞增函數(shù),即靠近速度越快,f(V(t))值越大。又f(V(t))<1,即由相對(duì)運(yùn)動(dòng)速度V(t)產(chǎn)生的斥力場(chǎng)不會(huì)超過(guò)單純‖ρHT‖產(chǎn)生的斥力場(chǎng)的影響,速度V(t)產(chǎn)生的斥力場(chǎng)起輔助作用。g和n均為常數(shù),分別決定斥力場(chǎng)的幅值和變化速度,無(wú)量綱。ρHT為無(wú)人直升機(jī)H對(duì)障礙物中心T的相對(duì)位置矢量;‖ρHT‖是ρHT的向量范數(shù),為無(wú)人機(jī)與障礙物之間的距離;‖ρHT‖∈[‖ρHT‖min(t), ‖ρHT‖max],‖ρHT‖max是規(guī)避障礙物邊界,當(dāng)‖ρHT‖>‖ρHT‖max時(shí)無(wú)需規(guī)避障礙物?!袶T‖min(t)為t時(shí)刻人工勢(shì)場(chǎng)作用區(qū)域的最小安全距離,對(duì)于不同類(lèi)型的障礙物是不同的,即

    引入人工勢(shì)場(chǎng)后,需要定義一個(gè)與之相關(guān)的虛擬力,來(lái)實(shí)現(xiàn)無(wú)人機(jī)的避障。綜合式(9)和式(10),并令▽?zhuān)é袶T)=(ρH?ρT)/‖ρHT‖,可得虛擬力函數(shù)

    式中Fr(‖ρHT‖, V(t))為人工勢(shì)場(chǎng)產(chǎn)生的虛擬力,N;▽為一算子,表示求梯度;▽Jr(‖ρHT‖,V(t))為對(duì)人工勢(shì)場(chǎng)函數(shù)Jr(‖ρHT‖,V(t))求梯度;ρT為障礙物的位置向量,為ρT=[xT,yT,zT]T,m。虛擬力隨無(wú)人機(jī)與障礙物之間距離的減小而增大,隨速度的增大而增大。且當(dāng)‖ρHT‖和V(t)一定時(shí),‖ρHT‖min(t)越小,虛擬力越小。同時(shí),增加了相對(duì)運(yùn)動(dòng)速度對(duì)斥力場(chǎng)的影響,以補(bǔ)償障礙物不能主動(dòng)規(guī)避無(wú)人機(jī)的缺點(diǎn),用來(lái)改善避障控制的效果。

    2.2避障控制指令

    基于人工勢(shì)場(chǎng)的避障是通過(guò)調(diào)整無(wú)人機(jī)的速度矢量來(lái)實(shí)現(xiàn)的,利用斥力場(chǎng)來(lái)確定規(guī)避障礙物過(guò)程中無(wú)人機(jī)速度的改變量。因此可以定義速度指令Vd(t)

    將虛擬力拆分到3個(gè)通道,有

    式中Vd(t)為避障速度指令,m/s;(t),(t),(t)為Vd(t)的x、y、z三軸分量,m/s;Vx(t),Vy(t),Vz(t)為V(t)的x、y、z三軸分量,m/s。

    式中ψd(t)為t時(shí)刻無(wú)人直升機(jī)的偏航角指令,(°)。

    3 植保無(wú)人直升機(jī)避障控制系統(tǒng)研究

    植保無(wú)人機(jī)避障控制系統(tǒng)的實(shí)現(xiàn)既依靠避障控制算法,又需要飛行控制器對(duì)避障指令的跟蹤響應(yīng)。植保無(wú)人直升機(jī)避障控制系統(tǒng)包含避障控制算法和相應(yīng)的飛行控制器。避障控制算法是外環(huán),產(chǎn)生避障指令;飛行控制器是內(nèi)環(huán),調(diào)整無(wú)人機(jī)的姿態(tài)來(lái)跟蹤避障指令。避障控制算法結(jié)合無(wú)人機(jī)和障礙物的信息,經(jīng)過(guò)人工勢(shì)場(chǎng)的計(jì)算,產(chǎn)生垂直速度指令和偏航角指令,并將這些指令發(fā)送給飛行控制器。無(wú)人機(jī)避障控制系統(tǒng)結(jié)構(gòu)如圖4。

    圖4 避障控制系統(tǒng)結(jié)構(gòu)Fig.4 Structure of obstacle avoidance control system

    3.1植保無(wú)人直升機(jī)模型

    植保無(wú)人機(jī)采用小型單旋翼無(wú)人直升機(jī),包括其數(shù)學(xué)模型和主旋翼?yè)]舞模型。數(shù)學(xué)模型[25-26]為

    式中Π=[φ, θ, ψ, z]T為無(wú)人直升機(jī)地面坐標(biāo)系下的滾轉(zhuǎn)角、俯仰角、偏航角和位置的z軸分量;Γ為狀態(tài)矩陣;?=[p, q, r, Vz]T為無(wú)人機(jī)機(jī)體坐標(biāo)系下角速度分量和垂直速度;Δ為常系數(shù)矩陣;F、X均為非線(xiàn)性矩陣函數(shù);U=[δlon,δlɑt]T是控制輸入,δlon和δlɑt分別由縱向周期變矩操縱輸入量與橫向周期變矩操縱輸入量,(°);Λ=[Ixx, Iyy, Izz, Ixz,m]T為自整定參數(shù)向量;m為植保無(wú)人直升機(jī)的質(zhì)量,kg;植保無(wú)人機(jī)噴灑作業(yè)過(guò)程中,負(fù)載發(fā)生變化故而引起系統(tǒng)質(zhì)量與慣性矩陣的不確定性。Ixx、Iyy、Izz分別為直升機(jī)對(duì)機(jī)體坐標(biāo)x、y、z軸的轉(zhuǎn)動(dòng)慣量;Ixz為直升機(jī)對(duì)x軸和z軸的慣性積。小型植保無(wú)人直升機(jī)的主旋翼?yè)]舞模型為

    式中α與b分別為主旋翼縱向與橫向揮舞角,(°); te為主旋翼?yè)]舞時(shí)間常數(shù),s;Alɑt和Alon分別是主旋翼伺服輸入比例系數(shù);Blɑt和Blon分別是副翼伺服輸入比例系數(shù);q 和p分別是繞機(jī)體坐標(biāo)系y、x軸的角速度,rad/s。

    3.2飛行控制器設(shè)計(jì)

    飛行控制器的目標(biāo)是使系統(tǒng)存在不確定參數(shù)的情況下,通過(guò)設(shè)計(jì)Tm、Tt、δlon、δlɑt使Π=[φ, θ, ψ, z]T能夠跟蹤姿態(tài)和位置指令Πd,?=[p, q, r, Vz]T能夠跟蹤速度指令?d;其中,Πd=[φd, θd, ψd, zd]T為地面坐標(biāo)系下的滾轉(zhuǎn)角、俯仰角、偏航角指令和位置的z軸分量指令;?d=[pd, qd, rd,Vzd]T為地面坐標(biāo)系下的滾轉(zhuǎn)角速度、俯仰角速度、偏航角速度指令和垂直速度指令。

    反步法在設(shè)計(jì)不確定系統(tǒng)自適應(yīng)控制器方面有巨大的優(yōu)勢(shì),不僅可以靈活選取李雅普諾夫函數(shù)來(lái)提升系統(tǒng)的暫態(tài)響應(yīng),而且能夠處理系統(tǒng)不確定性問(wèn)題[27-28]。同時(shí),為解決植保無(wú)人直升機(jī)模型存在不確定性參數(shù)Λ的問(wèn)題,在后面的控制器設(shè)計(jì)中采用自適應(yīng)法對(duì)不確定參數(shù)Λ進(jìn)行在線(xiàn)估計(jì)。接下來(lái),設(shè)計(jì)基于自適應(yīng)反步法的飛行控制器[29]。將式(18)重寫(xiě)為

    飛行控制器的設(shè)計(jì)過(guò)程分步進(jìn)行:

    1)定義Π的誤差向量

    式中δφ, δθ, δψ, δz分別為滾轉(zhuǎn)角誤差、俯仰角誤差、偏航角誤差和位置的z軸分量誤差。對(duì)式(21)求導(dǎo)可得

    式中K1為第1個(gè)控制參數(shù)矩陣;δ2在下一步中定義;速度指令?d為

    式中V1為所選取的第1個(gè)李雅普諾夫函數(shù)。

    對(duì)式(24)求導(dǎo),并將式(22)代入得

    2)定義?的誤差向量

    式中δp, δq, δr, δVz為無(wú)人直升機(jī)地面坐標(biāo)系下的滾轉(zhuǎn)角速度誤差、俯仰角速度誤差、偏航角速度誤差和垂直速度誤差。對(duì)式(26)兩邊同時(shí)乘以Δ并求導(dǎo)可得

    式中K2為第2個(gè)控制參數(shù)矩陣;為Λ的在線(xiàn)估計(jì);設(shè)計(jì)自適應(yīng)更新律

    式中Θ為正定對(duì)稱(chēng)矩陣。

    將式(28)代入式(27),可得

    式中V2為所選取的第2個(gè)李雅普諾夫函數(shù)。對(duì)式(31)求導(dǎo)可得

    3)令ɑd和bd為期望的主旋翼縱向和橫向揮舞角,則ɑd和bd對(duì)應(yīng)的控制力矩Ud為

    式中Ud為ɑd和bd對(duì)應(yīng)的控制力矩,N·m;Tm為主旋翼旋轉(zhuǎn)產(chǎn)生的升力,N;Tt為尾翼旋轉(zhuǎn)產(chǎn)生的偏航力,N;Qm為主旋翼旋轉(zhuǎn)產(chǎn)生的總轉(zhuǎn)矩,N·m;Cmɑ和Cmb分別為主旋翼俯仰和滾轉(zhuǎn)力矩強(qiáng)度系數(shù);xm、ym、zm分別為主旋翼旋轉(zhuǎn)軸到直升機(jī)重心的3個(gè)軸向距離,m。

    令式(28)中ɑd和bd對(duì)應(yīng)的控制力矩Ud作為式(33)的虛擬控制輸入U(xiǎn)d,即可獲得Tm, Tt, ɑd, bd,并代入主旋翼?yè)]舞模型(19),最終得到δlɑt和δlon為

    式(34)即為所設(shè)計(jì)的基于自適應(yīng)反步法的飛行控制器,用來(lái)跟蹤避障指令,與避障控制指令(17)共同構(gòu)成避障控制系統(tǒng)。

    4 仿真算例及分析

    為驗(yàn)證基于改進(jìn)人工勢(shì)場(chǎng)的避障控制算法和所設(shè)計(jì)飛行控制器的有效性,進(jìn)行了三維數(shù)字仿真,并且與基于傳統(tǒng)人工勢(shì)場(chǎng)的避障控制算法進(jìn)行了對(duì)比。

    表1 2種人工勢(shì)場(chǎng)的最小安全距離Table 1 Minimum safety distance of two kinds of artificial potential fields

    圖5 有效載荷為10 kg的無(wú)人直升機(jī)避障位置響應(yīng)Fig.5 Position response of unmanned helicopter with its payload weight 10 kg to avoid obstacles

    仿真模型采用小型單旋翼無(wú)人直升機(jī),農(nóng)藥有效載荷為10 kg,噴灑作業(yè)時(shí)速度為3 m/s,噴頭流量為800 mL/min。初始位置為[0, 0, 3]Tm,目標(biāo)位置為[750, 750, 3]Tm,初始垂直速度和初始偏航角均為0。在[230, 230, 0]Tm處設(shè)置障礙物1,為圓柱體障礙物,其中R=3 m,高度為15 m;在[420, 420, 0]Tm處設(shè)置障礙物2,為圓錐體型障礙物,其中α=45°,高度為6 m;在[627, 612, 0]Tm處設(shè)置障礙物3,此為長(zhǎng)方體型障礙物,其中D1=66 m,D2=120 m,高度為10 m。改進(jìn)人工勢(shì)場(chǎng)設(shè)置不同的最小安全區(qū)域,傳統(tǒng)人工勢(shì)場(chǎng)的最小安全區(qū)域均采用球形區(qū)域。2種人工勢(shì)場(chǎng)的最小安全距離如表1所示。

    使用改進(jìn)人工勢(shì)場(chǎng)算法式(17)和傳統(tǒng)人工勢(shì)場(chǎng)算法進(jìn)行對(duì)比仿真,飛行控制器均采用式(34),仿真時(shí)間為380 s,仿真結(jié)果如圖5、圖6所示。

    圖6 有效載荷為10 kg的無(wú)人直升機(jī)避障姿態(tài)響應(yīng)Fig.6 Altitude response of unmanned helicopter with its payload weight 10 kg to avoid obstacles

    植保無(wú)人直升機(jī)在噴灑作業(yè)過(guò)程中,無(wú)人機(jī)系統(tǒng)質(zhì)量以0.8 kg/min的速度減少,根據(jù)圖5a,所設(shè)計(jì)的基于改進(jìn)人工勢(shì)場(chǎng)的避障控制系統(tǒng)能實(shí)現(xiàn)有效避障。且由圖5可知,改進(jìn)人工勢(shì)場(chǎng)和傳統(tǒng)人工勢(shì)場(chǎng)均規(guī)避了障礙物。

    對(duì)于高桿型障礙物1,根據(jù)圖5b、5d可以看出,無(wú)人直升機(jī)側(cè)方繞過(guò),這時(shí)改進(jìn)人工勢(shì)場(chǎng)和傳統(tǒng)人工勢(shì)場(chǎng)的障礙曲線(xiàn)重合,即避障效果相同,這是2種人工勢(shì)場(chǎng)法的最小安全距離相同造成的,見(jiàn)表1。

    對(duì)于障礙物2和3,2種算法的避障效果有明顯差別,主要體現(xiàn)在避障路徑和避障時(shí)間上。對(duì)于低矮型障礙物2,根據(jù)圖5d中點(diǎn)1、2的坐標(biāo),改進(jìn)人工勢(shì)場(chǎng)越過(guò)障礙物0.6 m,而傳統(tǒng)人工勢(shì)場(chǎng)越過(guò)1.6 m,可見(jiàn)改進(jìn)人工勢(shì)場(chǎng)避障路徑更短;又根據(jù)圖6a、6b,無(wú)人直升機(jī)通過(guò)調(diào)整速度爬升越過(guò),由局部圖6b可知,改進(jìn)人工勢(shì)場(chǎng)用時(shí)約40 s,而傳統(tǒng)人工勢(shì)場(chǎng)用時(shí)約60 s,避障時(shí)間縮短20 s,避障時(shí)間更短。對(duì)于高桿型障礙物3,無(wú)人直升機(jī)側(cè)方繞過(guò),根據(jù)圖5c中點(diǎn)1、2的坐標(biāo),與傳統(tǒng)人工勢(shì)場(chǎng)相比,改進(jìn)人工勢(shì)場(chǎng)最遠(yuǎn)繞過(guò)最小安全區(qū)域邊界縮短了19 m,即圖5c中點(diǎn)1、2間的距離,因此,改進(jìn)人工勢(shì)場(chǎng)避障路徑更短;又根據(jù)圖6c,無(wú)人直升機(jī)通過(guò)調(diào)整偏航角爬升越過(guò),而傳統(tǒng)人工勢(shì)場(chǎng)用時(shí)較長(zhǎng)。

    為進(jìn)一步驗(yàn)證所設(shè)計(jì)避障控制系統(tǒng)的有效性,仿真模型采用有效載荷為16 kg的單旋翼植保無(wú)人直升機(jī),噴灑作業(yè)時(shí)速度為3 m/s,噴頭流量為800 mL/min。障礙物設(shè)置同表1,仿真結(jié)果如圖7和圖8所示。

    圖7 有效載荷為16 kg的無(wú)人直升機(jī)避障位置響應(yīng)Fig.7 Position response of unmanned helicopter with its payload weight 16 kg to avoid obstacles

    圖8 有效載荷為16 kg的無(wú)人直升機(jī)避障姿態(tài)響應(yīng)Fig.8 Altitude response of unmanned helicopter with its payload weight 16 kg to avoid obstacles

    根據(jù)圖7,在無(wú)人機(jī)系統(tǒng)質(zhì)量以0.8 kg/min的速度減少的情況下,16 kg的無(wú)人機(jī)能有效避障。對(duì)障礙物1和3,根據(jù)圖7、圖8b,通過(guò)調(diào)整偏航角側(cè)方繞過(guò);對(duì)于障礙物2,根據(jù)圖7、圖8a,通過(guò)調(diào)整速度爬升越過(guò)障礙物。

    總之,所設(shè)計(jì)的避障控制系統(tǒng)對(duì)有效載荷10或16 kg的無(wú)人機(jī)均適用,即基于自適應(yīng)反步法的飛行控制器均能有效跟蹤避障指令。改進(jìn)人工勢(shì)場(chǎng)算法式(17)和飛行控制器式(34)不僅能有效規(guī)避地表障礙物,而且與傳統(tǒng)人工勢(shì)場(chǎng)算法相比,避障路徑更短,用時(shí)更少。

    5 結(jié)論與討論

    針對(duì)植保無(wú)人直升機(jī)噴灑作業(yè)避障問(wèn)題,設(shè)計(jì)了基于改進(jìn)人工勢(shì)場(chǎng)的植保無(wú)人直升機(jī)避障控制系統(tǒng)。仿真結(jié)果表明:

    1)無(wú)人機(jī)有效載荷是10或16 kg,而且作業(yè)過(guò)程中,載荷是不斷變化的,控制系統(tǒng)均能有效跟蹤避障指令,所設(shè)計(jì)的自適應(yīng)反步控制器穩(wěn)定可靠;

    2)所設(shè)計(jì)的基于改進(jìn)人工勢(shì)場(chǎng)的避障算法無(wú)論從避障路徑還是避障時(shí)間均優(yōu)于傳統(tǒng)人工勢(shì)場(chǎng)避障,以有效載荷10 kg為例,對(duì)于低矮型障礙物,避障路徑縮短66.7%,避障時(shí)間減少31%;對(duì)于長(zhǎng)方體型障礙物,避障路徑縮短約42%,避障時(shí)間減少25%。

    無(wú)人機(jī)實(shí)際作業(yè)時(shí),受到各種因素作用,后續(xù)將進(jìn)行無(wú)人直升機(jī)避障控制實(shí)際效果的試驗(yàn),為后續(xù)實(shí)現(xiàn)植保無(wú)人直升機(jī)自主農(nóng)藥噴灑提供參考。

    [參考文獻(xiàn)]

    [1] 茹煜,金蘭,賈志成,等. 無(wú)人機(jī)靜電噴霧系統(tǒng)設(shè)計(jì)及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):42-47. Ru Yu, Jin Lan, Jia Zhicheng, et al. Design and experiment on electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(8): 42-47. (in Chinese with English abstract)

    [2] 周志艷,臧英,羅錫文,等. 中國(guó)農(nóng)業(yè)航空植保產(chǎn)業(yè)技術(shù)創(chuàng)新發(fā)展戰(zhàn)略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):1-10. Zhou Zhiyan, Zang Ying, Luo Xiwen, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 1-10. (in Chinese with English abstract)

    [3] 張宋超,薛新宇,秦維彩,等. N-3型農(nóng)用無(wú)人直升機(jī)航空施藥飄移模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):87-93. Zhang Songchao, Xue Xinyu, Qin Weicai, et al. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 87-93.

    [4] 劉浩蓬,龍長(zhǎng)江,萬(wàn)鵬,等. 植保四軸飛行器的模糊PID控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):71-77. Liu Haopeng, Long Changjiang, Wan Peng, et al. Fuzzy self-adjusting proportion integration differentiation for eppo quadrocopter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(1): 71-77. (in Chinese with English abstract)

    [5] Moon J, Prasad J V R. Minimum-time approach to obstacle avoidance constrained by envelope protection for autonomous UAVs[J]. Mechatronics, 2011, 21(5): 861-875.

    [6] Tanja H, Robert B, Frank O. Model-based local path planning for UAVs[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 78(1): 127-142.

    [7] 孟少華,向錦武,羅漳平,等. 微小型無(wú)人直升機(jī)避障最優(yōu)軌跡規(guī)劃[J]. 北京航空航天大學(xué)學(xué)報(bào),2014,40(2):246-251. Meng Shaohua, Xiang Jinwu, Luo Zhangping, et al. Optimal trajectory planning for small-scale unmanned helicopter obstacle avoidance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 246-251. (in Chinese with English abstract)

    [8] Gatzke B T. Trajectory Optimization for Helicopter Unmanned Aerial Vehicles[D]. Monterey: Naval Postgraduate School, 2010.

    [9] Zhou Li, Li Wei. Adaptive artificial potential field approach for obstacle avoidance path planning[C]//Zhou Li. Proceedings of 2014 7th International Symposium on Computational Intelligence and Design. Hangzhou: Institute of Electrical and Electronics Engineers Inc, 2015(2): 429-432.

    [10] Liu Jianying, Guo Ziqi, Liu Shiyue. The simulation of the uav collision avoidance based on the artificial potential field method[J]. Advanced Materials Research, 2012, 591: 1400-1404

    [11] Chen Yongbo, Luo Guanchen, Mei Yuesong, et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International Journal of Systems Science, 2014, 31(9): 54-65.

    [12] 李霞,張繼海,謝文俊,等. 無(wú)人機(jī)自主防碰撞方法研究[J].飛行力學(xué),2011,29(6):48-51. Li Xia, Zhang Jihai, Xie Wenjun, et al. Research on autonomic collision avoidance method for UAV[J]. Flight Dynamics, 2011, 29(6): 48-51. (in Chinese with English abstract)

    [13] Xu Qingyang. Collision avoidance strategy optimization based on danger immune algorithm[J]. Computers and Industrial Engineering, 2014, 76: 268-279.

    [14] 劉洋,章衛(wèi)國(guó),李廣文,等. 一種三維環(huán)境中的無(wú)人機(jī)多路徑規(guī)劃方法[J]. 西北工業(yè)大學(xué)學(xué)報(bào),2014,32(3):412-416. Liu Yang, Zhang Weiguo, Li Guangwen, et al. A multi-path planning method for unmanned aerial vehicle (UAV) in 3D environment[J]. Journal of Northwestern Polytechnical University,2014, 32(3): 412-416. (in Chinese with English abstract)

    [15] 茹常劍,魏瑞軒,郭慶,等. 面向無(wú)人機(jī)自主防碰撞的認(rèn)知博弈制導(dǎo)控制[J]. 控制理論與應(yīng)用,2014,31(11):1555-1560. Ru Changjian, Wei Ruixuan, Guo Qing, et al. Guidance control of cognitive game for unmanned aerial vehicle autonomous collision avoidance[J]. Control Theory &Applications, 2014, 31(11): 1555-1560. (in Chinese with English abstract)

    [16] 梁宵,王宏倫,李大偉,等. 基于流水避石原理的無(wú)人機(jī)三維航路規(guī)劃方法[J]. 航空學(xué)報(bào),2013,34(7):1670-1681. Liang Xiao, Wang Honglun, Li Dawei, et al. Three-dimensional path planning for unmanned aerial vehicles based on principles of stream avoiding obstacles[J]. Acta Aeronautica ET Astronautica Sinica, 2013, 34(7): 1670-1681. (in Chinese with English abstract)

    [17] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[C]// Khatib O . Proceedings of 1985 IEEE International Conference on Robotics and Automation. St.Louris Missouri: Micro IEEE 1985: 500-505.

    [18] Khatib O. A unified approach for motion and force of robot manipulators[J]. IEEE Journal of Robotics and Automation,1987, 3(1): 43-53.

    [19] Tian Feng, Zou Jifeng, Zhang Tong. Hybrid method based on artificial potential field and differential game theory for the UAV path planing[J]. Applied Mechanics and Materials,2014, 687: 260-264.

    [20] Lee J, Nam Y Y, Hong S J. Random force based algorithm for local minima secape of potential field method[C]// Lee J. International Conference on Control Automation Robotics &vision. Singapore: Nanyang Technological University, 2010: 827-832

    [21] Mujumdar A, Padhi R. Reactive collision avoidance using nonlinear geometric and differential geometric guidance[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1): 303-310.

    [22] 彭建亮,孫秀霞,蔡滿(mǎn)意,等. 基于人工勢(shì)場(chǎng)的防空威脅建模與仿真[J]. 系統(tǒng)工程與電子技術(shù),2010,32(2):338-341. Peng Jianliang, Sun Xiuxia, Cai Manyi, et al. Modeling and simulation of air defense threat based on artificial potential field[J]. Systems Engineering and Electronics, 2010, 32(2): 338-341. (in Chinese with English abstract)

    [23] 張濤,于雷,周中良. 基于混合算法的空戰(zhàn)機(jī)動(dòng)決策[J]. 系統(tǒng)工程與電子技術(shù),2013,35(7):1445-1450 Zhang Tao, Yu Lei, Zhou Zhongliang. Decision-making for air combat maneuvering based on hybrid algorithm[J]. Systems Engineering and Electronics, 2013, 35(7): 1445-1450.

    [24] Wang Xibin, Song Chao, Zhao Guorong, et al. Obstacles avoidance for UAV SLAM based on improved artificial potential field[J]. Applied Mechanics and Materials,2013(241/242/243/244): 1118-1121.

    [25] Ahmed B, Pota H R, Matt G. Flight control of a rotary wing UAV using backstepping[J]. International Journal of Robust and Nonlinear Control, 2010, 20(6): 639-658.

    [26] 孫秀云,方勇純,孫寧. 小型無(wú)人直升機(jī)的姿態(tài)與高度自適應(yīng)反步控制[J]. 控制理論與應(yīng)用,2012,29(3):381-388. Sun Xiuyun, Fang Yongchun, Sun Ning, et al. Backsteppingbased adaptive attitude and height control of a small-scale unmanned helicopter[J]. Control Theory & Applications,2012, 29(3): 381-388. (in Chinese with English abstract)

    [27] Chen Weisheng, Zhang Zhengqiang. Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign[J]. Fuzzy Sets and Systens, 2010, 161: 821-836.

    [28] Basri M, Ariffanan M, Abdul Rashid H, et al. Intelligent adaptive backstepping control for MIMO uncertain non-linear quadrotor helicopter systems[J]. Transactions of the Institute of Measurement and Control, 2015, 37(3): 345-361.

    [29] Lee C T, Tsai C C. Adaptive backstepping integral control of a small-scale helicopter for airdrop missions[J]. Asian Journal of Control, 2010, 12(4): 531-541.

    Design of obstacle avoidance control system for low altitude and low speed eppo unmanned helicopter

    Zhang Xunxun, Xu Hongke, Zhu Xu
    (School of Electronic ɑnd Control Engineering, Chɑng’ɑn University, Xi’ɑn 710064, Chinɑ)

    Abstract:Considering the threat of ground obstacles in the process of spraying for the low altitude and low speed eppo unmanned helicopter, an obstacle avoidance method based on the improved artificial potential field was proposed. The ability of the helicopter to avoid obstacle was the key issue to improve the accuracy and the efficiency, which could be realized in the following steps. Firstly, because ground obstacles were various and of different shapes, most traditional artificial potential fields regarding obstacles as a mass point or a sphere was not conducive, and they could not spray precisely if ground obstacles were treated as the same type. To solve this problem, ground obstacles were divided into 2 types i.e. low and high ones, of which high obstacles contained both cylindrical and cubic obstacles. Their minimum safety areas were defined differently: cone was for low obstacles, cylinder for cylindrical obstacles and cuboid for cubic obstacles. To prevent the wide-angle maneuvers and improve the efficiency of spraying, 2 kinds of obstacle avoidance strategies were formulated, which were climbing over them for low obstacles and bypassing them for high obstacles respectively. Secondly, in order to conquer the defect that obstacles were unable to avoid the helicopter initiatively, an obstacle avoidance algorithm based on the improved artificial potential field was given by introducing the relative speed between the helicopter and the obstacle into the repulsive potential. Meanwhile, obstacle avoidance orders were given according to the proposed algorithm, such that the helicopter adjusted its velocity and altitude in real time. Then, in view of continuously changing payload weight during the spraying process, the flight controller was designed based on the adaptive back stepping theory, which was not only to track those obstacle avoidance orders precisely, but also to suppress the parameter uncertainty caused by the change of the payload weight. Both the obstacle avoidance algorithm and the flight controller constructed a whole obstacle avoidance system, aiming at ensuring the security of the helicopter. Moreover, how to combine the obstacle avoidance algorithm with the flight controller was clearly demonstrated. Finally, simulation results showed that the proposed obstacle avoidance method could avoid ground obstacles effectively and efficiently, whose obstacle avoidance path was shorter and obstacle avoidance time was less than the traditional artificial potential fields. For the low obstacles, the obstacle avoidance path was shortened by 66.7% and the obstacle avoidance time decreased by 31%; for the high obstacles, the obstacle avoidance path and time were nearly the same as the traditional artificial potential fields when avoiding cylindrical obstacles, but when avoiding cubic obstacles, the obstacle avoidance path was shorten by 42% and obstacle avoidance time decreased by 25%. On the other hand, the adaptive back stepping controller was verified with its effectiveness and stability. The helicopter could avoid obstacles quickly and smoothly whether its payload weight was 10 or 16 kg, even though the payload weight changed continuously in the process of spraying. In a word, the proposed method has a better effect, which can provide a reference for technical applications of eppo unmanned helicopter.

    Keywords:agricultural machinery; design; control; eppo unmanned helicopter; obstacle avoidance; minimum safety area; artificial potential field

    作者簡(jiǎn)介:張遜遜,女(漢),河南漯河人,博士生,主要從事小型無(wú)人機(jī)應(yīng)用研究。西安長(zhǎng)安大學(xué)電子與控制工程學(xué)院,710064。

    基金項(xiàng)目:國(guó)家自然科學(xué)基金(61473229);中央高?;究蒲袠I(yè)務(wù)費(fèi)資助項(xiàng)目(2014G2320006);陜西省科技攻關(guān)項(xiàng)目(2015GY052)

    收稿日期:2015-07-13

    修訂日期:2015-11-05

    中圖分類(lèi)號(hào):V275

    文獻(xiàn)標(biāo)志碼:A

    文章編號(hào):1002-6819(2016)-02-0043-08

    doi:10.11975/j.issn.1002-6819.2016.02.007 10.11975/j.issn.1002-6819.2016.02.007http://www.tcsae.org

    猜你喜歡
    避障農(nóng)業(yè)機(jī)械控制
    宜賓市農(nóng)業(yè)機(jī)械研究所
    基于LabVIEW的自主巡航與遙控雙功能智能小車(chē)研發(fā)
    基于HC—SR04超聲波傳感器的智能避障小車(chē)設(shè)計(jì)
    基于STM32芯片的移動(dòng)機(jī)器人的避障研究
    社會(huì)轉(zhuǎn)型期行政權(quán)控制的路徑探索
    科技視界(2016年21期)2016-10-17 17:06:18
    會(huì)計(jì)預(yù)算控制現(xiàn)狀及方法
    淺談高層建筑沉降監(jiān)測(cè)關(guān)鍵環(huán)節(jié)控制
    科技視界(2016年20期)2016-09-29 13:07:14
    保險(xiǎn)公司財(cái)務(wù)風(fēng)險(xiǎn)管理及控制研究
    基于“STC80C51單片機(jī)”的智能小車(chē)系統(tǒng)的設(shè)計(jì)
    農(nóng)業(yè)機(jī)械自動(dòng)化在現(xiàn)代農(nóng)業(yè)中的應(yīng)用與發(fā)展趨勢(shì)
    桂阳县| 玉山县| 柘城县| 始兴县| 盐亭县| 安顺市| 盘山县| 周口市| 灵川县| 永昌县| 呼伦贝尔市| 福建省| 玉林市| 临武县| 北碚区| 华坪县| 当阳市| 连江县| 沙雅县| 靖安县| 斗六市| 县级市| 班戈县| 呼伦贝尔市| 香格里拉县| 原阳县| 沈阳市| 蒙自县| 海宁市| 梓潼县| 博乐市| 宁波市| 山阳县| 卢湾区| 浮山县| 山西省| 武隆县| 尼勒克县| 大安市| 封开县| 鲁甸县|