李德金,高宏生,張 麗,胡 驍,楊 震,李華英,郭 錦,趙化冰
中國(guó)人民武裝警察部隊(duì)后勤學(xué)院天津市職業(yè)與環(huán)境危害防制重點(diǎn)實(shí)驗(yàn)室,天津 300309
污染脅迫下的蚯蚓蛋白質(zhì)組學(xué)研究進(jìn)展
李德金,高宏生,張麗,胡驍,楊震,李華英,郭錦,趙化冰*
中國(guó)人民武裝警察部隊(duì)后勤學(xué)院天津市職業(yè)與環(huán)境危害防制重點(diǎn)實(shí)驗(yàn)室,天津300309
摘要:隨著蛋白質(zhì)組學(xué)的發(fā)展和每年有大量環(huán)境污染物進(jìn)入土壤環(huán)境中,污染脅迫模式動(dòng)物的相關(guān)生物標(biāo)志物受到日益關(guān)注。蚯蚓,作為土壤中最大的無脊椎動(dòng)物,是研究和評(píng)價(jià)土壤生態(tài)污染良好的模式動(dòng)物。研究蚯蚓的蛋白質(zhì)組學(xué),對(duì)于尋找環(huán)境生態(tài)污染相關(guān)生物標(biāo)志物和闡明生態(tài)毒理學(xué)機(jī)制有著十分重要的現(xiàn)實(shí)意義。目前已知的污染脅迫下蚯蚓蛋白質(zhì)組學(xué)研究,提供了幾個(gè)特定污染物脅迫蚯蚓的蛋白表達(dá)譜。這些蛋白涉及許多生物學(xué)過程,例如信號(hào)傳導(dǎo)、糖酵解、能量代謝、分子伴侶和轉(zhuǎn)錄調(diào)節(jié),提示了相關(guān)污染物可能的生態(tài)毒理學(xué)機(jī)制,有望成為潛在的生物標(biāo)志物,用于有毒污染物的監(jiān)測(cè),但其特異性需要進(jìn)一步試驗(yàn)的驗(yàn)證。對(duì)蚯蚓受污染脅迫的蛋白質(zhì)組表達(dá)譜及潛在生物標(biāo)志物進(jìn)行簡(jiǎn)要綜述。
關(guān)鍵詞:蚯蚓;蛋白質(zhì)組學(xué);雙向電泳
土壤污染是一個(gè)環(huán)境污染的世界性問題,我國(guó)在這方面也日益突出。2014年調(diào)查結(jié)果顯示,部分地區(qū)土壤污染較重,耕地土壤環(huán)境質(zhì)量堪憂,工礦業(yè)廢棄地土壤環(huán)境問題突出,全國(guó)土壤總的點(diǎn)位超標(biāo)率為16.1%,其中重度污染點(diǎn)位比例為1.1%。另外,種植活動(dòng)中農(nóng)藥和養(yǎng)殖業(yè)中抗生素的使用,也使得土壤生態(tài)環(huán)境受到前所未有的巨大壓力。人們更多地關(guān)注如何快速、靈敏地監(jiān)測(cè)土壤環(huán)境的受污染程度。
在土壤系統(tǒng)中,蚯蚓是最大的無脊椎動(dòng)物,對(duì)分解活動(dòng)、養(yǎng)分礦化和初級(jí)生產(chǎn)有著巨大的影響[1],對(duì)土壤中的污染物也有不同程度的生理反應(yīng),被經(jīng)濟(jì)合作與發(fā)展組織(OECD)和國(guó)際標(biāo)準(zhǔn)化組織(ISO)公認(rèn)為用于研究化學(xué)物對(duì)土壤無脊椎動(dòng)物毒理效應(yīng)的模式動(dòng)物[2- 3],已經(jīng)廣泛應(yīng)用于土壤生態(tài)毒理學(xué)研究[4- 5]。目前,有關(guān)蚯蚓受土壤污染脅迫的生物標(biāo)志物主要包括酶活性、溶酶體中性紅染色保持時(shí)間、金屬硫蛋白、熱休克蛋白、組織和超微結(jié)構(gòu)變化、大分子加合物、DNA 損傷等,但是研究者越來越意識(shí)到,在特定生態(tài)系統(tǒng)內(nèi)進(jìn)行毒性效應(yīng)的調(diào)查研究極大地得益于多重生物標(biāo)志物的應(yīng)用[6]。
近幾年研究表明,以雙向電泳為基礎(chǔ)的蛋白質(zhì)組學(xué)在闡明環(huán)境污染物脅迫蚯蚓產(chǎn)生的毒理學(xué)效應(yīng)和機(jī)制方面有著巨大的潛力[7]。本文就通過蛋白質(zhì)組學(xué)發(fā)現(xiàn)的蚯蚓用于土壤污染潛在生物標(biāo)志物進(jìn)行概述。
1蛋白質(zhì)組學(xué)的定義
蛋白質(zhì)組學(xué),以細(xì)胞、組織或器官內(nèi)全基因組表達(dá)的所有蛋白的集合為研究對(duì)象[8- 9],包括蛋白質(zhì)的基本特征和結(jié)構(gòu)、蛋白質(zhì)表達(dá)、翻譯后修飾和蛋白質(zhì)間的相互作用等[10],能夠?qū)蝹€(gè)蛋白或蛋白質(zhì)組與疾病或中毒相聯(lián)系。與對(duì)照相比,在脅迫條件下產(chǎn)生的蛋白圖譜復(fù)雜程度并不妨礙蛋白表達(dá)具體變化的檢測(cè)和潛在作用方式的闡明[11],之后這些蛋白可以作為某種疾病或毒物暴露的生物標(biāo)志物。目前用于蛋白質(zhì)組學(xué)研究的技術(shù)體系, 包括以雙向電泳和/或色譜為主的蛋白質(zhì)分離技術(shù)和以質(zhì)譜分析為主的蛋白質(zhì)鑒定技術(shù)[12]。有關(guān)環(huán)境領(lǐng)域應(yīng)用蛋白質(zhì)組學(xué)的文獻(xiàn)數(shù)量日益增多,如今已涉及的范圍從微生物、植物到無脊椎動(dòng)物(蠕蟲、昆蟲和蛤)、脊椎動(dòng)物(淡水魚類和深海魚類)[13]。
2不同污染物脅迫下蚯蚓的蛋白質(zhì)組學(xué)研究
Wang等人,在鎘(Cd)污染脅迫蚯蚓的研究中發(fā)現(xiàn)143個(gè)蛋白差異點(diǎn),其中至少在一個(gè)時(shí)間點(diǎn)上有28個(gè)蛋白點(diǎn)上調(diào)和28個(gè)蛋白點(diǎn)下調(diào),成功鑒定出51種蛋白[14];在大腸桿菌(EscherichiacoliO157:H7)污染脅迫蚯蚓的研究中發(fā)現(xiàn)124個(gè)蛋白差異點(diǎn),其中至少在一個(gè)時(shí)間點(diǎn)上有11個(gè)蛋白點(diǎn)上調(diào)和41個(gè)蛋白點(diǎn)下調(diào),成功鑒定出42種蛋白[15]。Wu等人在菲(Phenanthrene, Phe)污染脅迫蚯蚓的研究中發(fā)現(xiàn)81個(gè)蛋白差異點(diǎn),其中有36個(gè)蛋白點(diǎn)上調(diào)和45個(gè)蛋白點(diǎn)下調(diào),成功鑒定出30種蛋白[7]。Ji等人在四溴聯(lián)苯醚(2, 2′, 4, 4′-tetrabromodiphenyl ether, BDE 47)污染脅迫蚯蚓的研究中發(fā)現(xiàn)28個(gè)蛋白差異點(diǎn),其中有10個(gè)蛋白點(diǎn)上調(diào)和18個(gè)蛋白點(diǎn)下調(diào),成功鑒定出24種蛋白[16]。吳石金等人在鄰苯二甲酸二甲酯(Dimethylphthalate, DMP)污染脅迫蚯蚓的研究中發(fā)現(xiàn)140個(gè)蛋白差異點(diǎn),成功鑒定5種蛋白[17]。這些鑒定出的蛋白主要分為五類(表1):代謝功能、應(yīng)激功能、防御功能、轉(zhuǎn)錄功能、翻譯功能,預(yù)測(cè)類別和假定類別因?yàn)榇蠖喙δ芊诸惒磺?,故不在本文討論范圍之?nèi)。
表1 不同污染物脅迫差異蛋白的質(zhì)譜鑒定結(jié)果
2.1代謝方面
文獻(xiàn)中共鑒定出41種蛋白,涉及糖酵解、三羧酸循環(huán)、蛋白質(zhì)合成與分解等生物學(xué)過程,其中至少有4種污染物脅迫研究中共同鑒定出的蛋白有:ATP合成β亞基(ATP synthase β subunit)、胍乙基磷酸絲氨酸激酶(Lombricine kinase)、纖溶蛋白酶(Fibrinolytic protease)。ATP合成酶是一種利用跨膜質(zhì)子泵催化ADP與磷酸反應(yīng)生成ATP的蛋白復(fù)合體,在線粒體中存在的主要是F1-F0型ATP合酶。線粒體是細(xì)胞內(nèi)供能物質(zhì)氧化和產(chǎn)生ATP的場(chǎng)所,其功能紊亂可能是導(dǎo)致修復(fù)病人肌肉糖代謝受損的關(guān)鍵因素[18]。胍乙基磷酸絲氨酸激酶,在動(dòng)物體內(nèi)能量產(chǎn)生和利用的耦合過程中起關(guān)鍵作用[19]。兩者表達(dá)量發(fā)生顯著變化表明,蚯蚓在受污染脅迫時(shí),能量需求變化較為顯著,運(yùn)動(dòng)系統(tǒng)可能發(fā)生障礙。纖溶酶能夠溶解血栓,是一種重要的化療藥物[20],污染脅迫后以下調(diào)為主,表明其在防御應(yīng)答溶解纖維蛋白凝塊時(shí)起重要作用。
2.2應(yīng)激方面
文獻(xiàn)中共鑒定出14種蛋白,涉及氧化還原、電子轉(zhuǎn)移、氧氣運(yùn)輸?shù)壬飳W(xué)過程,其中至少有3種污染物脅迫研究中共同鑒定出的蛋白有,醛脫氫同工酶A (Aldehyde dehydrogenase isoform A)、胞外球蛋白(Extracellular globin- 4)、類凝溶膠蛋白(Gelsolin-like proteins)、錳超氧化物歧化酶(Manganese superoxide dismutase, MnSOD)。老鼠在多種環(huán)境脅迫條件下體內(nèi)可誘導(dǎo)產(chǎn)生醛脫氫酶[21]。Willuhn等人發(fā)現(xiàn),基因Ebaldh可以編碼一種假定的醛脫氫酶,其表達(dá)能被鎘誘導(dǎo)增強(qiáng)[22]。這證明了線粒體中醛脫氫酶的上調(diào)可能是蚯蚓應(yīng)對(duì)污染物脅迫的有效解毒機(jī)制。胞外球蛋白與氧運(yùn)輸有關(guān),脅迫下以下調(diào)為主。有研究稱,血紅蛋白的功能可能包括抗氧化防御作用[23]。凝溶膠蛋白在血管平滑肌收縮功能和運(yùn)動(dòng)能力發(fā)生改變時(shí)很可能起重要作用,其表達(dá)量的增加可能是蚯蚓抵御和消除污染物的機(jī)制。活性氧,是有氧代謝或氧化劑暴露后的副產(chǎn)物,當(dāng)他們損傷核酸、蛋白和膜脂時(shí),具有毒性或致命性。為了對(duì)抗這些具有潛在損傷特性的活性氧,需氧生物已經(jīng)進(jìn)化出一套由抗氧化酶系統(tǒng)(SODs)組成的酶防御體系[24]。錳超氧化物歧化酶就是其中之一,它能夠在細(xì)胞溶質(zhì)內(nèi)合成并修飾后進(jìn)入線粒體基質(zhì)[25]。
2.3防御方面
文獻(xiàn)中共鑒定出4種蛋白,主要作用是抵抗細(xì)菌,其中至少有3種污染物脅迫研究中共同鑒定出的蛋白有,體腔細(xì)胞溶解因子(Coelomic cytolytic factor, CCF),胞溶素(Lysenin),胞溶素相關(guān)蛋白2(Lysenin-related protein 2, LRP- 2)。Engelmann等人已證明蚯蚓的自然免疫依賴于體腔細(xì)胞合成和分泌的體液抗菌分子(CCF, Lysenin, and Lumbricin I等)[26]。在環(huán)節(jié)動(dòng)物體內(nèi),體腔細(xì)胞溶解因子是一種類似于哺乳動(dòng)物腫瘤壞死因子的防御分子,其在免疫應(yīng)答調(diào)節(jié)中起重要作用[27- 28],細(xì)菌刺激可引起其生物合成量上調(diào)[27- 29]。胞溶素是一種存在于赤子愛勝蚓體液中的造孔毒素,由包括胞溶素相關(guān)蛋白1 (LRP- 1, lysenin 2)和胞溶素相關(guān)蛋白2 (LRP- 2, lysenin 3)在內(nèi)的蛋白家族構(gòu)成[30]。Yamaji等人研究發(fā)現(xiàn),能夠特異性的與鞘磷脂結(jié)合并引起紅細(xì)胞溶解[31- 33],已被證明可以引起大鼠血管平滑肌的收縮[34]。另外,胞溶素相關(guān)蛋白2可以清除線粒體內(nèi)具有潛在毒性的超氧自由基[35]。
2.4轉(zhuǎn)錄和翻譯
轉(zhuǎn)錄方面,文獻(xiàn)中共鑒定出3種蛋白,其中至少有3種污染物脅迫研究中共同鑒定出的蛋白相關(guān)基因有Orthodenticle (Otd)。Otd是無脊椎動(dòng)物體內(nèi)調(diào)節(jié)激活轉(zhuǎn)錄相關(guān)的成形基因[36- 38],也是果蠅嗅覺突觸神經(jīng)元和局部中間神經(jīng)元發(fā)育所必需的[39]。翻譯方面,文獻(xiàn)中共鑒定出2種蛋白,其中至少有兩種污染物脅迫研究中共同鑒定出的蛋白有40s核糖體蛋白SA型(40S ribosomal protein SA)和鳥嘌呤核苷酸結(jié)合蛋白β亞基(Guanine nucleotide-binding protein subunit beta)。前者屬于核糖體家族,主要作用是把RNA和蛋白質(zhì)組裝成核糖體亞小單位,而后者主要參與信號(hào)傳導(dǎo)活動(dòng)[40- 41]。
3存在問題和展望
蛋白質(zhì)組學(xué)以組織、器官或生物體所包含的全部蛋白質(zhì)為出發(fā)點(diǎn),考察外源化學(xué)毒物對(duì)生物體所產(chǎn)生的毒性效應(yīng)及其導(dǎo)致的生物體內(nèi)代謝通路的改變,可以更加全面發(fā)現(xiàn)生物體內(nèi)蛋白水平細(xì)微的變化及其變化之間的聯(lián)系,為研究者分析污染物的毒性機(jī)制和生物體的防御機(jī)制提供了基礎(chǔ)。目前已知的污染脅迫下蚯蚓蛋白質(zhì)組學(xué)研究,提供了幾個(gè)特定污染物脅迫蚯蚓的蛋白表達(dá)譜。這些蛋白涉及許多生物學(xué)過程,例如信號(hào)傳導(dǎo)、糖酵解、能量代謝、分子伴侶和轉(zhuǎn)錄調(diào)節(jié),提示了相關(guān)污染物可能的生態(tài)毒理學(xué)機(jī)制,有望成為潛在的生物標(biāo)志物,用于污染物毒性監(jiān)測(cè),但其特異性需要進(jìn)一步試驗(yàn)的驗(yàn)證。
雙向電泳技術(shù)分離蛋白的范圍較窄,實(shí)驗(yàn)操作的主觀性強(qiáng),難以保證實(shí)驗(yàn)的重復(fù)性。而目前分離范圍更加廣泛、通量更高的二維液相串聯(lián)質(zhì)譜技術(shù)與包括iTRAQ (Isobaric Tags For Relative And Absolute Quantitation)技術(shù)在內(nèi)的同位素標(biāo)記方法的結(jié)合,極大地提高了蛋白質(zhì)的檢測(cè)量,進(jìn)而找到更多的潛在生物標(biāo)志物。蛋白質(zhì)組學(xué)研究不僅依賴高通量的蛋白分離技術(shù)和質(zhì)譜鑒定手段,還需要蛋白質(zhì)組和基因組數(shù)據(jù)庫的支持。蚯蚓基因組沒有進(jìn)行完整的測(cè)序,許多鑒定出的蛋白質(zhì)功能也只能依靠與其基因表達(dá)序列高度相似和同源性較高的基因轉(zhuǎn)錄翻譯的蛋白功能進(jìn)行注釋。因此,質(zhì)譜所鑒定出的蛋白質(zhì)序列或經(jīng)過測(cè)序所得DNA序列的功能一般是不能在相關(guān)數(shù)據(jù)庫中準(zhǔn)確地匹配。
總之,蛋白質(zhì)組學(xué)在環(huán)境污染生態(tài)領(lǐng)域,尤其是污染物脅迫蚯蚓的研究中,有著極為廣闊的應(yīng)用前景,如能對(duì)蚯蚓的全基因組測(cè)序,將對(duì)后續(xù)蛋白質(zhì)組學(xué)研究及土壤生態(tài)污染診斷和污染修復(fù)也會(huì)有很大的幫助。
參考文獻(xiàn)(References):
[1]Coleman D C, Ingham E R. Terrestrial nutrient cycles. Biogeochemistry, 1988, 5(1): 3- 5.
[2]OECD. OECD Guidelines for the Testing of Chemicals, Section 2: Test No. 207: earthworm, acute toxicity tests. Organization for Economic Cooperation and Development, Paris, France. 1984.
[3]ISO. ISO 11268- 1 Soil quality-effects of pollutants on earthworms (Eiseniafetida)-Part 1: Determination of acute toxicity using artificial soil substrate. 1993.
[4]Bundy J G, Keun H C, Sidhu J K, Spurgeon D J, Svendsen C, Kille P, Morgan A J. Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environmental Science and Technology, 2007, 41(12): 4458- 4464.
[5]Bundy J G, Lenz E M, Bailey N J, Gavaghan C L, Svendsen C, Spurgeon D, Hankard P K, Osborn D, Weeks J M, Trauger S A, Speir P, Sanders I, Lindon J C, Nicholson J K, Tang H R. Metabonomic assessment of toxicity of 4-fluoroaniline, 3, 5-difluoroaniline and 2-fluoro- 4-methylaniline to the earthwormEiseniaveneta(Rosa): identification of new endogenous biomarkers. Environmental Toxicology and Chemistry, 2002, 21(9): 1966- 1972.
[6]Depledge M H, Galloway T S. Healthy animals, healthy ecosystems. Frontiers in Ecology and the Environment, 2005, 3(5): 251- 258.
[7]Wu S J, Xu X, Zhao S L, Shen F C, Chen J M. Evaluation of phenanthrene toxicity on earthworm (Eiseniafetida): an ecotoxicoproteomics approach. Chemosphere, 2013, 93(6): 963- 971.
[8]Wilkins M R, Sanchez J C, Williams K L, Hochstrasser D F. Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis, 1996, 17(5): 830- 838.
[9]Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R, Duncan M W, Harris R, Willimams K L, Humphery-Smith I. Progress with gene-product mapping of theMollicutes:Mycoplasmagenitalium. Electrophoresis, 1995, 16(7): 1090- 1094.
[10]Banks R E, Dunn M J, Hochstrasser D F, Sanchez J C, Blackstock W, Pappin D J, Selby P J. Proteomics: new perspectives, new biomedical opportunities. Lancet, 2000, 356(9243): 1749- 1756.
[11]Blackstock W P, Weir M P. Proteomics: quantitative and physical mapping of cellular proteins. Trends in Biotechnology, 1999, 17(3): 121- 127.
[12]Ashton P D, Curwen R S, Wilson R A. Linking proteome and genome: how to identify parasite proteins. Trends in Parasitology, 2001, 17(4): 198- 202.
[13]Nesatyy V J, Suter M J F. Proteomics for the Analysis of Environmental Stress Responses in Organisms. Environmental Science and Technology, 2007, 41(20): 6891- 6900.
[14]Wang X, Chang L, Sun Z J, Zhang Y F, Yao L. Analysis of earthwormEiseniafetidaproteomes during cadmium exposure: an ecotoxicoproteomics approach. Proteomics, 2010, 10(24): 4476- 4490.
[15]Wang X, Chang L, Sun Z J, Zhang Y F. Comparative proteomic analysis of differentially expressed proteins in the earthwormEiseniafetidaduringEscherichiacoliO157: H7 stress. Journal of Proteome Research, 2010, 9(12): 6547- 6560.
[16]Ji C L, Wu H F, Wei L, Zhao J M, Lu H J, Yu J B. Proteomic and metabolomic analysis of earthwormEiseniafetidaexposed to different concentrations of 2, 2′, 4, 4′-tetrabromodiphenyl ether. Journal of Proteomics, 2013, 91: 405- 416.
[17]吳石金, 沈飛超, 胡航. 蛋白質(zhì)組學(xué)技術(shù)篩選與鑒定DMP脅迫下蚯蚓表皮組織的差異蛋白. 浙江工業(yè)大學(xué)學(xué)報(bào), 2014, 42(1): 1- 5.
[18]H?jlund K, Wrzesinski K, Larsen P M, Fey S J, Roepstorff P, Handberg A, Dela F, Vinten J, McCormack J G, Reynet C, Beck-Nielsen H. Proteome analysis reveals phosphorylation of ATP synthase β-subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. Journal of Biological Chemistry, 2003, 278(12): 10436- 10442.
[19]Ellington W R. Evolution and physiological roles of phosphagen systems. Annual Review of Physiology, 2001, 63: 289- 325.
[20]Park Y, Ryu E, Kim H, Jeong J, Kim J, Shim J, Jeon S, Jo Y, Kim W, Min B. Characterization of antithrombotic activity of lumbrokinase-immobilized polyurethane valves in the total artificial heart. Artificial Organs, 1999, 23(2): 210- 214.
[21]T?rr?nen R, Korkalainen M, K?renlampi S O. Induction of class 3 aldehyde dehydrogenase in the mouse hepatoma cell line HEPA- 1 by various chemicals. Chemico-Biological Interactions, 1992, 83(2): 107- 119.
[22]Willuhn J, Schmitt-Wrede H P, Otto A, Wunderlich F. Cadmium-detoxification in the earthwormEnchytraeus: specific expression of a putative aldehyde dehydrogenase. Biochemical and Biophysical Research Communications, 1996, 226(1): 128- 134.
[23]Nishi H, Inagi R, Kato H, Tanemoto M, Kojima I, Son D, Fujita T, Nangaku M. Hemoglobin is expressed by mesangial cells and reduces oxidant stress. Journal of the American Society of Nephrology, 2008, 19(8): 1500- 1508.
[24]Dash B, Metz R, Huebner H J, Porter W, Phillips T D. Molecular characterization of two superoxide dismutases fromHydravulgaris. Gene, 2007, 387(1/2): 93- 108.
[25]Halliwell B, Gutteridge J, Gutteridge J M C. Free Radicals in Biology and Medicine. England: Oxford University Press, 1999.
[26]P Engelmann, E L Cooper, P Németh. Anticipating innate immunity without a Toll. Molecular Immunology, 2005, 42(8): 931- 942.
[27]K?hlerová P, Beschin A,ilerová M, De Baetselier P, Bilej M. Effect of experimental microbial challenge on the expression of defense molecules inEiseniafoetidaearthworm. Developmental and Comparative Immunology, 2004, 28(7/8): 701- 711.
[28]Zhang X M, Luan W, Jin S J, Xiang J H. A novel tumor necrosis factor ligand superfamily member (CsTL) fromCionasavignyi: molecular identification and expression analysis. Developmental and Comparative Immunology, 2008, 32(11): 1362- 1373.
[29]Liu X L, Sun Z J, Chong W, Sun Z T, He C K. Growth and stress responses of the earthwormEiseniafetidatoEscherichiacoliO157: H7 in an artificial soil. Microbial Pathogenesis, 2009, 46(5): 266- 272.
[30]Kiyokawa E, Makino A, Ishii K, Otsuka N, Yamaji-Hasegawa A, Kobayashi T. Recognition of sphingomyelin by lysenin and lysenin-related proteins. Biochemistry, 2004, 43(30): 9766- 9773.
[31]Yamaji A, Sekizawa Y, Emoto K, Sakuraba H, Inoue K, Kobayashi H, Umeda M. Lysenin, a novel sphingomyelin-specific binding protein. Journal of Biological Chemistry, 1998, 273(9): 5300- 5306.
[32]Kobayashi H, Ohtomi M, Sekizawa Y, Ohta N. Toxicity of coelomic fluid of the earthwormEiseniafoetidato vertebrates but not invertebrates: probable role of sphingomyelin. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2001, 128(3): 401- 411.
[33]Sukumwang N, Umezawa K. Earthworm-derived pore-forming toxin lysenin and screening of its inhibitors. Toxins, 2013, 5(8): 1392- 1401.
[34]Sekizawa Y, Kubo T, Kobayashi H, Nakajima T, Natori S. Molecular cloning of cDNA for lysenin, a novel protein in the earthwormEiseniafoetidathat causes contraction of rat vascular smooth muscle. Gene, 1997, 191(1): 97- 102.
[35]Wong G H, Goeddel D V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science, 1988, 242(4880): 941- 944.
[36]Gao Q, Finkelstein R. Targeting gene expression to the head: theDrosophilaorthodenticlegene is a direct target of thebicoidmorphogen. Development, 1998, 125(21): 4185- 4193.
[37]Schr?der R. The genesorthodenticleandhunchbacksubstitute forbicoidin the beetleTribolium. Nature, 2003, 422(6932): 621- 625.
[38]Lynch J A, Brent A E, Leaf D S, Pultz M A, Desplan C. Localized maternalorthodenticlepatterns anterior and posterior in the long germ waspNasonia. Nature, 2006, 439(7077): 728- 732.
[39]Sen S, Biagini S, Reichert H, VijayRaghavan K.Orthodenticleis required for the development of olfactory projection neurons and local interneurons inDrosophila. Biology Open, 2014, 3(8): 711- 717.
[40]Song D G, Kim Y S, Jung B C, Rhee K J, Pan C H. Parkin induces upregulation of 40S ribosomal protein SA and posttranslational modification of cytokeratins 8 and 18 in human cervical cancer cells. Applied Biochemistry and Biotechnology, 2013, 171(7): 1630- 1638.
[41]Du Y, Meng J Y, Huang Y H, Wu J, Wang B, Ibrahim M M, Tang J W. Guanine nucleotide-binding protein subunit beta- 2-like 1, a new annexin A7 interacting protein. Biochemical and Biophysical Research Communication, 2014, 445(1): 58- 63.
Advances in proteomic studies on earthworms subjected to pollution stress
LI Dejin, GAO Hongsheng, ZHANG Li, HU Xiao, YANG Zhen, LI Huaying, GUO Jin, ZHAO Huabing*
TianjinKeyLaboratoryforPreventionandControlofOccupationalandEnvironmentalHazard,LogisticUniversityofChinesePeopleArmedPoliceForce,Tianjin300309,China
Abstract:With the advancement in proteomics research and yearly introduction of numerous environmental contaminants into the soil, development of biomarkers to detect contaminant-responsive proteins in model organisms is receiving increasing attention. Earthworms are the largest group of invertebrates in soil; they are a good model system for evaluating ecological soil pollution. Therefore, detecting contaminant-responsive biomarkers and elucidating the ecotoxicological mechanism in earthworms by using proteomics is of important practical significance. The protein expression profiles of earthworms subjected to several specific pollutants have been investigated. These proteins are associated with many biological processes such as signal transduction, glycolysis, energy metabolism, and chaperone and transcriptional regulation and can be used to determine the possible ecotoxicological mechanisms of relevant contaminants and as potential biomarkers for monitoring toxic contaminants. However, their specificity needs to be determined. In this study, we provided a brief overview of the protein expression profiles and identified potential biomarkers in earthworms subjected to pollution stress.
Key Words:earthworm; proteomics; two-dimensional electrophoresis
DOI:10.5846/stxb201408251676
*通訊作者Corresponding author.E-mail: 13820664530@163.com
收稿日期:2014- 08- 25;
修訂日期:2015- 07- 10
基金項(xiàng)目:國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(21037002);天津市應(yīng)用基礎(chǔ)與前沿研究計(jì)劃重點(diǎn)項(xiàng)目“萘降解過程中兒茶酚間位和鄰位途徑協(xié)同作用機(jī)制研究”;武警后勤學(xué)院創(chuàng)新團(tuán)隊(duì)項(xiàng)目(WHDT201303)
李德金,高宏生,張麗,胡驍,楊震,李華英,郭錦,趙化冰.污染脅迫下的蚯蚓蛋白質(zhì)組學(xué)研究進(jìn)展.生態(tài)學(xué)報(bào),2016,36(1):44- 50.
Li D J, Gao H S, Zhang L, Hu X, Yang Z, Li H Y, Guo J, Zhao H B.Advances in proteomic studies on earthworms subjected to pollution stress.Acta Ecologica Sinica,2016,36(1):44- 50.