盛 冉 孫志高 黃巧娟郝靜梅 方 明 于奉生
(1. 西南大學柑橘研究所,重慶 400712;2. 廣東省食品藥品職業(yè)技術(shù)學校,廣東 廣州 510663)
β-隱黃素的生理活性及其機理研究進展
盛 冉1孫志高1黃巧娟2郝靜梅1方 明1于奉生1
(1. 西南大學柑橘研究所,重慶 400712;2. 廣東省食品藥品職業(yè)技術(shù)學校,廣東 廣州 510663)
β-隱黃素是由多個異戊烯單元構(gòu)成的一種復合物,屬于氧化類胡蘿卜素的一種,廣泛存在于柿子、柑橘等植物中,亦可由微生物發(fā)酵產(chǎn)生。文章就β-隱黃素的吸收、生理活性及其機理進行綜述,旨在為提高β-隱黃素的研發(fā)及臨床應(yīng)用提供一定參考。
β-隱黃素;吸收;生理活性;機理
β-隱黃素(β-cryptoxanthin)又稱β-隱黃質(zhì)、3-羥基-β-胡蘿卜素,是類胡蘿卜素的一種,分子結(jié)構(gòu)式見圖1[1]。β-隱黃素廣泛存在于柑橘、柿子、南瓜、紅辣椒等水果蔬菜中[1-3],也可由法夫酵母、黃桿菌屬發(fā)酵產(chǎn)生。近年來,由于β-隱黃素的廣泛應(yīng)用,其生理活性備受關(guān)注。
有關(guān)β-隱黃素的研究以國外居多,尤其是日本,中國國內(nèi)研究較少。研究[4-8]表明因β-隱黃素結(jié)構(gòu)中存在親水性羥基,且更易被參與類胡蘿卜素吸收的B類Ⅰ型清道夫受體酶(scavenger receptor class B type 1,SR-B1)攜帶,這使得β-隱黃素極易被吸收。Betty J. Burri等[9]測定了試驗者對α-胡蘿卜素、β-胡蘿卜素、β-隱黃素的膳食攝入量及其在血液中的濃度,結(jié)果發(fā)現(xiàn)膳食攝入后,與血液中β-胡蘿卜素相比,α-胡蘿卜素和β-隱黃素的濃度分別增加了53%和725%,表明β-隱黃素的吸收優(yōu)于β-胡蘿卜素和α-胡蘿卜素,這也為β-隱黃素生理活性的發(fā)揮奠定了良好的基礎(chǔ)。目前,對β-隱黃素生理活性的研究主要集中在其轉(zhuǎn)化為維生素A、抗癌、抗氧化、預(yù)防骨質(zhì)疏松、預(yù)防動脈粥樣硬化等方面,本文擬就其吸收、生理活性及機理等進行綜述。
圖1 β-隱黃素結(jié)構(gòu)式
β-隱黃素作為人體血清中主要類胡蘿卜素之一,對它如何分散于組織并在細胞中發(fā)揮生理功效進行較深入研究,結(jié)果[6,10-13]表明,攝入β-隱黃素后,主要通過3種途徑轉(zhuǎn)化,見圖2。
轉(zhuǎn)化為乳糜微粒進入血液中的β-隱黃素又可進入不同細胞中發(fā)揮作用,其主要通過兩種方式。① 低生理濃度時,β-隱黃素由SR-B1和CD36(cluster determinant 36,CD36)酶協(xié)助的主動運輸[4-6]。同時因SR-B1和CD36均是B類清道夫受體酶,存在于多種組織中,控制著類胡蘿卜素進出細胞,也在上皮細胞吸收膽固醇、脂質(zhì)、VE、VD等脂類物質(zhì)時發(fā)揮作用[6]。Patrick Borel等[5]在Caco-2 TC-7細胞培養(yǎng)基中添加SR-B1的抑制劑,顯著降低了細胞對β-隱黃素的吸收率,在HEK細胞培養(yǎng)基添加CD36的抑制劑SSO,也顯著抑制了細胞對β-隱黃素的吸收率,這表明SR-B1和CD36在細胞吸收β-隱黃素時發(fā)揮著不可或缺的作用。② 高生理濃度時,β-隱黃素以協(xié)助擴散的方式進入細胞[6,8,13]。
圖2 β-隱黃素在體內(nèi)的轉(zhuǎn)化途徑
2.1 轉(zhuǎn)化為維生素A
維生素A(vitmin A,VA),包括視黃酸、視黃醇和視黃醛,它與人體視力、皮膚、骨骼、毛發(fā)等健康息息相關(guān)[14]。β-隱黃素作為VA前體類胡蘿卜素,1分子β-隱黃素可轉(zhuǎn)化為1分子的視黃醇,雖然1分子β-胡蘿卜素可轉(zhuǎn)化為2分子的視黃醇,但β-隱黃素比β-胡蘿卜素吸收利用率高[15],因此β-隱黃素是機體良好的VA來源。目前對β-隱黃素轉(zhuǎn)化為視黃醇的機理研究極少,一般認為β-隱黃素轉(zhuǎn)化為VA的機理與β-胡蘿卜素相同,如表1所示,β-隱黃素主要為第3種方式。
表1β-隱黃素轉(zhuǎn)化為維生素A的機理?[7,11,16-20]
Table 1 The mechanism of conversion of beta-cryptoxanthin to vitamin A
轉(zhuǎn)化方式酶切割方式產(chǎn)物1BCO115,15'雙鍵處對稱切割視黃醛和3-羥基視黃醛2BCO29',10'鍵處不對稱切割視黃醛和β-10'胡蘿卜醛3BCO2+BCO1—先轉(zhuǎn)化為阿樸胡蘿卜醛(由BCO2),再轉(zhuǎn)化為視黃醛(由BCO1)
? BCO1:VA前體類胡蘿卜素轉(zhuǎn)化必不可少的酶;BCO2:既可切割VA前體也可切割非VA前體類胡蘿卜素。
Jaume Amengual等[11]用敲除BCO1(BCO1-/-)、BCO2(BCO2-/-)、雙敲除BCO1、BCO2(ko/ko)基因和野生型(WT)6周大的雌鼠試驗,以β-胡蘿卜素喂養(yǎng)10周后收集其血液及組織,首先用HPLC分析血清、肝、肺中β-胡蘿卜素的積累,發(fā)現(xiàn)BCO1-/-和ko/ko鼠在血清、肝部、肺部均有β-胡蘿卜素積累,而BCO2-/-和WT鼠血清、組織中總胡蘿卜素比BCO1-/-和ko/ko鼠低100倍,因此推斷BCO2不影響總胡蘿卜素代謝,BCO1酶在β-胡蘿卜素轉(zhuǎn)化為VA過程必不可少;其次采用LC—MS分析在BCO2-/-和ko/ko鼠未檢測到β-10′胡蘿卜素,繼而再用酶法分析研究發(fā)現(xiàn)BCO1能將β-10′胡蘿卜素轉(zhuǎn)化為視黃醛,這說明BCO2酶可切割β-胡蘿卜素為β-10′胡蘿卜素,并且可由BCO1酶繼續(xù)將β-10′胡蘿卜素轉(zhuǎn)化為視黃醛。Jaume Amengual等[11]還對12周的(BCO1-/-)、BCO2-/-、WT雌鼠每天連續(xù)注射一定劑量的β-隱黃素,3周后測定肝部β-隱黃素含量,發(fā)現(xiàn)只有BCO2-/-鼠肝部積累了β-隱黃素,表明β-隱黃素主要使用第3種轉(zhuǎn)化機理,即先由BCO2酶切割再由BCO1酶切割和轉(zhuǎn)化。Annika Lindqvist等[17]以β-胡蘿卜素、β-隱黃素、玉米黃素和番茄紅素為底物測定人體BCO1酶動力學參數(shù),結(jié)果發(fā)現(xiàn)β-胡蘿卜素和β-隱黃素可作為BCO1酶底物,而玉米黃素和番茄紅素卻無法作為底物,這也證明BCO1只作用于VA前體類胡蘿卜素,可轉(zhuǎn)化β-隱黃素為VA。
2.2 抗腫瘤及抗癌
β-隱黃素的抗癌功效具有廣譜性,其對肺癌、膀胱癌、胃癌、結(jié)腸癌等均具有抑制作用,β-隱黃素對不同癌癥的影響見表2。
β-隱黃素的抗癌機制主要是抗炎癥、抑制細胞周期與誘導細胞凋亡、提高RARβ(retinoic acidβ-receptor,RARβ) mRNA的表達,其機理分析見表3。
2.3 預(yù)防骨質(zhì)疏松
2.3.1 骨質(zhì)疏松的形成 骨質(zhì)疏松是以低骨量和骨組織微結(jié)構(gòu)破壞導致骨質(zhì)脆性增加的骨代謝性疾病。各年齡段均可發(fā)生,但老者和絕經(jīng)后的婦女居多,骨質(zhì)疏松的形成過程見圖3[31-32]。
2.3.2β-隱黃素預(yù)防骨質(zhì)疏松的機理 據(jù)研究β-隱黃素對骨質(zhì)疏松的調(diào)節(jié)機理主要有2種:① 促進成骨細胞增殖與礦物質(zhì)化,通過增加成骨細胞中鈣和堿性磷酸酶含量,及促進此過程相關(guān)蛋白如IGF-1(insulin-like growth factor 1)、TGF-β1(transforming growth factorβ1)和Runx2(runtrelated transcription factor 2)等基因的表達[32-34];② 誘導破骨細胞凋亡與抑制其重吸收,通過抑制NF-κB途徑、活化capase-3誘導凋亡細胞的凋亡[32-33]。β-隱黃素對骨細胞的影響詳見表4。
圖3 骨質(zhì)疏松的形成過程
癌癥模型β-隱黃素的影響參考文獻肺癌 A/J鼠;A549細胞;BE-AS-2B細胞;白釉恢復肺部SIRT1蛋白酶水平,降低肺部腫瘤多樣性、體積和肺氣腫,增加p53、RAR-β基因表達,降低IL-6、AKT磷酸化、NF-κB、AP-1基因表達,抑制細胞周期蛋白的表達[21~23]膀胱癌 ICR鼠降低膀胱癌的多樣性、發(fā)生率及細胞周期蛋白cyclin-D1陽性比率[24]神經(jīng)瘤 神經(jīng)母瘤細胞2a誘導神經(jīng)突起的生長,提高胱門蛋白酶-3活性而促使腫瘤細胞加速凋亡,抑制與凋亡及神經(jīng)系統(tǒng)失調(diào)相關(guān)的拓撲異構(gòu)酶Ⅱ活性[25]胃癌 人胃癌細胞BGC-823抑制胃癌細胞的增殖與遷移,降低其S相細胞的比例,改變G1/G0、G2/M相細胞比例,提高RARmRAN的表達[26]結(jié)腸癌 結(jié)腸癌細胞Caco-2降低結(jié)腸癌細胞活力,加速細胞周期進程,sub-G1細胞比例尤其多[27]白血病 人白血病細胞K562抑制白血病細胞增殖,促使其核裂解和染色質(zhì)凝聚而凋亡[28]睪丸支持細胞瘤 鼠睪丸支持細胞提升細胞活力,減少睪丸支持細胞凋亡,降低炎癥細胞中TNF-α、IL-10、IL-6和IL1β等基因的表達,抑制脂多糖誘導的生精過程中AR、HFS2、INHβB、ABP相關(guān)基因的表達[29]
表3 β-隱黃素的抗癌機理
表4 β-隱黃素對骨細胞的影響
2.4 抗氧化
據(jù)研究活性氧引發(fā)的自由基會使人體內(nèi)脂質(zhì)和蛋白質(zhì)發(fā)生鏈式氧化反應(yīng),且威脅細胞內(nèi)DNA的完整性和其正常功能,進而導致衰老、癌癥等疾病的發(fā)生[36]。β-隱黃素的抗氧化機理主要有3種:① 清除氧自由基;② 猝滅單線態(tài)氧;③ 保護和修復DNA的損傷。最近研究[38-40]還發(fā)現(xiàn)β-隱黃素在低濃度即接近人體正常血液β-隱黃素濃度時才具有抗氧化功能,而高濃度時卻不具有抗氧化功能。
Chun Liu等[21]用0.0,7.5,37.5 μg/(kg·d)β-隱黃素劑量口服飼喂白鼬3個月,同時每天將其置于吸煙環(huán)境中4次(每次30 min;相當于人每天吸1.5支煙),在持續(xù)3個月后測定其血清β-隱黃素、肺部β-隱黃素與8-OHd Guo(與氧化相關(guān))的含量,發(fā)現(xiàn)血清和肺部β-隱黃素及8-OHd Guo的含量均增加,飼喂β-隱黃素組中8-OHd Guo含量的增幅降低,尤其是在高β-隱黃素時其增幅很小,表明β-隱黃素具有降低氧化損傷的作用。Irwandi Jaswir等[39]研究表明,β-胡蘿卜素(>2.6 nmol/mg蛋白 )和蝦青素(>1.8 nmol/mg 蛋白)能顯著抑制脂質(zhì)過氧化,在高濃度時β-隱黃素和葉黃素不具有預(yù)防脂質(zhì)過氧化的作用,但它們也不引起促氧化效應(yīng)。Yolanda Lorenzo等[40]將HeLa和Caco-2細胞用H2O2在冰上處理5 min誘導DNA鏈斷裂,發(fā)現(xiàn)在培養(yǎng)基中添加β-隱黃素后可顯著降低細胞DNA鏈的斷裂。通過測定損傷的兩種細胞在1,4 μmolβ-隱黃素添加量下,細胞重新接合斷裂DNA鏈的t1/2(理論時間的一半)及損傷修復的t1/2,結(jié)果發(fā)現(xiàn)無β-隱黃素存在時兩種細胞接合斷裂DNAt1/2分別為10,18 min,損傷修復的t1/2分別為135,260 min;在添加1,4 μmolβ-隱黃素后,接合斷裂DNAt1/2:HeLa細胞降到4 min,Caco-2細胞分別降至10,4 min,損傷修復t1/2:HeLa細胞分別降為80,65 min,Caco-2細胞分別降為155,125 min,這表明在接近血清β-隱黃素的低濃度(1或4 μmol)下HeLa和Caco-2細胞不僅自身不引起DNA損傷,還使其免受H2O2或可見光引起的細胞DNA損傷,且對損傷也有修復作用。
2.5 抗動脈粥樣硬化
心血管疾病是發(fā)達國家發(fā)病率和死亡率最高的疾病之一,尤其是與動脈粥樣硬化相關(guān)的心血管疾病[41]。研究認為形成動脈粥樣硬化有2種原因:① 開始于動脈壁上低密度脂蛋白(low density lipid protein,LDL)的氧化損傷,即動脈內(nèi)皮下的氧化低密度脂蛋白刺激了單核細胞的募集與分化,并形成巨噬細胞,從而導致泡沫細胞的形成且增加了動脈壁的厚度[39]。② 炎癥反應(yīng),即心血管危險因子和內(nèi)皮損傷出現(xiàn)后的血管慢性炎癥反應(yīng),它導致斑塊的形成,這也是動脈粥樣硬化發(fā)展的起點。研究[42]證實β-隱黃素具有抗炎癥和抗氧化的功效,因此可改善動脈粥樣硬化的癥狀和發(fā)生幾率。
大山夏奈[43-44]試驗研究證實了β-隱黃素可改善脂質(zhì)代謝對人體的影響,即以健康女學生作為試驗對象,連續(xù)服用β-隱黃素7 d后,血清中總膽固醇和LDL顯著降低;再以肥胖女性作為試驗對象,連續(xù)21 d飲用含β-隱黃素的水,結(jié)果發(fā)現(xiàn)血液中的膽固醇和LDL顯著降低,呈下降趨勢;還以預(yù)備役部隊官兵作為試驗對象,連續(xù)8 d攝入含β-隱黃素的水后其血液中總膽固醇顯著減少。James H. Dwyer等[45]選取573個沒有心血管疾病癥狀的中年職業(yè)者,再以年齡、性別、吸煙狀況為標準改變研究對象,測定其頸動脈內(nèi)中膜厚度、血清中玉米黃素、β-隱黃素、葉黃素、α-胡蘿卜素的含量,結(jié)果發(fā)現(xiàn)當血清中葉黃素、玉米黃素、β-隱黃素和α-胡蘿卜素每增加1 μmol/L時,頸動脈中內(nèi)膜厚度在每18個月后分別減少3.2,4.7,3.4,4.2 μm,表明這4種類胡蘿卜素可預(yù)防早期動脈粥樣硬化。
2.6 其它生理功效
β-隱黃素除具有上述功效外,還具有抗衰老、減少蛋白質(zhì)損失、預(yù)防暈車、降低患關(guān)節(jié)炎風險、改善急性腎炎、促進免疫等功效。Pattison等[46]研究表明β-隱黃素能降低炎癥的風險,對類風濕性關(guān)節(jié)炎具有良好的預(yù)防效果,其通過對88名關(guān)節(jié)炎病患者和176名健康者做對比試驗,發(fā)現(xiàn)每天攝入玉米黃素后關(guān)節(jié)炎患者減少20%,每天攝入β-隱黃素后其關(guān)節(jié)炎患者減少40%。Unno Keiko[47]使用小鼠研究幾種功能性成分對衰老的影響,發(fā)現(xiàn)兒茶素、β-隱黃素能有效阻止大腦萎縮和認知紊亂,有效預(yù)防大腦衰老。Eichinger等[48]發(fā)明了一種方法,可將一定量β-隱黃素用于人體或動物中,以促進人和動物體內(nèi)蛋白質(zhì)的形成,且阻止或預(yù)防體內(nèi)蛋白質(zhì)的丟失。向井等[49]研究發(fā)現(xiàn),β-隱黃素能預(yù)防及緩解機車綜合癥(locomotive syndrome)的發(fā)生。 Hikita Masaaki等[50]用急性腎炎小鼠模型研究發(fā)現(xiàn),β-隱黃素能很好地改善急性腎炎癥狀。Kosuke Nishi等[51]采用β-隱黃素處理人雜交瘤細胞HB4C5和小鼠原發(fā)性淋巴細胞做體外實驗、用小鼠做體內(nèi)試驗,結(jié)果發(fā)現(xiàn)Ig M、Ig A、Ig G含量均增加,β-隱黃素能促進人體免疫,具有保護人類健康、預(yù)防疾病發(fā)生的能力。
綜上所述,β-隱黃素主要來源于柑橘、柿子等高等植物。β-隱黃素攝入后能被人體良好吸收、轉(zhuǎn)化,且預(yù)防和改善多種疾病。目前,對β-隱黃素生理功效的研究仍處在不斷的探索之中,其抗衰老、提高免疫力、預(yù)防腎炎等功效不斷被發(fā)現(xiàn),但對其作用機理仍不透徹;β-隱黃素對各種疾病的預(yù)防不是單一作用,而常常是幾種綜合作用的結(jié)果,作用機理復雜。天然類胡蘿卜素雖然已被FDA批準作為食用色素添加到食品中,但β-隱黃素作為類胡蘿卜素的一種,其安全性仍需進一步評估。此外,微生物發(fā)酵法可能是工業(yè)化生產(chǎn)β-隱黃素的發(fā)展趨勢,具有良好的發(fā)展前景,也需更深入研究。
[1] 李濤, 張慧, 張志忠, 等.β-隱黃質(zhì)的特性及其應(yīng)用[J]. 中國食品添加劑, 2011(4): 156-158.
[2] 陶俊. 柑橘果實類胡蘿卜素形成及調(diào)控的生理機制研究[D]. 杭州: 浙江大學, 2002: 26-36.
[3] GRANADO F, OLMEDILLA B, BLANCO I, et al. Major fruit and vegetable contributors to the main serum carotenoids in the Spanish diet[J]. European Journal of Clinical Nutrition, 1996, 50(4): 246-50.
[4] DURING A, DORAISWAMY S, HARRISON E H. Xanthophylls are preferentially taken up compared with beta-carotene by retinal cells via a SRBI-dependent mechanism[J]. Journal of Lipid Research, 2008, 49(8): 1 715-1 724.
[5] BOREL P, LIETZ G, GONCALVES A, et al. CD36 and SR-BI are involved in cellular uptakeof provitamin a carotenoids by Caco-2 and HEK Cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans[J]. The Journal of Nutrition, 2013, 143: 448-456.
[6] BURRI B J, LA FRANO M R, ZHU Cheng-hao. Absorption, metabolism, and functions of β-cryptoxanthin[J]. Nutrition Reviews, 2016, 74(2): 69-82.
[7] BURRI B J. Beta-cryptoxanthin as a source of vitamin A[J]. Journal of The Science of Food & Agriculture, 2014, 95(9): 1 786-1 794.
[8] NAMITHA K K, NEGI P S. Chemistry and Biotechnology of Carotenoids[J]. Critical Reviews in Food Science & Nutrition, 2010, 50(8): 728-760.
[9] BURRI B J, CHANG J S, NEIDLINGER T R.β-Cryptoxanthin- andα-carotene-rich foods have greater apparent bioavailability thanβ-carotene-rich foods in Western diets[J]. British Journal of Nutrition, 2011, 105(2): 212-219.
[10] VON L J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism[J]. Annual Review of Nutrition, 2010, 30(30): 35-56.
[11] AMENGUAL J, WIDJAJA-ADHI M A, RODRIGUEZ-SANTIAGO S, et al. Two carotenoid oxygenases contribute to mammalian provitamin A metabolism[J]. Journal of Biological Chemistry, 2013, 288(47): 34 081-34 096.
[12] DHUIQUE-MAYER C, BOREL P, REBOUL E, et al.β-Cryptoxanthin from Citrus juices: Assessment of bioaccessibility using an in vitro digestion/Caco-2 cell culture model[J]. British Journal of Nutrition, 2007, 97(5): 883-890.
[13] DAVIS C, JING H, HOWE J A. beta-Cryptoxanthin from supplements or carotenoid-enhanced maize maintains liver vitamin A in Mongolian gerbils ( Meriones unguiculatus) better than or equal to beta-carotene supplements[J]. British Journal of Nutrition, 2008, 100(4): 786-793.
[14] BURRI B J, CLIFFORD A J. Carotenoid and retinoid metabolism: Insights from isotope studies[J]. Archives of Biochemistry & Biophysics, 2004, 430(1): 110-119.
[15] HASKELL M J. The challenge to reach nutritional adequacy for vitamin A: beta-carotene bioavailability and conversion-evidence in humans[J]. American Journal of Clinical Nutrition, 2012, 96(5): 1 193S-1 203S.
[16] FERRUCCI L, PERRY J R B, MATTEINI A, et al. Common variation in theβ-carotene 15,15′-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study[J]. American Journal of Human Genetics, 2009, 84(2): 123-133.
[17] LINDQVIST A, ANDERSSON S. Biochemical properties of purified recombinant human -carotene15,15 -monooxygenase[J]. The Journal of Biological Chemistry, 2002, 16(227): 23 942-23 948.
[18] LIETZ G, OXLEY A, LEUNG W, et al. Single nucleotide polymorphisms upstream from the beta-carotene 15,15'-monoxygenase gene influence provitamin A conversion efficiency in female volunteers[J]. Journal of Nutrition, 2012, 142(1): 161S-165S.
[19] HENDRICKSON S J, HAZRA A, CHEN Constance, et al.β-Carotene 15,15′-monooxygenase 1 single nucleotide polymorphisms in relation to plasma carotenoid and retinol concentrations in women of European descent[J]. American Journal of Clinical Nutrition, 2012, 96(6): 1 379-1 389.
[21] LIU Chun, BRONSON R T, RUSSELL R M, et al.β-Cryptoxanthin supplementation prevents cigarette smoke-induced lung inflammation, oxidative damage, and squamous metaplasia in ferrets[J]. Cancer Prevention Research, 2011, 4(8): 1 255-1 266.
[22] ISKANDAR A R, LIU Chun, SMITH D E, et al.β-Cryptoxanthin restores nicotine-reduced lung sirt1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and Emphysema in A/J mice[J]. Cancer Prevention Research, 2013, 6(4): 309-320.
[23] LIAN Fu-zhi, HU Kang-quan, RUSSELL R M, et al.β-Cryptoxanthin suppresses the growth of immortalized human bronchial epithelial cells and non-small-cell lung cancer cells and up-regulates retinoic acid receptorβexpression[J]. International Journal of Cancer, 2006, 119(9): 2 084-2 089.
[24] MIYAZAWA K, MIYAMOTO S, SUZUKI R, et al. Dietary beta-cryptoxanthin inhibits n-butyl-n-(4-hydroxybutyl)nitrosamine-induced urinary bladder carcinogenesis in male icr mice[J]. Oncology Reports, 2007, 6(2): 297-304.
[25] NOGUCHI S, SUMIDA T, OGAWA H, et al. Effects of oxygenated carotenoid beta-cryptoxanthin on morphological differentiation and apoptosis in Neuro2a neuroblastoma cells[J]. Bioscience Biotechnology & Biochemistry, 2003, 67(11): 2 467-2 469.
[26] WU Can-jie, LI Han, RIAZ H, et al. The chemopreventive effect ofβ-cryptoxanthin from mandarin on human stomach cells (BGC-823)[J]. Food Chemistry, 2013, 136(3/4):1 122-1 129.
[27] CILLAA A, ATTANZIOB A, BARBERA R, et al. Anti-proliferative effect of main dietaryphytosterols andβ-cryptox-anthin alone orcombined in human colon cancer Caco-2 cellsthrough cytosolic Ca+2- and oxidative stress-induced apoptosis[J]. Journal of Functional Foods, 2015, 12: 282-293.
[28] GHARIB A, FAEZIZADEH Z, GODARZEE M. Preparation and characterization of nanoliposomal beta-cryptoxanthin and its effect on proliferation and apoptosis in human leukemia cell line K562[J]. Tropical Journal of Pharmaceutical Research, 2015, 14(2): 187-194.
[29] LIU Xiao-ran, WANG Yue-ying, DAN Xin-gang, et al.Anti-inflammatory potential of beta-cryptoxanthin against LPS-induced inflammation in mouse Sertoli cells[J]. Reproductive Toxicology, 2016(60): 148-155.
[30] 黃巧娟, 孫志高, 龍勇, 等.D-檸檬烯抗癌機制的研究進展[J]. 食品科學, 2015, 36(7): 240-244.
[31] GRANADO-LORENCIO F, LAGARDA M J, GARCIA-LPEZ F J, et al. Effect ofβ-cryptoxanthin plus phytosterols on cardiovascular risk and bone turnover markers in post-menopausal women: A randomized crossover trial[J]. Nutrition Metabolism & Cardiovascular Diseases Nmcd, 2014, 24(10): 1 090-1 096.
[32] IKEDA N, SUGIYAMA T, SUZUKI T, et al. Effects of beta-cryptoxanthin on bone metabolism in a rat model of osteoporosis[J]. Journal of Animal & Veterinary Advances, 2012, 11(1): 30-35.
[33] YAMAGUCHI M, WEITZMANN M N. The bone anabolic carotenoidsp-hydroxycinnamic acid andβ-cryptoxanthin antagonize NF-κB activation in MC3T3 preosteoblasts[J]. Molecular Medicine Reports, 2009, 2(4): 641-644.
[34] YAMAGUCHI M, WEITZMANN M N. The bone anabolic carotenoidβ-cryptoxanthin enhances transforming growth factor-β1-induced SMAD activation in MC3T3 preosteoblasts[J]. International Journal of Molecular Medicine, 2009, 24(5): 671-675.
[35] UCHIYAMA S, SUMIDA T, YAMAGUCHI M. Anabolic effect ofβ-cryptoxanthin on bone components in the femoral tissues of aged rats in vivo and in vitro[J]. Journal of Health Science, 2004, 50(5): 491-496.
[36] UCHIYAMA S, YAMAGUCHI M. beta-cryptoxanthin stimulates cell differentiation and mineralization in osteoblastic MC3T3-E1 cells[J]. Journal of Cellular Biochemistry, 2005, 95(6): 1 224-1 234.
[37] OZAKI K, OKAMOTO M, FUKASAWA K, et al. Daily intake ofβ-cryptoxanthin prevents bone loss by preferential disturbance of osteoclastic activation in ovariectomized mice[J]. Journal of Pharmacological Sciences, 2015, 129(1): 72-77.
[38] 孫謙, 胡中海, 孫志高, 等. 魚腥草的生物活性及其機理研究進展[J]. 食品科學, 2014, 35(23): 354-358.
[39] JASWIR I, KOBAYASHI M, KOYAMA T, et al. Antioxidant behaviour of carotenoids highly accumulated in HepG2 cells[J]. Food Chemistry, 2012, 132(2): 865-872.
[40] LORENZO Y, AZQUETA A, LUNA L, et al. The carotenoid beta-cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells[J]. Carcinogenesis, 2009, 30(2): 308-314.
[41] AZQUETA A, COLLINS A R. Carotenoids and DNA damage[J]. Mutation Research/Fundamental & Molecular Mechan-isms of Mutagenesis, 2012, 733(1/2): 4-13.
[42] CICCONE M M, CORTESE F, GESUALDO M, et al. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care[J]. Mediators of Inflammation, 2013, 2 013: 2 409-2 420.
[43] 河田照雄, 大山夏奈, 高橋信之. カロテノイド(5)β-クリプトキサンチン--糖·脂質(zhì)代謝改善作用[J]. Functional Food, 2011, 4(4): 417-422.
[44] 蔣國玲. 溫州蜜柑皮β-隱黃素的提取、純化及穩(wěn)定性研究[D]. 重慶: 西南大學, 2012: 8.
[45] DWYER J H, PAULLABRADOR M J, FAN J, et al. Progression of carotid intima-media thickness and plasma antioxidants: the Los Angeles Atherosclerosis Study[J]. Arteriosclerosis Thrombosis & Vascular Biology, 2004, 24(24): 313-319.
[46] PATTISON D J, SYMMONS D P, LUNT M, et al. Dietary beta-cryptoxanthin and inflammatory polyarthritis: results from a population-based prospective study[J]. American Journal of Clinical Nutrition, 2005, 82(2): 451-455.
[47] UNNO K. Prevention of senescence and stress by food composition[J]. Yakugaku Zasshi Journal of the Pharmaceutical Society of Japan, 2015, 135(1): 41-46.
[48] EICHINGER A, GORALCZYK R, WERTZ K, et al. Use of beta-cryptoxanthin: US, EP2005/005030 A1[P]. 2005-11-24.
[49] 向井, 克之. Novel application ofβ-cryptoxanthin for locomotive syndrome prevention[J]. 食品工業(yè), 2013, 56(8): 46-50.
[50] HIKITA M, MOTOJIMA K, KAMATA S, et al. Protective efficacy of the ingestion of mandarin orange containingβ-cryptoxanthin on lipopolysaccharide-induced acute nephritis[J]. Yakugaku Zasshi Journal of the Pharmaceutical Society of Japan, 2016, 136(7): 1 031-1 040.
[51] NISHI K, MURANAKA A, NISHIMOTO S, et al. Immunostimulatory effect ofβ-cryptoxanthin in vitro and in vivo[J]. Journal of Functional Foods, 2012, 4(3): 618-625.
Research progress on physiological activities and its mechanismof Beta-cryptoxanthin
SHENG Ran1SUNZhi-gao1HUANGQiao-juan2HAOJing-mei1FANGMing1YUFeng-sheng1
(1.SouthwestUniversity,CitrusResearchInstitute,Chongqing400712,China; 2.GuangdongFoodAndDrugVocational-technicalSchool,Guangzhou,Guangdong510663,China)
The beta-cryptoxanthin is composed of multiple prenyl units, belonging to the oxidation of carotenoid. It widely exists in persimmon, citrus and other plants, and also can be produced by microbial fermentation..Based on beta-cryptoxanthin, the mechanism of its absorption and physiological activities was reviewed, in order to provide reference for improving research and clinic application of beta-cryptoxanthin.
beta-cryptoxanthin; absorption; physiological activity; mechanism
10.13652/j.issn.1003-5788.2016.12.047
四川省科技計劃項目(編號:2014NZ0062)
盛冉,女,西南大學在讀碩士研究生。
孫志高(1964—),男,西南大學副研究員。 E-mail: cpro@cric.cn
2016—10—08