• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selection of extracting additives for purification of zinc melts from metal impurities

    2016-02-07 06:43:04.,.
    關(guān)鍵詞:鋅合金弗拉基米爾州立大學(xué)

    ., .

    (Vladimir State University named after Alexander & Nikolay Stoletovs, Vladimir 600000, Russia)

    Selection of extracting additives for purification of zinc melts from metal impurities

    VladimirA.Kechin,EvgenyS.Prusov

    (Vladimir State University named after Alexander & Nikolay Stoletovs, Vladimir 600000, Russia)

    This paper proposes the methodology of the selection of extracting additives for purification of zinc melts from metal impurities(for example from iron) by the liquation refining method, introduces the calculations of the effectiveness of zinc melts liquation refining with an assessment of possibility using a formula of extracting periodic process for one stage of extraction, and underscores the investigation into the extracting ability of the chosen additives for purification of zinc melts from iron impurity. The experimental results show that the highest efficiency of the purification of unalloyed zinc from iron impurity was achieved by using silicon as an extraction additive. It was recommended to use aluminum and manganese as extracting additives for zinc alloys refining.

    zinc melts; purification; extracting additives; metal impurities

    0 Introduction

    Zinc is widely used in various industries for casting, wrought and composite alloys production for structural and functional purposes, including tribological, sacrificial, high-damping, biocompatible and other materials[1-4].

    Modern requirements for purifying primary zinc used for alloys production are very high. The main impurities in zinc produced by electrolysis are iron, lead, cadmium, copper, tin and arsenic[5]. Concentrations of these impurities determine the grade of primary zinc per ASTM B6-13 or other standards. The problem of producing zinc with lowered content of iron is especially actual. Due to the low solid solubility in zinc (0.001%) iron impurity forms the brittle intermetallic compounds(FeZn, FeZn3, etc.), which significantly reduce corrosion, mechanical and casting properties of zinc and its alloys[5-8].

    Modern physical and physicochemical methods of refining zinc melts from metallic impurities (Fe, Pb, Cu, etc.) are unproductive and difficult from the point of view of constructive-technological realization[9-18]. The method of liquation refining represents the greatest interest in the production of zinc melts with low content of iron and other metallic impurities and is easily adapted to the conditions of operating industrial enterprises. This method is based on the use of refining additives of various metals, which forms refractory phases in interaction with the impurities[19]. These phases segregate due to the difference of density the newly formed phases and zinc melt. Then, the subsequent separation of these phases can be carried out by standing, centrifugation or filtration of the zinc melts.

    The aim of the present work is to evaluate the effectiveness of liquation refining of zinc melts from impurity elements(for example from iron)by means of additive elements.

    1 Theoretical considerations

    1.1 Selection of refining additives for purification of zinc melts from iron impurity

    Selection of additive elements for producing metal melts with a low content of impurity elements using the liquation refining method is based on an assessment of the nature of the periodic system elements’ interaction with impurity elements and with the basic metal. The possibility of application of various elements as an extractive addition for purifying zinc melts is caused by its solubility in zinc and efficiency of the additive element. Analysis of metal-chemical properties of the elements in their interactions with zinc melts and iron impurity show that they formed various types of bondings[5, 20]. Selection of the elements as potential refining additives is carried out, considering the nature of their interactions with zinc and iron, and the cost and the toxicity. After screening on these attributes from all elements of periodic system, potential additive elements were located, and characteristics of their interactions with zinc and iron have been presented in Table 1.

    Table 1 Characteristics of additive elements interactions with zinc and iron impurity

    Note:PSS—partial solid solution; CC—chemical compound.

    Table 1 shows the possibility of using elements C, Si, S(Group A) as refining additives for unalloyed zinc purification from iron impurity. These elements practically do not interact with zinc and they exhibit low solubility, but they were formed chemical compounds and solid solutions with iron. Elements Al, Mn, Ti(Group B) performing the role of alloying elements and refining additives may be used for the production of zinc alloys.

    Table 2 shows the characteristics of the formed phases in the zinc-iron-additive system for choosing the potential extraction additives in zinc melts by the liquation refining[20, 27].

    Table 2 Characteristics of main phases in the Zn-Fe-X system

    Note:CSS*—complete solid solution.

    As can be seen from Table 2, the additive elementsin the Group A have low solubility in zinc, and the elements in Group B can be dissolved in zinc, forming iron chemical compounds with high-melting (above 1 000 ℃).

    1.2 Theoretical evaluation of the effectiveness of liquation refining zinc from iron impurity

    Generally, the extraction theory[28]has been used to evaluate the effectiveness of zinc purification from metallic impurities by means of additive elements. In trems of the technological processes of zinc melts purification from iron, the formula of periodic process for one stage of extraction has been used to calculate the metallurgical extracting processes by analogy[29]:

    (1)

    whereX0—initial concentration of impurity in the metal(zinc), %(mass fraction, similarly hereinafter);

    X—concentration of impurity after the extraction operation, %;

    K—equilibrium coefficient of distribution of impurity between phases of the segregating system;

    m—mass of solvent(zinc), g;

    Le—mass of extracting additive, g.

    It has been assumed that the system reaches the equilibrium state between liquid and solid phases; however, in real conditions of crystallization and phase separation, the equilibrium is not reached, and experimental value of impurity content after refining must be larger than its calculated value.

    For Zn-Fe-X(whereX= C, Si, S, Al, Mn, Ti) system, calculations of the extraction efficiency of iron impurity from zinc melt have been made. The following input data have been accepted in the calculations: initial concentration of ironX0= 0.015% Fe, base metal massmZn= 100 g, temperature of impurity extraction 500 ℃. Consumption of the extracting additive element has been accepted 10-fold in relation to impurity element concentration(L1= 0.15%). Results of the calculations are presented in Table 3.

    Efficiency of zinc purificationη(%) from iron impurity has been determined by the following equation:

    (2)

    whereFe0andFe1—initial and final concentrations of iron impurity in zinc melts,respectively.

    Table 3 shows that at 10-fold consumption of extracting additive and initial content of iron in zinc of 0.015% additive elements are located in the following series, decreasing their extracting ability:

    Si→S→C→Ti→Al(Mn).

    Estimation of zinc purification efficiency from iron at accepted 10-fold consumption of the extracting additive shows that the elements of Group A provide removing of iron from melt atη= 81.2%-83.3%. Under existing conditions only titanium promotes refining atη= 78.3% from elements of Group B.

    Fig.1 shows the results of calculations of iron content change in zinc melt for various consumption of additive elements in relation to iron content in zinc. It can be seen that if C, Si, S, Ti decrease in the iron content from 0.015% to 0.002%-0.004% at their 10-fold excess, 50-fold excess of aluminum is necessary in order to achieve the similar purification effect at 30-fold excess of manganese. Obviously, the use of aluminum and manganese will be possible for the production of zinc alloys with low content of iron, only in case of their presence in the alloy composition as basic alloying elements.

    Fig. 1 Change of iron content in zinc melt depending on the consumption of extracting additive (L1)

    Fig.2 shows that purification efficiency grows up to 85%-90% with the increase of iron content in initial zinc(0.003%-0.030%) excluding aluminum and manganese, if used, purification in such conditions practically does not take place. It can also be seen, that liquation refining method is not suitable for using technologies of deep purification of unalloyed zinc with initial iron content up to 0.003%. Fig.3 shows a diagram for extracting additive consumption determining at production of zinc melts with iron content to 0.003% from zinc having various purity.

    Fig. 2 Efficiency of zinc purification with different iron content at 10-fold excess of extracting additive

    Fig. 3 Extracting additive consumption (L1) for zinc purification with different iron content

    2 Experimental verification

    2.1 Materials and methods

    Experimental investigations on zinc purification from iron using selected refining additives showed the possibility of iron impurity content decreased in zinc by liquation refining. Melting of zinc of high grade (99.95% Zn) was performed in alundum crucible in an electric resistance furnace. The iron content in zinc melt before refining was 0.014%-0.016%. Carbonyl iron was introduced in zinc at 500 ℃, refining additives Al and S were introduced in melt at 490 ℃, and Ti, Si, Mn and C-at 600 ℃. Purities of all used materials were more than 99.5%. When introducing the additives melt was mixed with graphite rod within 8-10 min. After introducing the additives melt was cooled with a speed of 40-60 ℃/h down to the temperature of zinc crystallization (~420 ℃). Then metal was quickly heated to 480 ℃ and a sample from the middle part of crucible was withdrawn for chemical analysis by means of quartz tube. Chemical composition of samples was carried out byX-ray fluorescence spectrometer ARL Advant’X(Thermo Scientific, USA). Refining additives were entered into the melt to iron impurity in various ratios in the amount from 0.1% to 1.3%.

    2.2 Experimental results of zinc melt purification from iron using additive elements

    Results of experimental investigations of zinc purification from iron impurity using additive elements (Fig.4) show the different refining capacity of the additives.

    Fig. 4 Experimental data on efficiency of zinc purification from iron by extracting additives

    Some discrepancy between the calculated and the experimental data on the efficiency of zinc purification from iron impurity can be explained by some assumptions accepted in calculations (complete interaction of extracting additives with iron impurity, using data of the od equilibrium phase diagrams for selected phases of only one stoichiometric composition, complete removing of reaction products from the melt, etc.), as well as possible losses of extractive additives and their incomplete recovery when introducing into the melt. Fig.4 indicated that only silicon colud be considered as an effective extracting additive in relation to iron in the production of unalloyed zinc. As expected, when aluminum and magnesium were added into zinc melt, they were partially dissolved in zinc and remained in it after purification. At a large consumption of additives their content in zinc reached high values determined by the phase diagrams and nature of interaction with zinc. Obviously, the process of purification of unalloyed zinc from iron using the considered additives will be difficult under the conditions of large-scale production due to the high consumption of additive elements. At the same time, the use of aluminum and magnesium as both alloying and extracting additive elements in the production of zinc alloys allowed to neutralize negative effect of iron owing to the formation of complex products. So, in this case operation of refining was combined with simultaneous alloying of base metal with aluminum or manganese.

    Thus, it has been recommended to use silicon as an extracting additive for the production of unalloyed zinc with lowered iron content and to use aluminum and manganese for the production of zinc alloys.

    3 Conclusions

    The principle of the selection of additive elements for zinc melts purification from iron impurity by using the method of liquation refining has been theoretically investigated. The possibility of using a formula of periodic process of extracting for one stage of extraction and evaluating the effectiveness of liquation refining of zinc melts from iron had been studied. The extracting ability of the chosen additives in zinc melts purification from iron impurity has been established. It had been recommended to use silicon as an extracting additive for refining of unalloyed zinc from iron and to use aluminum and manganese for zinc alloys.

    Acknowledgments:

    This research has been carried out in the framework of the state task of the Ministry of Education and Science of the Russian Federation(Project No.3022).

    [1] BIRCH J. New alloys for zinc casting[J]. Mat Des, 1990, 11(2): 83-87.

    [2] BABIC M, NINKOVIC R. Zn-Al alloys as tribomaterials[J]. Tribol Ind, 2004, 26(1/2): 3-7.

    [3] PRUSOV E S, KOROBKOV M B, KECHIN V A. Current state and perspectives of increasing of tribotechnical characteristics of zinc alloys[J]. Mach Techn Mat, 2014(2): 9-11.

    [4] CHUNG D D L. Materials for vibration damping[J]. J Mat Sci, 2001, 36: 5733-5737.

    [5] KECHIN V A, LUBLINSKI E Y. Zinc alloys (in Russian)[M]. Moscow: Metallurgiya, 1986.

    [6] SOLOZHENKO V L, KECHIN V A. Improving the electrochemical properties of zinc with an elevated content of iron[J]. Prot Met, 2001, 37(3): 286-289.

    [7] PORTER F C. Corrosion resistance of zinc and zinc alloys[M]. New York: Marcel Dekker Inc, 1994.

    [8] ZHANG X G. Corrosion and electrochemistry of zinc[M]. New York: Plenum Press, 1996.

    [9] BRATT G C. Impurity effect in the electrowinning of zinc and cadmium[J]. Electrochem Tech, 1964, 2: 323-326.

    [10] ADHIA J D. Effect and control of impurities in electrolytic zinc production[C]// Proceedings of Symposium on Non-ferrous Metals Technology: III. NML: Jamshedpur, 1969: 1-10.

    [11] FOSNACHT D, O’KEEFE T J. The effects of certain impurities and their interactions on zinc electrowinning[J]. Met Mat Trans B, 1983, 14(4): 645-655.

    [12] MACKINNON D J, BRANNEN J M, FENN P L. Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte[J]. J App Electrochem, 1987, 17(6): 1129-1143.[13] AULT A R, FRAZER E J. Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions[J]. J App Electrochem, 1988, 18: 583-589.

    [14] MURESAN L, MAURIN G, ONICIU L, et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte[J]. Hydromet, 1996, 43(1/3): 345-354.

    [15] CHEN X F. The effects of impurities on the current efficiency in zinc electrowinning(in Chinese)[J]. Hunan Nonferrous Met, 2006, 22(2): 24-26.

    [16] QIU Y, ZHANG C, ZHAO Y. Effect of impurities on zinc electrowinning process in alkaline solution[J]. Nonferrous Met, 2009, 60: 76-79.

    [17] YU X H, XIE G, LI R X, et al. Behavior of arsenic in zinc electrowinning[J]. Trans Nonferrous Met Soc China, 2010, 20: 50-54.[18] WANG L Y, GUI W H, TEO K L, et al. Optimal control problems arising in the zinc sulphate electrolyte purification process[J]. J Global Optim, 2012, 54(2): 307-323.

    [19] SHAN’GIN E A. Development of the crystallization method for removing lead impurity from secondary zinc[J]. Russ J Nonfer Met, 2013, 54(1): 51-55.

    [20] KUBASCHEWSKI O. Iron-binary phase diagrams[M]. Berlin: Springer-Verlag, 1982.

    [21] MURRAY J L. The Ti-Zn (titanium-zinc) system[J]. Bul Alloys Phase Diag, 1984, 5(1): 52-56.

    [22] OKAMOTO H, TANNER L E. The Mn-Zn(manganese-zinc) system[J]. Bul Alloys Phase Diag, 1990, 11(4): 377-384.

    [23] CRANE L W. Melting and solidification of zinc-aluminium alloys[M]. Birmingham: Aston University, 1997.

    [24] FRANKE P, NEUSCHUTZ D. C-Zn (carbon-zinc) [M]// Thermodynamic Properties of Inorganic Materials. Part 5: Binary Systems. [S.l.]: Springer Berlin Heidelberg, 2007.[25] OLESINSKI R W, ABBASCHIAN G J. The Si-Zn(silicon-zinc) system[J]. Bul Alloys Phase Diag, 1985, 6(6): 545-548.

    [26] SHARMA K C, CHANG Y A. The S-Zn(sulfur-zinc) system[J]. Journal of Phase Equilibria, 1996, 17(3): 261-266.

    [27] PERRY D L. Handbook of inorganic compounds[M]. Boca Raton: Florida, 2011.

    [28] VIGNES A. Extractive metallurgy 2: metallurgical reaction processes[M]. [S.l.]: ISTE Ltd and John Wiley & Sons, 2011.[29] POGORELIY A D. Theory of metallurgical processes (in Russian)[M]. Moscow: Metallurgy, 1971.

    (編輯 張迎春 校對(duì) 荀海鑫)

    2016-07-14

    The state task of the Ministry of Education and Science of the Russian Federation (Project No.3022)

    Vladimir A.Kechin(1942-),Male,USSR,Krasnoyarsk,Professor,D.Sc.(Doctor of Technical Sciences),Research field:Metallurgy and Materials Science,E-mail:keclin@vlsu.ru.

    TF813

    2095-7262(2016)06-0653-06

    :A

    金屬雜質(zhì)中純化鋅熔體的提取劑選擇方法

    VladimirA.Kechin,EvgenyS.Prusov

    (弗拉基米爾州立大學(xué), 弗拉基米爾600000, 俄羅斯)

    提出了一種通過(guò)熔析精煉方法從金屬雜質(zhì)(例如鐵)中純化鋅熔體的提取劑選擇方法。采用一個(gè)提取階段的周期性過(guò)程公式計(jì)算鋅熔體精煉的有效性,并研究所選添加劑從鐵雜質(zhì)中提純鋅熔體的提取能力。實(shí)驗(yàn)結(jié)果表明,從鐵雜質(zhì)中純化非合金鋅,可以采用硅作為提取劑,且提取效率最高;精煉鋅合金可以采用鋁和錳作為提取劑。

    熔融鋅; 提純; 提取劑; 金屬雜質(zhì)

    10.3969/j.issn.2095-7262.2016.06.014

    猜你喜歡
    鋅合金弗拉基米爾州立大學(xué)
    俄羅斯弗拉基米爾大公號(hào)核潛艇
    軍事文摘(2022年13期)2022-08-27 01:26:24
    專(zhuān)利名稱(chēng):一種雙重細(xì)化鋅合金中初生相的方法
    美國(guó)費(fèi)里斯州立大學(xué)(FSU)大學(xué)生學(xué)習(xí)動(dòng)力來(lái)源的思考與啟示
    堿性鋅錳電池含鋁鋅合金陽(yáng)極的電化學(xué)行為
    美國(guó)學(xué)前教育教師職前專(zhuān)業(yè)能力培養(yǎng)的特征及啟示——以美國(guó)塞勒姆州立大學(xué)早期兒童教育專(zhuān)業(yè)為例
    聚合物/錫鋅合金復(fù)合材料的密煉混合行為
    信息技術(shù)在美國(guó)大學(xué)物理課程中的應(yīng)用——以美國(guó)俄亥俄州立大學(xué)為例
    物理與工程(2014年4期)2014-02-27 11:23:09
    錫鋅合金鍍層的性能如何及鍍液類(lèi)型有哪些?
    以人為本 服務(wù)為體——俄亥俄州立大學(xué)
    與弗拉基米爾·普京對(duì)話
    在线观看免费视频日本深夜| 日韩有码中文字幕| 深夜精品福利| 国产爱豆传媒在线观看 | 欧美黑人欧美精品刺激| 中文字幕人成人乱码亚洲影| 免费无遮挡裸体视频| 50天的宝宝边吃奶边哭怎么回事| 99久久精品国产亚洲精品| 一个人观看的视频www高清免费观看 | www日本在线高清视频| 国产v大片淫在线免费观看| 欧美日韩乱码在线| 美女黄网站色视频| 亚洲av成人不卡在线观看播放网| 99国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 亚洲人成伊人成综合网2020| 这个男人来自地球电影免费观看| a级毛片a级免费在线| 两个人免费观看高清视频| 12—13女人毛片做爰片一| 777久久人妻少妇嫩草av网站| 国产激情偷乱视频一区二区| 校园春色视频在线观看| 国产成人aa在线观看| 18美女黄网站色大片免费观看| 天天添夜夜摸| 99热只有精品国产| 美女免费视频网站| 精品国产亚洲在线| 超碰成人久久| 天堂av国产一区二区熟女人妻 | 久久久精品大字幕| 一卡2卡三卡四卡精品乱码亚洲| 成人手机av| 亚洲av电影在线进入| 91麻豆精品激情在线观看国产| 村上凉子中文字幕在线| 黑人巨大精品欧美一区二区mp4| 午夜日韩欧美国产| 一区二区三区国产精品乱码| 成人18禁高潮啪啪吃奶动态图| 狂野欧美激情性xxxx| 午夜精品久久久久久毛片777| 久久亚洲真实| 久久久国产精品麻豆| 一进一出好大好爽视频| av天堂在线播放| 免费在线观看影片大全网站| 国产精品1区2区在线观看.| 黑人操中国人逼视频| 看免费av毛片| 最近最新中文字幕大全电影3| 国产亚洲欧美98| 后天国语完整版免费观看| 18禁裸乳无遮挡免费网站照片| 在线观看美女被高潮喷水网站 | 欧美日本视频| 可以在线观看毛片的网站| 国产人伦9x9x在线观看| 99久久综合精品五月天人人| 亚洲人成伊人成综合网2020| 99久久国产精品久久久| 又大又爽又粗| 欧美zozozo另类| 天天添夜夜摸| 麻豆国产97在线/欧美 | 成在线人永久免费视频| 亚洲,欧美精品.| 亚洲精品久久成人aⅴ小说| 国产亚洲精品第一综合不卡| 我的老师免费观看完整版| 99久久精品国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| www.自偷自拍.com| 亚洲中文字幕一区二区三区有码在线看 | 香蕉丝袜av| 午夜福利免费观看在线| 老汉色av国产亚洲站长工具| 亚洲18禁久久av| 1024香蕉在线观看| 婷婷六月久久综合丁香| 国产成人系列免费观看| 99国产极品粉嫩在线观看| 国产一区二区三区视频了| 亚洲中文字幕日韩| 在线观看66精品国产| 天天一区二区日本电影三级| netflix在线观看网站| 日日爽夜夜爽网站| 50天的宝宝边吃奶边哭怎么回事| 久久久久精品国产欧美久久久| 97超级碰碰碰精品色视频在线观看| 久久香蕉激情| 18禁裸乳无遮挡免费网站照片| 成人国产综合亚洲| 好看av亚洲va欧美ⅴa在| 国产1区2区3区精品| 夜夜躁狠狠躁天天躁| 黄色a级毛片大全视频| 欧美一级a爱片免费观看看 | 亚洲美女黄片视频| 国产精品久久久久久亚洲av鲁大| 欧美中文日本在线观看视频| 精品一区二区三区四区五区乱码| 午夜精品久久久久久毛片777| 后天国语完整版免费观看| 久久久国产成人免费| 两性夫妻黄色片| 18禁裸乳无遮挡免费网站照片| 免费看十八禁软件| 啪啪无遮挡十八禁网站| 亚洲aⅴ乱码一区二区在线播放 | 日本一本二区三区精品| 高清在线国产一区| √禁漫天堂资源中文www| 精品久久久久久久久久久久久| 精品午夜福利视频在线观看一区| 亚洲人成伊人成综合网2020| 精品无人区乱码1区二区| av福利片在线| 亚洲成人久久爱视频| 亚洲人成电影免费在线| 久久香蕉激情| 精品无人区乱码1区二区| 亚洲第一欧美日韩一区二区三区| 特大巨黑吊av在线直播| 国产69精品久久久久777片 | av超薄肉色丝袜交足视频| av超薄肉色丝袜交足视频| 给我免费播放毛片高清在线观看| 午夜免费激情av| 亚洲七黄色美女视频| 午夜亚洲福利在线播放| 最近最新中文字幕大全免费视频| av超薄肉色丝袜交足视频| 国模一区二区三区四区视频 | 舔av片在线| 成在线人永久免费视频| 两个人视频免费观看高清| 51午夜福利影视在线观看| 亚洲九九香蕉| 叶爱在线成人免费视频播放| 亚洲国产欧美一区二区综合| 久久亚洲真实| 俺也久久电影网| 欧美黑人巨大hd| 久久精品91无色码中文字幕| 18禁裸乳无遮挡免费网站照片| 在线观看午夜福利视频| 成人手机av| xxxwww97欧美| 91麻豆av在线| 成年女人毛片免费观看观看9| 国产亚洲欧美98| 欧美中文综合在线视频| 日本一本二区三区精品| 天堂av国产一区二区熟女人妻 | 欧美成人午夜精品| 在线观看www视频免费| 999久久久国产精品视频| 美女大奶头视频| 搡老岳熟女国产| 婷婷六月久久综合丁香| 国产精品久久久久久精品电影| 他把我摸到了高潮在线观看| 男女做爰动态图高潮gif福利片| 国产欧美日韩一区二区三| 欧美黑人精品巨大| 亚洲男人天堂网一区| 久久久久久大精品| av在线天堂中文字幕| 亚洲五月天丁香| 桃红色精品国产亚洲av| 欧美日韩福利视频一区二区| www国产在线视频色| 精品欧美一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲av电影不卡..在线观看| 久久伊人香网站| 日本一本二区三区精品| 国产99久久九九免费精品| 亚洲专区字幕在线| 婷婷精品国产亚洲av| av福利片在线观看| 亚洲精品在线美女| 99久久久亚洲精品蜜臀av| 久久久久久九九精品二区国产 | 我要搜黄色片| 一边摸一边抽搐一进一小说| 制服诱惑二区| 一本久久中文字幕| 男人的好看免费观看在线视频 | 在线a可以看的网站| 精品国产亚洲在线| 97碰自拍视频| 精品久久久久久,| 男女做爰动态图高潮gif福利片| 麻豆国产97在线/欧美 | 1024手机看黄色片| 午夜老司机福利片| 久久久久国产一级毛片高清牌| 国内久久婷婷六月综合欲色啪| 美女扒开内裤让男人捅视频| 在线播放国产精品三级| 成人一区二区视频在线观看| 老司机深夜福利视频在线观看| 一二三四在线观看免费中文在| 18禁观看日本| 亚洲片人在线观看| 一二三四社区在线视频社区8| 成人午夜高清在线视频| 成年人黄色毛片网站| 欧美黄色淫秽网站| 正在播放国产对白刺激| 国产激情偷乱视频一区二区| 白带黄色成豆腐渣| 日韩中文字幕欧美一区二区| 神马国产精品三级电影在线观看 | 在线观看日韩欧美| 美女扒开内裤让男人捅视频| 免费在线观看日本一区| 好看av亚洲va欧美ⅴa在| 成人特级黄色片久久久久久久| 又粗又爽又猛毛片免费看| 一区福利在线观看| 九色成人免费人妻av| 一个人免费在线观看电影 | 亚洲av第一区精品v没综合| 成人手机av| 夜夜夜夜夜久久久久| 99热这里只有是精品50| 搞女人的毛片| 两个人的视频大全免费| 男女做爰动态图高潮gif福利片| 久久久久久大精品| 久久久久国内视频| 午夜精品在线福利| 欧美成人免费av一区二区三区| 欧美大码av| 一本综合久久免费| 999精品在线视频| 亚洲片人在线观看| 成在线人永久免费视频| 香蕉国产在线看| 精品日产1卡2卡| 看片在线看免费视频| 久久香蕉精品热| 亚洲美女黄片视频| 国产午夜精品久久久久久| 日本 欧美在线| 国内精品久久久久久久电影| 两个人看的免费小视频| 欧美性长视频在线观看| 午夜视频精品福利| 欧美午夜高清在线| av视频在线观看入口| 老司机午夜十八禁免费视频| 久久国产精品人妻蜜桃| 99精品在免费线老司机午夜| 日日爽夜夜爽网站| 欧美精品亚洲一区二区| www.自偷自拍.com| 老司机靠b影院| 国产高清激情床上av| 亚洲真实伦在线观看| 丰满的人妻完整版| 欧美性猛交╳xxx乱大交人| 成人手机av| 国产精品永久免费网站| 欧美乱色亚洲激情| 久久久久久九九精品二区国产 | 老司机午夜十八禁免费视频| 中文字幕最新亚洲高清| 搞女人的毛片| 此物有八面人人有两片| 国产精品免费一区二区三区在线| 国产精品久久久久久人妻精品电影| 最近在线观看免费完整版| 在线播放国产精品三级| 成人高潮视频无遮挡免费网站| 18禁观看日本| 日本精品一区二区三区蜜桃| av超薄肉色丝袜交足视频| 成熟少妇高潮喷水视频| 99久久99久久久精品蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 日本在线视频免费播放| 欧美绝顶高潮抽搐喷水| 国产三级在线视频| 久久香蕉国产精品| 制服诱惑二区| 最近最新中文字幕大全电影3| 国产精品98久久久久久宅男小说| 欧美日本亚洲视频在线播放| 天堂√8在线中文| 亚洲精品久久国产高清桃花| 老司机午夜福利在线观看视频| 欧美乱色亚洲激情| 精品人妻1区二区| 亚洲精品一区av在线观看| 男人舔女人下体高潮全视频| 国产精品自产拍在线观看55亚洲| 99精品久久久久人妻精品| 日韩欧美在线二视频| 日本熟妇午夜| 日韩成人在线观看一区二区三区| videosex国产| 亚洲一卡2卡3卡4卡5卡精品中文| xxx96com| 久久久久久免费高清国产稀缺| avwww免费| 俄罗斯特黄特色一大片| 国产亚洲精品久久久久5区| 18禁美女被吸乳视频| 国产精品久久久久久人妻精品电影| 大型av网站在线播放| 欧美在线一区亚洲| 免费人成视频x8x8入口观看| 18美女黄网站色大片免费观看| 桃红色精品国产亚洲av| 国产亚洲av嫩草精品影院| 国产欧美日韩一区二区精品| 在线观看日韩欧美| 两人在一起打扑克的视频| 国产69精品久久久久777片 | 88av欧美| 国产成年人精品一区二区| 亚洲精品美女久久av网站| 男女床上黄色一级片免费看| 丰满人妻一区二区三区视频av | 免费在线观看视频国产中文字幕亚洲| 在线国产一区二区在线| 中文字幕av在线有码专区| 亚洲国产日韩欧美精品在线观看 | 18禁黄网站禁片免费观看直播| 少妇裸体淫交视频免费看高清 | 蜜桃久久精品国产亚洲av| 欧美性长视频在线观看| 亚洲欧美日韩无卡精品| 19禁男女啪啪无遮挡网站| 后天国语完整版免费观看| 亚洲人成网站高清观看| 中文亚洲av片在线观看爽| 美女黄网站色视频| 这个男人来自地球电影免费观看| 亚洲国产精品久久男人天堂| av免费在线观看网站| 亚洲成人中文字幕在线播放| 午夜亚洲福利在线播放| 久久草成人影院| 757午夜福利合集在线观看| 国产一区二区在线观看日韩 | 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 国产精品av视频在线免费观看| 久久久久久久精品吃奶| 成人三级做爰电影| 日韩国内少妇激情av| 无遮挡黄片免费观看| 我要搜黄色片| 性欧美人与动物交配| 熟妇人妻久久中文字幕3abv| 午夜免费成人在线视频| 国产精品九九99| 精品一区二区三区四区五区乱码| 中文字幕高清在线视频| 精品电影一区二区在线| 久久久久久国产a免费观看| 欧美色视频一区免费| 免费观看精品视频网站| 久久婷婷成人综合色麻豆| 亚洲精品美女久久久久99蜜臀| 一本一本综合久久| 欧美一级a爱片免费观看看 | 欧美黑人巨大hd| 国产成人啪精品午夜网站| 久久国产精品影院| 国产免费av片在线观看野外av| 色精品久久人妻99蜜桃| 精品久久久久久久久久久久久| 黑人巨大精品欧美一区二区mp4| 1024香蕉在线观看| 毛片女人毛片| 亚洲人成网站高清观看| 色哟哟哟哟哟哟| 黄色视频不卡| 热99re8久久精品国产| 91九色精品人成在线观看| 日韩免费av在线播放| 亚洲av电影在线进入| 首页视频小说图片口味搜索| 欧美绝顶高潮抽搐喷水| 久久亚洲精品不卡| 欧美黑人巨大hd| 久久久久精品国产欧美久久久| 国产乱人伦免费视频| 日本 av在线| 最近最新免费中文字幕在线| 国产片内射在线| 曰老女人黄片| 岛国视频午夜一区免费看| 青草久久国产| 亚洲天堂国产精品一区在线| 国产成+人综合+亚洲专区| 99久久久亚洲精品蜜臀av| 色噜噜av男人的天堂激情| 99热只有精品国产| 成在线人永久免费视频| 免费看十八禁软件| 亚洲欧美激情综合另类| 日韩精品中文字幕看吧| 国产99白浆流出| 99re在线观看精品视频| 欧美一区二区国产精品久久精品 | 亚洲精品美女久久av网站| 一进一出抽搐动态| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| a在线观看视频网站| 亚洲欧美日韩高清在线视频| 亚洲精品在线观看二区| 亚洲精品中文字幕一二三四区| 国产精品永久免费网站| 身体一侧抽搐| 91av网站免费观看| 国内久久婷婷六月综合欲色啪| 黄色 视频免费看| 男女之事视频高清在线观看| √禁漫天堂资源中文www| 成人特级黄色片久久久久久久| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产日韩欧美精品在线观看 | 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区不卡视频| 国产av一区二区精品久久| 久9热在线精品视频| 中文资源天堂在线| 精品国产美女av久久久久小说| 青草久久国产| 国产精品亚洲美女久久久| 香蕉av资源在线| aaaaa片日本免费| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 亚洲一区高清亚洲精品| 中文亚洲av片在线观看爽| 久久久久久大精品| √禁漫天堂资源中文www| 亚洲成人久久性| 国产成+人综合+亚洲专区| 神马国产精品三级电影在线观看 | 日日夜夜操网爽| 2021天堂中文幕一二区在线观| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 欧美乱妇无乱码| 特级一级黄色大片| 在线免费观看的www视频| 成年免费大片在线观看| 精品少妇一区二区三区视频日本电影| 久久久久久大精品| 欧美中文综合在线视频| 悠悠久久av| 亚洲国产精品成人综合色| 久久热在线av| 欧美av亚洲av综合av国产av| 久久久久国内视频| 搡老熟女国产l中国老女人| 国产91精品成人一区二区三区| 久久这里只有精品19| 白带黄色成豆腐渣| 国产精品九九99| 欧洲精品卡2卡3卡4卡5卡区| 日本免费一区二区三区高清不卡| 欧美成人性av电影在线观看| 后天国语完整版免费观看| 国产伦在线观看视频一区| 久久久久久久久久黄片| 国产97色在线日韩免费| 精品国产亚洲在线| 国产高清有码在线观看视频 | 白带黄色成豆腐渣| 国产午夜精品久久久久久| 法律面前人人平等表现在哪些方面| 人妻夜夜爽99麻豆av| 岛国在线免费视频观看| 中文字幕久久专区| 国产精品香港三级国产av潘金莲| 午夜精品久久久久久毛片777| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 国产精品永久免费网站| 此物有八面人人有两片| 又大又爽又粗| 国产精品亚洲美女久久久| 99在线人妻在线中文字幕| 午夜福利成人在线免费观看| 国内少妇人妻偷人精品xxx网站 | 国产精品日韩av在线免费观看| 国产精品久久电影中文字幕| 日韩免费av在线播放| 麻豆av在线久日| 在线观看舔阴道视频| 一二三四社区在线视频社区8| 亚洲欧美精品综合久久99| 亚洲专区中文字幕在线| 精品久久久久久久末码| 一本综合久久免费| 久久精品影院6| 校园春色视频在线观看| 2021天堂中文幕一二区在线观| 又大又爽又粗| 婷婷亚洲欧美| 国产精品自产拍在线观看55亚洲| 一本精品99久久精品77| 动漫黄色视频在线观看| 51午夜福利影视在线观看| 窝窝影院91人妻| 99热只有精品国产| 老司机福利观看| 一进一出抽搐gif免费好疼| 青草久久国产| 欧美日韩瑟瑟在线播放| 舔av片在线| 精品国内亚洲2022精品成人| 午夜a级毛片| 性欧美人与动物交配| 日韩精品青青久久久久久| 成年人黄色毛片网站| 国产精品一区二区精品视频观看| 99国产综合亚洲精品| 99精品在免费线老司机午夜| 欧美黑人精品巨大| 狂野欧美激情性xxxx| 国产精品影院久久| 欧美日韩一级在线毛片| 中文在线观看免费www的网站 | 久久午夜亚洲精品久久| 欧美精品亚洲一区二区| 欧美成人性av电影在线观看| 9191精品国产免费久久| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 亚洲片人在线观看| 亚洲一区高清亚洲精品| av天堂在线播放| 黄色片一级片一级黄色片| 身体一侧抽搐| 男插女下体视频免费在线播放| 亚洲午夜精品一区,二区,三区| 俄罗斯特黄特色一大片| 国产成人精品久久二区二区免费| 九色成人免费人妻av| 男女那种视频在线观看| 男女做爰动态图高潮gif福利片| 又爽又黄无遮挡网站| 波多野结衣高清无吗| 香蕉国产在线看| 欧美成人午夜精品| 亚洲精华国产精华精| 欧美激情久久久久久爽电影| 欧美日韩亚洲综合一区二区三区_| 可以在线观看毛片的网站| 国产高清视频在线观看网站| 中文在线观看免费www的网站 | 亚洲欧美激情综合另类| 亚洲全国av大片| 精品熟女少妇八av免费久了| 欧美成人午夜精品| 久久精品91无色码中文字幕| 成人国产综合亚洲| 俄罗斯特黄特色一大片| 在线国产一区二区在线| 视频区欧美日本亚洲| 99精品在免费线老司机午夜| 亚洲av成人av| 一级毛片女人18水好多| 亚洲av成人av| 国产99久久九九免费精品| www.999成人在线观看| 高潮久久久久久久久久久不卡| 国产精品免费一区二区三区在线| 正在播放国产对白刺激| 丰满的人妻完整版| 国产人伦9x9x在线观看| 午夜免费观看网址| 国内久久婷婷六月综合欲色啪| 亚洲精品久久成人aⅴ小说| 欧美极品一区二区三区四区| 久久国产乱子伦精品免费另类| 三级毛片av免费| 此物有八面人人有两片| 午夜精品久久久久久毛片777| 亚洲一区二区三区色噜噜| 男人的好看免费观看在线视频 | 亚洲一码二码三码区别大吗| 亚洲欧美日韩东京热| 国产高清有码在线观看视频 | 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 日韩中文字幕欧美一区二区| 一本久久中文字幕| 午夜两性在线视频| 亚洲五月婷婷丁香| 欧美三级亚洲精品| 欧美乱妇无乱码| 麻豆久久精品国产亚洲av| 国产熟女午夜一区二区三区| 两个人的视频大全免费|