余紅梅,李廷軒,張錫洲,鄭子成,余海英
(四川農(nóng)業(yè)大學(xué)資源學(xué)院,四川 成都 611130)
施氮量對礦山生態(tài)型粗齒冷水花磷富集特性的影響
余紅梅,李廷軒*,張錫洲,鄭子成,余海英
(四川農(nóng)業(yè)大學(xué)資源學(xué)院,四川 成都 611130)
摘要:采用土培試驗,以礦山生態(tài)型粗齒冷水花為研究對象,非礦山生態(tài)型為對照,探討了高磷(400 mg P/kg)處理下不同施氮量(0,70,140,210,280和350 mg N/kg)對礦山生態(tài)型粗齒冷水花磷富集特性的影響,為利用礦山生態(tài)型粗齒冷水花提取土壤中過量的磷,防治磷的非點源污染提供理論依據(jù)。結(jié)果表明,1)礦山生態(tài)型粗齒冷水花地上部和地下部的生物量、磷積累量均在140 mg/kg施氮量下達(dá)最大值;其中,礦山生態(tài)型地上部磷積累量為223.73 mg/株,非礦山生態(tài)型為159.79 mg/株。不同施氮量處理下,礦山生態(tài)型地上部生物量和磷積累量顯著高于非礦山生態(tài)型。粗齒冷水花磷富集系數(shù)隨施氮量增加逐漸升高,遷移率均高于50%,達(dá)到71%~88%。2)隨施氮量增加,礦山生態(tài)型根系酸性磷酸酶活性逐漸升高,而植酸酶活性先升高后降低,在140 mg/kg達(dá)最大值。各施氮量下的礦山生態(tài)型根系酸性磷酸酶和植酸酶活性均顯著高于非礦山生態(tài)型,分別為非礦山生態(tài)型的1.22~1.67倍和1.02~1.07倍。在70~210 mg/kg范圍施氮有助于促進(jìn)礦山生態(tài)型粗齒冷水花生長,增加植株對磷的積累,提高其富磷潛力。本研究條件下,140 mg/kg為最佳施氮量。
關(guān)鍵詞:施氮量;磷富集;粗齒冷水花;生態(tài)型;植物修復(fù)
DOI:10.11686/cyxb2015023http://cyxb.lzu.edu.cn
余紅梅,李廷軒,張錫洲,鄭子成,余海英. 施氮量對礦山生態(tài)型粗齒冷水花磷富集特性的影響. 草業(yè)學(xué)報, 2015, 24(8): 85-92.
Yu H M, Li T X, Zhang X Z, Zheng Z C, Yu H Y. Effect of different levels of N supply on P accumulation characteristics of a ‘mining ecotype’ ofPileasinofasciata. Acta Prataculturae Sinica, 2015, 24(8): 85-92.
收稿日期:2015-01-16;改回日期:2015-03-30
基金項目:國家自然科學(xué)基金項目(31401377),四川省教育廳重點項目(14ZA0002),四川省科技支撐項目(2013NZ0044)和四川省科技支撐計劃(2013NZ0029)資助。
作者簡介:余紅梅(1989-),女,貴州遵義人,在讀碩士。E-mail:18200353350@163.com
通訊作者*Corresponding author. E-mail:litinx@263.net
Effect of different levels of N supply on P accumulation characteristics of a ‘mining ecotype’ ofPileasinofasciata
YU Hong-Mei, LI Ting-Xuan*, ZHANG Xi-Zhou, ZHENG Zi-Cheng, YU Hai-Ying
CollegeofResources,SichuanAgriculturalUniversity,Chengdu611130,China
Abstract:Quantities of P fertilizer and organic fertilizer are supplied in agro-ecosystems to improve the soil available P content and maintain soil fertility, but ultimately resulting in P immobilization and accumulation in the soil. Phytoextraction is a practical method for recovering the excess P after soils have become enriched. In order to provide a theoretical basis for extracting excess P from soil to assist with prevention and control of non-point source pollution, it was necessary to determine the P accumulation characteristics of a ‘mining ecotype’ (ME) of Pilea sinofasciata. This material had previously been screened as showing promise for P extraction from enriched soil. The effects of different levels of nitrogen (N) supply (0, 70, 140, 210, 280, 350 mg N/kg) on plant growth and P accumulation characteristics in the ME of P. sinofasciata were analyzed,with a non-mining ecotype (NME) as contrast. All treatments had the same P supply (400 mg P/kg soil). Pot experiments were carried out in a greenhouse at Sichuan Agricultural University, Sichuan province, China in 2013. Key results were: 1)For both shoot and root biomass, P accumulation of P. sinofasciata significantly increased with increased N supply up to 140 mg/kg, and then decreased with additional N supply. Shoot P accumulation of the ME was maximized at 140 mg/kg N supply, and ME demonstrated greater shoot P accumulation (223.73 mg/plant) than the NME (159.79 mg/plant) under different rates of N supply. The bioaccumulation coefficient of the ME was more than 1, while translation rate was more than 50%, and as high as 71%-88%. 2) The activities of acid phosphatase and phytase in P. sinofasciata peaked at N application rates of 350 mg/kg and 140 mg/kg, respectively, and the activities of these two enzymes in the ME were markedly higher (P<0.05) than those in the NME, being increased by a factor of 1.22-1.67, and 1.02-1.07, respectively. In conclusion, the P. sinofasciata ME showed substantial P accumulation ability under N application rates of 70-210 mg/kg. Thus, P. sinofasciata is a good candidate species for P phytoextraction, with the best results obtained when N was added at 140 mg/kg soil.
Key words:nitrogen (N) supply; phosphorus enrichment; Pilea sinofasciata; ecotype; phytoremediation
在農(nóng)業(yè)生產(chǎn)中,過量施用含磷肥料以及畜禽糞便任意排放等易造成土壤磷過剩,加劇水體富營養(yǎng)化等環(huán)境問題[1-5]。因此,尋找合適的方法減少土壤環(huán)境中過量磷已受到廣泛關(guān)注。植物提取能通過植物收獲等方式帶走磷,是一種較為有效的治理措施[6-8]。相關(guān)研究指出,Marshall和Gulf黑麥草[9-10]、Duo grass[11-12]、黃瓜(Cucumissativus)和黃南瓜(Cucurbitapepovar.melopepo)[13]等均能用于磷過剩環(huán)境修復(fù),其地上部磷含量高達(dá)10 g/kg以上,然而這些富磷植物多數(shù)為一年生植物,且存在生物量小、磷積累量低、對環(huán)境適應(yīng)力較弱等不足,導(dǎo)致磷提取效果不佳。因此,提高富磷植物磷富集潛力已成為當(dāng)下研究的熱點。采用多次收獲和暖冷季混種等方式可在一定程度上提高牧草磷富集潛力[14-15],但其應(yīng)用范圍有限,效果不甚理想。Zheng等[16]研究表明,礦山生態(tài)型水蓼(Polygonumhydropiper)對畜禽廢水中氮、磷去除率隨培養(yǎng)時間延長均升高;據(jù)Silveira等[17]報道,百喜草(Paspalumnotatum)和象草(Pennisetumpurpureum)等多年生牧草種植在富磷土壤后植株體內(nèi)氮磷含量均較高;表明植物對氮、磷的吸收存在協(xié)同性,適宜施氮可改善植物對土壤磷的吸收積累。Newman等[14]研究表明,適宜施氮可提高多年生暖季牧草百喜草和扁穗牛鞭草(Hemarthriaaltissima)的產(chǎn)量和磷去除率;適宜施氮亦可促進(jìn)多年生黑麥草(Loliummultiflorum)和狗牙根(Cynodondactylon)吸收土壤中的磷以提高植株生物量和磷含量,從而有效降低表層土壤磷含量[15];表明增施氮肥有利于植物提取土壤中的磷。Xiao等[18-19]調(diào)查發(fā)現(xiàn),粗齒冷水花(Pileasinofasciata)是一種多年生草本植物,具有地上部生物量大、磷含量高、對環(huán)境適應(yīng)能力強和易于種植等特點,克服了普通磷富集植物的不足;且礦山生態(tài)型粗齒冷水花地上部磷含量高達(dá)16.23 g/kg,非礦山生態(tài)型僅為6.09 g/kg,具有磷富集植物的優(yōu)勢;前期研究得出,高磷條件下,礦山生態(tài)型粗齒冷水花磷富集能力顯著高于非礦山生態(tài)型,是一種典型的磷富集植物[20-22]。本研究在前期研究基礎(chǔ)上,進(jìn)行土培試驗,探討高磷處理下不同施氮量對礦山生態(tài)型粗齒冷水花磷富集特性的影響,明確最佳施氮量,以期為合理利用其提取土壤中過剩的磷提供理論依據(jù)。
1材料與方法
供試植物:礦山生態(tài)型粗齒冷水花采自四川省什邡市磷礦區(qū)(104°50′ E, 30°25′ N),非礦山生態(tài)型粗齒冷水花采自四川省雅安市雨城區(qū)(102°59′ E, 29°58′ N)。
供試土壤:采自四川省都江堰市白沙鎮(zhèn)的灰潮土,其基本理化性質(zhì)為:pH 6.53、速效磷(P)6.80 mg/kg、堿解氮69.04 mg/kg、速效鉀(K)24.90 mg/kg、有機質(zhì)18.15 g/kg。
供試肥料:尿素(N 46.60%)、磷酸二氫鉀(P2O552.16%、K2O 34.61%),均為分析純。
試驗設(shè)置0,70,140,210,280和350 mg N/kg土,共6個施氮量處理。施磷量為400 mg/kg,每處理重復(fù)5次,共60盆,完全隨機排列。采用土培盆栽,土壤風(fēng)干后,過2 mm篩混勻;每盆(14.5 L)裝土15 kg。磷配成溶液一次性施入土壤,充分混勻,陳化5周后,將尿素配成溶液加入土壤,混勻待用。陳化5周后土壤速效磷(P):185.25 mg/kg。
兩種生態(tài)型粗齒冷水花幼苗于2013年5月上旬采集。幼苗的扦插管理采用劉霜等[20]的方法。待幼苗生長30 d后,將長勢一致的幼苗移栽至盆中,每盆種2株。采用自然光照,每周澆水4~5次,按田間持水量的70%確定灌水量,并記錄植株生長狀況,及時除草、防治病蟲害等。試驗于2013年6月至10月在四川農(nóng)業(yè)大學(xué)教學(xué)科研園區(qū)有防雨設(shè)施的網(wǎng)室中進(jìn)行。
于移栽后9周(花期)采樣,采樣時將整盆倒出,植株先用自來水沖洗,再用蒸餾水潤洗,洗凈后用吸水紙擦干,任取一株,將其分為地上部和地下部,裝袋后在105℃殺青30 min,75℃烘干至恒重,稱重測定生物量,粉碎后過1 mm篩用于磷含量測定;另一株取根系經(jīng)液氮迅速固定后,保存于-80℃(Thermo Freezer 700, USA)冰箱,用于酸性磷酸酶和植酸酶活性的測定。
土壤基本理化性質(zhì)采用常規(guī)分析方法[23];植株全磷測定采用H2SO4-H2O2消煮-釩鉬黃比色法[23];酸性磷酸酶活性測定采用對硝基苯磷酸二鈉法[24];植酸酶活性測定采用Starnes等[25]的方法。
富集系數(shù)=植株磷含量/陳化后土壤有效磷含量[26];遷移率=地上部磷積累量/植株磷積累量×100%[26];采用Excel 2007、DPS 11.0進(jìn)行統(tǒng)計分析,Origin Pro 8.0進(jìn)行圖表制作。
2結(jié)果與分析
從表1可知,隨施氮量增加,粗齒冷水花地上部和地下部生物量均呈現(xiàn)先升高后降低趨勢,在140 mg/kg達(dá)最大值。礦山生態(tài)型地上部生物量在70,140和210 mg/kg施氮量下顯著高于對照,分別比對照增加60%,81%和46%;非礦山生態(tài)型地上部生物量在70,140和210 mg/kg顯著高于對照,分別比對照增加26%,63%和49%;各施氮量下礦山生態(tài)型地上部生物量均高于非礦山生態(tài)型,為非礦山生態(tài)型的1.36~3.47倍。礦山生態(tài)型地下部生物量僅在140 mg/kg顯著高于對照,非礦山生態(tài)型地下部生物量在70~280 mg/kg均高于對照;礦山生態(tài)型地下部生物量隨施氮量變化小于非礦山生態(tài)型。其中,礦山生態(tài)型地下部生物量僅在70和140 mg/kg低于非礦山生態(tài)型,在其余施氮量下均高于非礦山生態(tài)型。表明140 mg/kg施氮量能使礦山生態(tài)型粗齒冷水花地上部生物量增幅最大。
表1 施氮量對兩種生態(tài)型粗齒冷水花生物量的影響
注:ME表示礦山生態(tài)型,NME表示非礦山生態(tài)型;同列不同字母表示不同施氮量間差異顯著(P<0.05),*表示不同生態(tài)型間差異顯著(P<0.05),** 表示不同生態(tài)型間差異極顯著(P<0.01)。下同。
Note: ME means mining ecotypes, NME means non-mining ecotypes; Mean values labeled with different letters in the same column are significantly different (P<0.05) at different N supply. * means significantly different (P<0.05) at different ecotypes at the same N supply. ** means significantly different (P<0.01) at different ecotypes at the same N supply. The same below.
從表2可知,隨施氮量增加,粗齒冷水花地上部和地下部磷積累量先升高后降低,在140 mg/kg達(dá)最大值。其中,礦山生態(tài)型地上部磷積累量在70,140和210 mg/kg顯著高于對照,分別比對照增加29%,73%和41%;非礦山生態(tài)型在70,140和210 mg/kg顯著高于對照,分別比對照增加46%,76%和31%。各施氮量下礦山生態(tài)型地上部磷積累量均高于非礦山生態(tài)型,為非礦山生態(tài)型的1.34~2.59倍。礦山生態(tài)型地下部磷積累量僅在140和210 mg/kg顯著高于對照,非礦山生態(tài)型在70,140和210 mg/kg顯著高于對照。除70和140 mg/kg施氮量外,礦山生態(tài)型地下部磷積累量均高于非礦山生態(tài)型。表明礦山生態(tài)型粗齒冷水花地上部和地下部磷積累量受施氮量影響較大,在140 mg/kg施氮量下其磷積累量最大。
表2 施氮量對兩種生態(tài)型粗齒冷水花磷積累量的影響
由表3可知,礦山生態(tài)型粗齒冷水花磷富集系數(shù)隨施氮量增加而升高,在350 mg/kg施氮量達(dá)最大值。各施氮量下礦山生態(tài)型磷富集系數(shù)均大于1,且高于對照。兩種生態(tài)型粗齒冷水花磷富集系數(shù)在不同施氮量下差異較小,表明適宜施氮可促進(jìn)礦山生態(tài)型粗齒冷水花對磷的吸收,增加植株生物量,而對其體內(nèi)磷含量有一定稀釋作用,導(dǎo)致富集系數(shù)差異較小。
遷移率能很好地反映粗齒冷水花向地上部轉(zhuǎn)移磷的能力。由表3可知,在不同施氮量下,礦山生態(tài)型粗齒冷水花磷遷移率均大于50%。除對照外,礦山生態(tài)型粗齒冷水花遷移率在不同施氮量下均高于非礦山生態(tài)型,在70和140 mg/kg處理下表現(xiàn)最為明顯。表明適宜增施氮肥能提高礦山生態(tài)型向地上部遷移磷的能力,增加植株對磷的積累。
表3 施氮量對兩種生態(tài)型粗齒冷水花磷富集系數(shù)和遷移率的影響
由圖1可知,在高磷(400 mg/kg)條件下,隨施氮量增加,礦山生態(tài)型粗齒冷水花根系酸性磷酸酶活性逐漸升高,植酸酶活性則先升高后降低,在140 mg/kg達(dá)最大值。各施氮量下礦山生態(tài)型根系酸性磷酸酶和植酸酶活性均顯著高于非礦山生態(tài)型(P<0.05),分別為非礦山生態(tài)型的1.22~1.67倍和1.02~1.07倍。在70~350 mg/kg施氮量下,礦山生態(tài)型根系酸性磷酸酶活性分別比對照增加34%~281%,非礦山生態(tài)型根系酸性磷酸酶活性比對照增加23%~178%。礦山生態(tài)型根系植酸酶活性在施氮量為70,140和210 mg/kg時分別比對照增加3.80%,13.60%和8.40%,非礦山生態(tài)型根系植酸酶活性則比對照增加4.2%,10.0%和5.2%。表明高磷條件下,適宜施氮可顯著提高礦山生態(tài)型粗齒冷水花根系酸性磷酸酶和植酸酶活性。
圖1 施氮量對兩種生態(tài)型粗齒冷水花根系酸性磷酸酶(A)和植酸酶(B)活性的影響Fig.1 Effect of different N supply on the activities of apase (A) and phytase (B) in the root of two ecotypes of P. sinofasciata ME表示礦山生態(tài)型,NME表示非礦山生態(tài)型;不同字母表示同種生態(tài)型不同施氮量間差異顯著(P<0.05),* 表示同一處理不同生態(tài)型間差異顯著(P<0.05),** 表示同一處理不同生態(tài)型間差異極顯著(P<0.01)。ME means mining ecotypes, NME means non-mining ecotypes; Mean values labeled with different letters in the same ecotypes are significantly different (P<0.05) at different N supply. * means significantly different (P<0.05) at different ecotypes at the same N supply. ** means significantly different (P<0.01) at different ecotypes at the same N supply.
3討論
目前,有關(guān)富磷植物的研究主要集中在不同植物品種和同一品種不同基因型或生態(tài)型間富磷能力比較等方面[27-32],對如何提高其磷富集潛力的研究較少;況且報道的富磷植物多為陸生植物,對于既適合陸生又適合濕生的植物研究較為缺乏。粗齒冷水花是一種多年生草本植物,廣泛分布于中國大陸南方地區(qū)的路邊、河邊和山坡上,可陸生和濕生,具有生物量大、磷含量高、根系分布深、對環(huán)境適應(yīng)能力強、可連續(xù)多年提取等優(yōu)點。前期土培試驗表明,高磷處理下的礦山生態(tài)型粗齒冷水花對磷的富集能力較強[20],其磷富集潛力遠(yuǎn)高于非礦山生態(tài)型粗齒冷水花、向日葵(Helianthusannus)、黃南瓜、Marshall和Gulf黑麥草等磷富集植物[9,13]。本研究在前期研究的基礎(chǔ)上進(jìn)一步揭示了施氮量對高磷處理下的兩種生態(tài)型粗齒冷水花磷富集潛力的影響。相關(guān)研究表明,合理施氮可促進(jìn)甜瓜(Cucumismelo)[33]、飼草玉米(Zeamays)[34]、百喜草和扁穗牛鞭草[14]地上部的生長,增加收獲部分生物量;不合理施氮則會引發(fā)氮肥增產(chǎn)效益降低,對植物生長產(chǎn)生毒害等問題。本研究中,在140 mg/kg施氮量下,礦山生態(tài)型生物量達(dá)36.25 g/株,遠(yuǎn)高于非礦山生態(tài)型(29.13 g/株)以及相同磷濃度和同一采樣時期下的礦山生態(tài)型生物量(4.49 g/株)[21];當(dāng)施氮量超過140 mg/kg,生物量顯著下降,表明適宜施氮可有效提高礦山生態(tài)型生物量,不合理施氮則會對植株產(chǎn)生毒害,進(jìn)而降低其生物量。
施氮不僅會影響植物的生長,也會影響植物對養(yǎng)分的吸收積累。湯明堯等[35]研究表明,施氮可促進(jìn)加工番茄(Lycopersiconesculentum)植株對磷的吸收,各施氮處理下的磷積累量為對照的1.49~2.63倍;有關(guān)甜瓜[33]和雜交棉(Gossypiumhirsutum)[36]等的研究指出,適宜增施氮肥可有效提高植株磷積累量,過量施氮則不利于植株磷的積累。本研究中,在0~140 mg/kg施氮范圍內(nèi),高磷處理下的礦山生態(tài)型粗齒冷水花植株磷積累量逐漸增加;當(dāng)施氮量高于140 mg/kg,礦山生態(tài)型磷積累量顯著下降;表明在0~140 mg/kg范圍內(nèi)施氮可顯著提高礦山生態(tài)型粗齒冷水花磷積累量,過量施氮則會影響植株磷積累。植物修復(fù)的高效率表現(xiàn)在通過地上部帶走污染物的總量[6],礦山生態(tài)型地上部和整株磷積累量在140 mg/kg施氮量下可達(dá)223.73和259.82 mg/株,非礦山生態(tài)型達(dá)159.79和202.22 mg/株,遠(yuǎn)高于相同磷濃度和同一采樣時期下的礦山生態(tài)型整株磷積累量(30.25 mg/株)[21];而高磷(豬糞)處理下礦山生態(tài)型粗齒冷水花整株磷積累量僅為99.40 mg/株[22];可水陸兩生的水蓼(Polygonumhydropiper)在高磷條件下磷積累量也僅為114.88 mg/株[26];用于污水修復(fù)的鳳眼蓮(Eichhorniacrassipes)和粉綠狐尾藻(Myriophyllumaquaticum)體內(nèi)磷積累量最高也僅為80.13和38.72 mg/株[37]。迄今為止研究最為深入的牧草Ptilotus[38]、Marshall和Gulf黑麥草[9-10],在高磷處理下的地上部磷積累量也僅能達(dá)到120,29.33和29.70 mg/盆,遠(yuǎn)低于本研究中的礦山生態(tài)型粗齒冷水花的單株磷積累量。因此,適宜增施氮能顯著提高礦山生態(tài)型粗齒冷水花磷積累量,強化其富磷潛力。植物根系分泌酸性磷酸酶是提高有機磷在土壤中的生物有效性的重要途徑之一[39-40],植酸酶是對植酸鹽類具有高度的專一性的磷酸單酯水解酶,為肌醇與磷酸(鹽)一類酶的總稱[12, 24],對植酸鹽類具有高度的專一性。根系分泌酸性磷酸酶被認(rèn)為是植物適應(yīng)低磷脅迫的一種機制[41-43]。然而,研究得出,高磷處理下的富磷植物黃瓜、黃南瓜[13]、水蓼[26]、Duofestulolium[10,24]、Marshall和Gulf黑麥草[9-10]等的根系酸性磷酸酶和植酸酶活性均高于對照;葉代樺等[26]認(rèn)為,富磷植物水蓼體內(nèi)較高的酸性磷酸酶和植酸酶活性是其對磷富集的機理之一。本研究中,高磷處理下的粗齒冷水花酸性磷酸酶活性隨施氮量增加而升高,植酸酶活性則先升高后降低,表明適宜施氮可顯著提高高磷處理下的粗齒冷水花根系酸性磷酸酶和植酸酶活性,增加植物對磷的富集;礦山生態(tài)型根系酸性磷酸酶和植酸酶活性始終高于非礦山生態(tài)型,說明各施氮量下礦山生態(tài)型粗齒冷水花對磷的富集作用更強。以上研究表明,礦山生態(tài)型粗齒冷水花在適宜施氮量下的生長狀況更佳,比非礦山生態(tài)型以及普通富磷植物更具磷富集優(yōu)勢。除多次收獲和暖冷季混種等方式外,適宜施氮亦可有效提高植物對磷的富集潛力。
4結(jié)論
隨施氮量的增加,礦山生態(tài)型粗齒冷水花生物量和磷積累量先升高后降低,在140 mg/kg施氮量下達(dá)最大值。其中,礦山生態(tài)型地上部和整株磷積累量達(dá)223.73和259.82 mg/株。各施氮量下礦山生態(tài)型生物量和磷積累量均高于非礦山生態(tài)型。礦山生態(tài)型磷富集系數(shù)隨施氮量增加而增加,磷遷移率均高于50%。與非礦山生態(tài)型相比,礦山生態(tài)型對磷的富集潛力更大。
礦山生態(tài)型根系酸性磷酸酶和植酸酶活性分別在350和140 mg/kg達(dá)峰值,且各施氮量下礦山生態(tài)型根系酸性磷酸酶活性和植酸酶活性均顯著高于非礦山生態(tài)型。在140 mg/kg施氮量下,高磷環(huán)境中的礦山生態(tài)型粗齒冷水花根系較高的酸性磷酸酶和植酸酶活性是其高效積累磷的原因之一。
本研究發(fā)現(xiàn),140 mg/kg為最佳施氮量,該施氮量下礦山生態(tài)型粗齒冷水花的長勢和磷富集潛力均最優(yōu)。
References:
[1]Chakraborty D, Nair V D, Chrysostome M,etal. Soil phosphorus storage capacity in manure-impacted Alaquods: Implications for water table management. Agriculture, Ecosystems & Environment, 2011, 142(3): 167-175.
[2]Waldrip H M, He Z, Erich M S. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 2011, 47(4): 407-418.
[3]Schwartz R, Dao T H, Bell J M. Manure and mineral fertilizer effects on seasonal dynamics of bioactive soil phosphorus fractions. Agronomy Journal, 2011, 103(6): 1724-1733.
[4]Chien S H, Prochnow L I, Tu S,etal. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutrient Cycling in Agroecosystems, 2011, 89(2): 229-255.
[5]DeLaune P B, Moore P A, Carman D K,etal. Evaluation of the phosphorus source component in the phosphorus index for pastures. Journal of Environmental Quality, 2004, 33(6): 2192-2200.
[6]Pant H K, Mislevy P, Rechcigl J E. Effects of phosphorus and potassium on forage nutritive value and quantity: environmental implications. Agronomy Journal, 2004, 96(5): 1299-1305.
[7]Xiang W, Xiao E Y, Rengel Z. Phytoremediation facilitates removal of nitrogen and phosphorus from eutrophicated water and release from sediment. Environmental Monitoring and Assessment, 2009, 157(1): 277-285.
[8]Padmanabhan P, Sahi S V. Suppression subtractive hybridization reveals differential gene expression in sunflower grown in high P. Plant Physiology and Biochemistry, 2011, 49(6): 584-591.
[9]Sharma N C, Sahi S V, Jain J C,etal. Enhanced accumulation of phosphate byLoliummultiflorumcultivarsgrown in phosphate enriched medium. Environmental Science & Technology, 2004, 38(8): 2443-2448.
[10]Sharma N C, Sahi S V. Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations inLoliummultiflorumgrown under sterile conditions. Environmental Science & Technology, 2011, 45(24): 10531-10537.
[11]Padmanabhan P, Starnes D L, Sahi S V. Differential responses ofDuograss(Lolium×Festuca), a phosphorus hyperaccumulator to high phosphorus and poultry manure treatments. African Journal of Biotechnology, 2013, 12(21): 3191-3195.
[12]Priya P, Sahi S V. Influence of phosphorus nutrition on growth and metabolism ofDuograss(Duofestulolium). Plant Physiology and Biochemistry, 2009, 47(1): 31-36.
[13]Sharma N C, Starnes D L, Sahi S V. Phytoextraction of excess soil phosphorus. Environmental Pollution, 2007, 146(1): 120-127.
[14]Newman Y C, Agyin-Birikorang S, Adjei M B,etal. Enhancing phosphorus phytoremedation potential of two warm-season perennial grasses with nitrogen fertilization. Agronomy Journal, 2009, 101(6): 1345-1351.
[15]Read J J. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus enriched soils. Agronomy Journal, 2012, 104(4): 908-916.
[16]Zheng Z C, Li T X, Zeng F F,etal. Accumulation characteristics of and removal of nitrogen and phosphorus from livestock wastewater byPolygonumhydropiper. Agricultural Water Management, 2013, 117: 19-25.
[17]Silveira M L, Vendramini J M B, Sui X,etal. Screening perennial warm-season bioenergy crops as an alternative for phytoremediation of excess soil P. BioEnergy Research, 2013, 6(2): 469-475.
[18]Xiao G L, Li T X, Zhang X Z,etal. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area. Journal of Hazardous Materials, 2009, 171(1-3): 542-550.
[19]Xiao G L, Li T X, Zhang X Z,etal. Effect of different phosphorus treatments on the physiological and biochemical characteristics ofPileasinofasciata. Communications in Soil Science and Plant Analysis, 2010, 41(12): 1433-1444.
[20]Liu S, Li T X, Ji L,etal. Phosphorus accumulation and root morphological difference of two ecotypes ofPileasinofasciatagrown in different phosphorus treatments. Acta Prataculturae Sinica, 2013, 22(3): 211-217.
[21]Zheng Z C, Li T X, Zhang X Z,etal. Phosphorous accumulation and distribution of two ecotypes ofPileasinofasciatagrown in phosphorous-enriched soils. Applied Soil Ecology, 2014, 84: 54-61.
[22]Ye D H, Li T X, Zhang X Z,etal. P uptake characteristics and P removal potentials ofPileasinofasciatagrown under soils amended with swine manure. Ecological Engineering, 2014, 73: 553-559.
[23]Lu R K. Analytical Methods of Soil and Agricultural Chemistry[M]. Beijing: China Agricultural Scientech Press, 2000: 146-315.
[24]Sharma N C, Sahi S V. Characteristics of phosphate accumulation inLoliummultiflorumfor remediation of phosphorus-enriched soils. Environmental Science & Technology, 2005, 39(14): 5475-5480.
[25]Starnes D L, Padmanabhan P, Sahi S V. Effect of P sources on growth, P accumulation and activities of phytase and acid phosphatases in two cultivars of annual ryegrass (LoliummultiflorumL.). Plant Physiology and Biochemistry, 2008, 46(5-6): 580-589.
[26]Ye D H, Li T X, Zhang X Z,etal. Effect of high phosphate supply on P accumulation characteristics of mining ecotype ofPolygonumhydropiper. Plant Nutrition and Fertilizer Science, 2013, 20(1): 196-204.
[27]Missouri A M, Boerma H R, Bouton J H. Genetic variation and heritability of phosphorus uptake in Alamo switchgrass grown in high phosphorus soils. Field Crops Research, 2005, 93(2): 186-198.
[28]Marschner P, Solaiman Z, Rengel Z. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology and Biochemistry, 2007, 39(1): 87-98.
[29]Muir J P, Bow J R. Herbage, phosphorus, and nitrogen yields of winter-season forages on high-phosphorus soil. Agronomy Journal, 2009, 101(4): 764-768.
[30]Huang X, Li T X, Zhang X Z,etal. Growth, P accumulation, and physiological characteristics of two ecotypes ofPolygonumhydropiperas affected by excess P supply. Journal of Plant Nutrition and Soil Science, 2012, 175(2): 290-302.
[31]Ye D H, Li T X, Chen G D,etal. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase ofPolygonumhydropiper. Chemosphere, 2014, 105(2014):139-145.
[32]Hammond J P, White P J. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. Journal of Experimental Botany, 2008, 59(1): 93-109.
[33]Hu G Z, Feng J X, Zhang Y,etal. Effects of nitrogen fertilization on nutrient uptake, assignment, utilization and yield of melon. Plant Nutrition and Fertilizer Science, 2013, 19(3): 760-766.
[34]Cheng Y X, Cheng X, Cheng X P,etal. Effects of different nitrogen additions on the yield, quality and nutrition absorption of forge maize. Acta Prataculturae Sinica, 2014, 23(3): 255-261.
[35]Tang M Y, Zhang Y, Hu W,etal. Effects of different nitrogen rates on nutrition absorption, distribution and yield in tomato. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1238-1245.
[36]Li L L, Fang W P, Ma Z B,etal. Effects of nitrogen fertilization on uptake and utilization of NPK and yield and quality of hybrid cotton. Plant Nutrition and Fertilizer Science, 2010, 16(3): 663-667.
[37]Polomski R F, Taylor M D, Bielenberg D G,etal. Nitrogen and phosphorus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands. Water, Air, and Soil Pollution, 2009, 197: 223-232.
[38]Ryan M H, Ehrenberg S, Bennett R G,etal. Putting the P inPtilotus: a phosphorus-accumulating herb native to Australia. Annals of Botany, 2009, 103: 901-911.
[39]Richardson A E, Hadobas P A, Hayes J E. Acid phosphomonoesterase and phytase activities of wheat (TriticumaestivumL.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant, Cell & Environment, 2000, 23(4): 397-405.
[40]Ramesh A, Sharma S K, Joshi O P,etal. Phytase, phosphatase activity and P-nutrition of soybean as influenced by inoculation of Bacillus. Indian Journal of Microbiology, 2011, 51(1): 94-99.
[41]George T S, Gregory P J, Hocking P,etal. Variation in root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro, but does not explain differences in the P-nutrition of plants when grown in soils. Environmental and Experimental Botany, 2008, 64(3): 239-249.
[42]Qiu H, Liu C, Yu T,etal. Identification of QTL for acid phosphatase activity in root and rhizosphere soil of maize under low phosphorus stress. Euphytica, 2014, 197(1): 133-143.
[43]Huang Y, Zhang H W, Xu F S. Research progress on plant acid phosphatase. Journal of Huazhong Agricultural University, 2008, 27(1): 148-154.
參考文獻(xiàn):
[20]劉霜, 李廷軒, 戢林, 等. 不同磷處理下兩種生態(tài)型粗齒冷水花的富磷特征及根系形態(tài)差異. 草業(yè)學(xué)報, 2013, 22(3): 211-217.
[23]魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國農(nóng)業(yè)科技出版社, 2000: 146-315.
[26]葉代樺, 李廷軒, 張錫洲, 等. 高磷對礦山生態(tài)型水蓼磷富集特性的影響. 植物營養(yǎng)與肥料學(xué)報, 2013, 20(1): 196-204.
[33]胡國智, 馮炯鑫, 張炎, 等. 不同施氮量對甜瓜養(yǎng)分吸收、分配、利用及產(chǎn)量的影響. 植物營養(yǎng)與肥料學(xué)報, 2013, 19(3): 760-766.
[34]陳遠(yuǎn)學(xué), 陳曦, 陳新平, 等. 不同施氮對飼草玉米產(chǎn)量品質(zhì)及養(yǎng)分吸收的影響. 草業(yè)學(xué)報, 2014, 23(3): 255-261.
[35]湯明堯, 張炎, 胡偉, 等. 不同施氮水平對加工番茄養(yǎng)分吸收、分配及產(chǎn)量的影響. 植物營養(yǎng)與肥料學(xué)報, 2010, 16(5): 1238-1245.
[36]李伶俐, 房衛(wèi)平, 馬宗斌, 等. 施氮量對雜交棉氮、磷、鉀吸收利用和產(chǎn)量及品質(zhì)的影響. 植物營養(yǎng)與肥料學(xué)報, 2010, 16(3): 663-667.
[43]黃宇, 張海偉, 徐芳森. 植物酸性磷酸酶的研究進(jìn)展. 華中農(nóng)業(yè)大學(xué)學(xué)報, 2008, 27(1): 148-154.