史樂 鄭春泉
?
·綜 述·
免疫調(diào)節(jié)及呼吸道炎性疾病中Notch信號(hào)通路的作用
史樂 鄭春泉
Notch信號(hào)通路廣泛參與多種組織細(xì)胞的信號(hào)識(shí)別、增殖、分化、凋亡等活動(dòng),影響組織器官的形成、更新及功能穩(wěn)定,是一條高度保守而重要的信號(hào)通路。越來越多的研究發(fā)現(xiàn),Notch可以參與免疫細(xì)胞的活動(dòng)而調(diào)節(jié)免疫應(yīng)答及相關(guān)炎性疾病。本文就Notch信號(hào)通路在免疫調(diào)節(jié)及呼吸道炎性疾病中的作用做一綜述。(中國(guó)眼耳鼻喉科雜志,2016,16:446-449)
Notch信號(hào)通路;免疫調(diào)節(jié);呼吸道炎性疾病
Notch基因最早于1917年首次在果蠅體內(nèi)發(fā)現(xiàn),因該基因的部分功能缺失會(huì)導(dǎo)致果蠅翅膀邊緣造成缺口(Notch)而得名[1]。近100年來,人們對(duì)Notch信號(hào)通路的認(rèn)識(shí)逐步深入。它是一條影響細(xì)胞命運(yùn),高度保守而重要的信號(hào)通路,從無脊椎動(dòng)物到哺乳動(dòng)物,Notch信號(hào)廣泛參與胚胎分化發(fā)育,影響中樞和外周神經(jīng)、肌肉、血管等組織器官形成與更新,以及多個(gè)成人組織器官的穩(wěn)定運(yùn)行,參與多種組織細(xì)胞的信號(hào)識(shí)別、增殖、分化、凋亡等活動(dòng)[2]。
呼吸道炎性疾病在人群中的發(fā)生率呈上升趨勢(shì),也嚴(yán)重影響著人類的生活質(zhì)量。它的發(fā)生是多因素參與、多步驟形成,并且呈現(xiàn)多態(tài)性發(fā)展,持續(xù)性炎癥與免疫反應(yīng)密切相關(guān),如慢性阻塞性肺疾病、哮喘、慢性鼻竇炎、變應(yīng)性鼻炎等,其中T細(xì)胞的活化、增殖、分泌相應(yīng)細(xì)胞因子對(duì)疾病的發(fā)展至關(guān)重要。本文重點(diǎn)綜述Notch信號(hào)通路結(jié)構(gòu)特點(diǎn)及其在輔助T細(xì)胞中的作用,及其在呼吸道炎性疾病的可能治療作用。
1.1 Notch信號(hào)通路的基本結(jié)構(gòu) Notch 信號(hào)途徑由Notch受體、配體及下游效應(yīng)物組成。在脊椎動(dòng)物,共發(fā)現(xiàn)4個(gè)Notch同源體——Notch1、Notch2、Notch3和Notch4,它們廣泛分布于淋巴細(xì)胞、造血干細(xì)胞、胚胎干細(xì)胞以及神經(jīng)細(xì)胞等細(xì)胞表面[3-5]。Notch受體是單次跨膜蛋白,由胞外域(extracelluar Notch, ECN)、跨膜區(qū)和胞內(nèi)域(intracelluar Notch,ICN)組成。ECN包括29~36個(gè)表皮生長(zhǎng)因子(epiehelial growth factor, EGF)樣重復(fù)序列及3個(gè)富含半胱氨酸重復(fù)序列,與Notch配體相結(jié)合。ICN包含一些介導(dǎo)Notch信號(hào)轉(zhuǎn)導(dǎo)功能的區(qū)域,主要含有重組信號(hào)結(jié)合蛋白區(qū)(RBP2J kappa associated molecular,RAM,可以與DNA結(jié)合蛋白相結(jié)合);錨蛋白重復(fù)序列(ankyrin repeats,ANK);核定位信號(hào)(nuclear localization signal,NLS);反式激活區(qū)域(transactivation domain,TAD,Notch3,4無此結(jié)構(gòu)域);PEST區(qū)域:一段富含脯氨酸、谷氨酸、絲氨酸、蘇氨酸的區(qū)域,可以調(diào)節(jié)Notch胞內(nèi)活化片段(Notch intracelluar domain, NICD)的穩(wěn)定性。Notch配體分為2個(gè)家族,共5種:Delta-like 樣家族,Delta1(DLL1)、Delta3(DLL3)和Delta4(DLL4);Jagged家族,Jagged1(Jag1)與Jagged2(Jag2)。它們也是單次跨膜蛋白,其胞外域也有數(shù)量不等的EGF樣重復(fù)序列和一個(gè)保守的富含半胱氨酸位點(diǎn),即DSL結(jié)構(gòu)域。
1.2 Notch信號(hào)通路啟動(dòng)的基本過程 Notch信號(hào)通路由相鄰細(xì)胞間Notch受體和Notch配體結(jié)合而啟動(dòng)。哺乳動(dòng)物中經(jīng)典Notch信號(hào)通路的激活過程需要3次蛋白裂解,其中的關(guān)鍵酶分別是Furin樣轉(zhuǎn)化酶(將Notch從單鏈前體轉(zhuǎn)變?yōu)楫愒炊垠w,從而被轉(zhuǎn)運(yùn)到細(xì)胞膜)、解聚素金屬蛋白酶(a disintegrin and metalloprotease, ADAM)及γ-分泌酶。Notch受體配體結(jié)合后,其胞外段被ADAM裂解,生成去胞外段跨膜區(qū)的Notch分子(NEXT),進(jìn)而由γ-分泌酶對(duì)其跨膜區(qū)進(jìn)行裂解,將胞內(nèi)段水解成具有活性的NICD,進(jìn)入胞核發(fā)揮作用,由此上調(diào)下游靶基因——Hes基因、CD25基因、bcl-2等相關(guān)基因的轉(zhuǎn)錄水平[6]。另外研究[7]還發(fā)現(xiàn),Notch信號(hào)可以與NF-κβ、轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor β, TGF-β)等信號(hào)通路相互交叉作用,從而擴(kuò)大了可影響基因譜。當(dāng)然,也有研究[8-9]發(fā)現(xiàn)非配體依賴的Notch受體激活也可以啟動(dòng)Notch信號(hào)通路。Notch信號(hào)通路的調(diào)節(jié)主要通過相關(guān)分子相互作用以及受體配體的糖基化、泛素化、磷酸化等修飾調(diào)節(jié)作用[10]。
2.1 Notch對(duì)輔助T細(xì)胞1型的調(diào)節(jié) 輔助T細(xì)胞1型(T helper cell 1,Th1)細(xì)胞能夠產(chǎn)生γ干擾素(interferon γ,IFN-γ),增強(qiáng)吞噬細(xì)胞殺傷吞噬病原體的能力。抗原呈遞細(xì)胞(APCs)接觸抗原后可通過上調(diào)DLL1和DLL4提高Th1細(xì)胞的免疫應(yīng)答[4]。有研究[11-12]發(fā)現(xiàn),即使在Th2細(xì)胞誘導(dǎo)環(huán)境中,DLL1也可以誘導(dǎo)CD4細(xì)胞產(chǎn)生IFN-γ,阻斷Notch信號(hào)通路會(huì)導(dǎo)致T細(xì)胞數(shù)量的減少。在氣道高反應(yīng)的小鼠模型中,活化的DLL1-Fc片段能夠提高肺泡灌洗液中的IFN-γ而降低肺部Th2細(xì)胞的免疫應(yīng)答[13],進(jìn)一步說明DLL1對(duì)Th1的正向調(diào)控作用。另有學(xué)者分離出LPS刺激小鼠脾臟CD8+樹突細(xì)胞(DC)和CD8-DC,發(fā)現(xiàn)CD8-表面的DLL4明顯上升。用DLL4Fc融合片段阻斷DLL4與Notch連接,發(fā)現(xiàn)CD8-DC細(xì)胞引起的T細(xì)胞增殖和抗原依賴性的T細(xì)胞激活并未受影響,但卻影響IFN-γ的分泌。接著給IL-12基因敲除小鼠注射DLL4Fc融合片段后,IFN-γ顯著減少。Jurynczyk等[14]在自身免疫性腦脊髓膜炎的動(dòng)物模型(EAE)中,用γ-分泌酶抑制劑、Notch1、Notch3抗體分別處理小鼠,發(fā)現(xiàn)Notch3特異性阻斷的小鼠癥狀減輕最顯著,Th1細(xì)胞免疫反應(yīng)減弱。Jiao等[15]也發(fā)現(xiàn)Notch3通路可以通過DLL1誘導(dǎo)CD4T細(xì)胞偏移向Th1細(xì)胞分化。但對(duì)于Notch信號(hào)通路的阻斷,并未對(duì)Th1細(xì)胞的分化產(chǎn)生影響,提示Notch信號(hào)通路可以影響Th1細(xì)胞的分化,但可能并非決定性的。具體配體受體通路機(jī)制還有待研究[16]。
2.2 Notch對(duì)Th2細(xì)胞的調(diào)節(jié) Th2細(xì)胞主要針對(duì)抗細(xì)胞外寄生蟲的免疫反應(yīng),IL-4能夠驅(qū)動(dòng)誘發(fā)Th2細(xì)胞,其能夠產(chǎn)生相關(guān)細(xì)胞因子IL-4、IL-5、IL-13發(fā)揮功能。有體外研究表明,APCs表面Jag受體能夠誘導(dǎo)Th2細(xì)胞的分化,然而,體內(nèi)試驗(yàn)卻證明Jag2對(duì)于Th2細(xì)胞的分化并不是必需的,具體分子機(jī)制不明[17]。T細(xì)胞Rbp-j或N1N2缺陷小鼠用Th2細(xì)胞抗原激發(fā)后,并不能引起Th2細(xì)胞免疫應(yīng)答,然而在外源性IL-4處理培養(yǎng)后,可以發(fā)現(xiàn)Th2細(xì)胞因子的上升。卵清蛋白致敏哮喘小鼠模型,用GSI處理后,引起了Th2細(xì)胞因子減少及NF-κB信號(hào)抑制[18]。IL-4和Gata3(Th2細(xì)胞的關(guān)鍵轉(zhuǎn)錄因子)都是Notch的靶基因。IL-4是Notch信號(hào)通路下游的信號(hào)分子。有研究[19]發(fā)現(xiàn)Notch可以直接調(diào)節(jié)Gata3基因的表達(dá),通過Rbp-j轉(zhuǎn)錄因子復(fù)合物,其可銜接于大部分Gata3基因啟動(dòng)子的上游,由此而調(diào)節(jié)Gata3,通過誘導(dǎo)Gata3的表達(dá)直接調(diào)控IL-4基因誘導(dǎo)Th2細(xì)胞分化。另外,中和DLL4對(duì)于Th2細(xì)胞的增殖分化也可能具有負(fù)性調(diào)控作用。給予哮喘小鼠DLL4處理,發(fā)現(xiàn)肺泡灌洗液中IgE、IL-5、IL-13、嗜酸性活化因子減少。提取脾臟DC,發(fā)現(xiàn)其激活T細(xì)胞的能力減弱,卻能使T細(xì)胞產(chǎn)生更多的IL-10和IFN-γ而IL-4降低[20]。在呼吸道合胞病毒作用的氣道高反應(yīng)小鼠模型中同樣發(fā)現(xiàn),中和DLL4時(shí)能明顯降低氣道高反應(yīng)和黏膜黏液分泌及Th2細(xì)胞因子的分泌[21]。
2.3 Notch對(duì)Th17細(xì)胞的調(diào)節(jié) Th17細(xì)胞免疫系統(tǒng)的調(diào)節(jié)作用逐漸被重視,在多發(fā)性硬化、類風(fēng)濕關(guān)節(jié)炎、克羅恩病、系統(tǒng)性紅斑狼瘡等疾病中均發(fā)揮重要作用。TGF-β、IL-6、IL-23、IL-23等對(duì)促進(jìn)Th17細(xì)胞的分化起重要作用,而IFN-γ、IL-4、Socs3(suppressor of cytokine signaling3)可以抑制其分化[22]。維A酸孤核受體γt(retinoid-related orphan nuclear receptorγt ,RORγt)是其關(guān)鍵轉(zhuǎn)錄因子。小鼠感染結(jié)核分枝桿菌后,產(chǎn)生肉芽腫是免疫應(yīng)答的表現(xiàn),其中高表達(dá)IL-17。在用DLL4抗體處理小鼠后,肉芽腫內(nèi)Th17細(xì)胞相關(guān)因子顯著降低,表明DLL4在結(jié)核分枝桿菌感染后的Th17細(xì)胞激活中有重要作用[20]。另有研究[21,23]證實(shí),在IL-6、TGF-β都存在時(shí),可以促進(jìn)Th17細(xì)胞的增殖,同時(shí)伴有Th2細(xì)胞因子IL-5、IL-13的表達(dá)抑制;而當(dāng)DLL4-Notch信號(hào)通路阻斷時(shí),即使在利于Th17細(xì)胞增殖的微環(huán)境中,IL-17的數(shù)量也顯著下降。Th17的效應(yīng)細(xì)胞因子——IL-17的分泌有賴于Notch,RORγt與IL-17基因均是Notch的靶基因。研究表明IL-17的增加是DLL通過RORγt,而非STAT3。不過,雖然DLL4-Notch可以提高Th17細(xì)胞也可提高IL-17,似乎Notch并非完全通過Th17細(xì)胞的增殖來提高IL-17[24]。Hes1是Notch信號(hào)重要的下游基因,有研究發(fā)現(xiàn)Hes1對(duì)于外周血中產(chǎn)生IL-17的γδT細(xì)胞至關(guān)重要[25]。從腹膜提取的CD25+γδT細(xì)胞和脾臟提取的CD27-γδT細(xì)胞均可產(chǎn)生IL-17,而二者都高表達(dá)Hes1。在小鼠胚胎胸腺細(xì)胞培養(yǎng)中發(fā)現(xiàn),缺乏Notch時(shí),γδT細(xì)胞發(fā)育正常,但Hes1卻明顯減少,同時(shí)也無IL-17的出現(xiàn),說明Notch對(duì)于Hes1的表達(dá)是非常重要的,而其會(huì)進(jìn)一步影響IL-17的產(chǎn)生。不過也有少數(shù)研究表明,不同Notch配體可能對(duì)Th17細(xì)胞作用不同。增強(qiáng)小鼠Jag1-Notch1通路后發(fā)現(xiàn),Th17細(xì)胞分化被抑制,通過基因測(cè)序發(fā)現(xiàn)一系列的基因受影響,其中IL-17a下調(diào)3倍,IIL-17f下調(diào)35倍。IL-17a和IL-17f是Th17細(xì)胞的主要效應(yīng)因子,而且TGF-β和IL-6所引起的IL-17a、IL-17f、RORγt 的升高都可以被Jag1所削減[26]。有研究[23]從小鼠脾臟分離CD4+細(xì)胞,分別用游離DLL1、DLL3處理,發(fā)現(xiàn)僅DLL3作用的細(xì)胞中IL-17有明顯上升。由此可見,Notch對(duì)于Th17細(xì)胞的具體作用還有待進(jìn)一步深入。
2.4 Notch對(duì)調(diào)節(jié)T細(xì)胞的調(diào)節(jié) 調(diào)節(jié)T細(xì)胞(regulatory T cell,Treg)是近來發(fā)現(xiàn)的新的T細(xì)胞亞群,與炎癥/自身免疫病的發(fā)生發(fā)展關(guān)系密切。有實(shí)驗(yàn)證明體外Treg細(xì)胞與高表達(dá)Jag2的造血干細(xì)胞培養(yǎng),可以引起Treg細(xì)胞的增殖。但是,Notch信號(hào)通路可能對(duì)Treg細(xì)胞的增殖分化并非必需,因?yàn)镹otch基因的缺陷并未導(dǎo)致Treg細(xì)胞的減少。TGF-β是Treg細(xì)胞分化的必需細(xì)胞因子,Notch通路可能通過促進(jìn)TGF-β而影響Foxp3(Treg細(xì)胞的標(biāo)志轉(zhuǎn)錄因子)的表達(dá),從而進(jìn)一步影響Treg細(xì)胞[27]。Mota等[28]發(fā)現(xiàn)Dl1可以通過TGF-β途徑和增強(qiáng)Foxp3的表達(dá)來促進(jìn)Treg細(xì)胞的生成,誘導(dǎo)記憶Treg(iTreg)細(xì)胞分化,用DAPT(γ-分泌酶抑制劑)處理細(xì)胞后,F(xiàn)oxp3+Treg細(xì)胞數(shù)量減少。同時(shí)DLL1還可提高Treg細(xì)胞重要表面分子CTLA-4,CD39的表達(dá),增強(qiáng)其功能和穩(wěn)定性。在沒有外源性TGF-β情況下,這種作用依然存在。添加TGF-β后,對(duì)于Treg增殖和功能的效果更加顯著[28]。有研究[29]顯示Notch活化后,可以與TGF-β信號(hào)通路的分子P-Smad3結(jié)合,增強(qiáng)P-Smad3對(duì)TGF-β反應(yīng)啟動(dòng)子的轉(zhuǎn)錄活性,從而增強(qiáng)Treg活性。GSI處理的細(xì)胞Notch通路被抑制的同時(shí),出現(xiàn)TGF-β信號(hào)通路的抑制,并且出現(xiàn)Treg細(xì)胞活性的下降。然而,在EAE中對(duì)DLL4-Notch信號(hào)通路的阻斷,發(fā)現(xiàn)可以顯著提高小鼠外周血和中樞神經(jīng)系統(tǒng)Treg細(xì)胞的數(shù)量。在體外實(shí)驗(yàn)中發(fā)現(xiàn)DLL4可以阻斷TGF-β誘導(dǎo)的Treg的發(fā)生,并阻礙JAK-STAT5信號(hào)通路的活化,從而下調(diào)Foxp3的表達(dá)。可能是由于Notch對(duì)Treg細(xì)胞分化十分重要的轉(zhuǎn)錄因子STAT5的作用,降低Janus kinase 3磷酸化水平,從而降低了Treg細(xì)胞的數(shù)量[30]。
呼吸道炎性疾病的發(fā)生是多種免疫細(xì)胞、炎性細(xì)胞及細(xì)胞因子相互制約、相互協(xié)同的復(fù)雜網(wǎng)絡(luò)過程,如鼻竇炎、變應(yīng)性鼻炎、哮喘,慢性阻塞性肺疾病等。鼻竇炎、變應(yīng)性鼻炎等上呼吸道疾病中存在Th細(xì)胞功能紊亂,嗜酸性粒細(xì)胞及中性粒細(xì)胞等炎性細(xì)胞浸潤(rùn)及腺體分泌的異常。有研究[31]發(fā)現(xiàn)卵清蛋白致敏小鼠哮喘模型注射γ-分泌酶抑制劑MW167阻斷Notch信號(hào)通路后,發(fā)現(xiàn)小鼠氣道炎癥反應(yīng)和氣道痙攣較對(duì)照組相比明顯減輕;小鼠肺組織、肺泡灌洗液、血清中IL-4和IL-5明顯下降,且肺組織中IFN-γ明顯上升。Kang等[32]的研究也證實(shí)GSI(γ-分泌酶抑制劑)處理小鼠會(huì)引起Th2細(xì)胞向Th1細(xì)胞的漂移??乖碳C后,可引起DLL1、DLL4、Jag1的增多,但DLL4增多最明顯。與缺乏DLL4的小鼠相比,DLL4增高的致敏小鼠淋巴結(jié)中Th2細(xì)胞因子IL-4、IL-5、IL-13明顯減少,證明DLL4對(duì)Th2細(xì)胞因子有影響。DLL4抗體處理的小鼠比正常小鼠有更強(qiáng)的高氣道反應(yīng)性[33]。提示Notch可能在哮喘發(fā)生中通過影響Th細(xì)胞的增殖起重要作用。那么,Notch在同樣氣道高反應(yīng)的變應(yīng)性鼻炎中是否也發(fā)揮作用?鄭國(guó)璽等[34]對(duì)變應(yīng)性鼻炎小鼠模型中Notch基因的表達(dá)做了研究,發(fā)現(xiàn)Notch1、Notch3、Notch4的表達(dá)明顯高于對(duì)照組,Notch2表達(dá)卻降低,提示Notch通路可能影響著變應(yīng)性鼻炎的發(fā)生、發(fā)展。另外還有研究[35]觀察γ-分泌酶抑制劑GSI對(duì)于臍帶血來源的嗜酸性粒細(xì)胞的作用,發(fā)現(xiàn)實(shí)驗(yàn)組與對(duì)照組趨化因子CCR3的水平相仿情況下,實(shí)驗(yàn)組嗜酸性粒細(xì)胞的主要堿性蛋白(myelin basic protein MBP)對(duì)eotaxin(嗜酸性趨化因子)反應(yīng)減弱。研究[35]還發(fā)現(xiàn)在GSI存在的情況下,嗜酸性粒細(xì)胞的分化伴隨著ERK通路的激活,且ERK抑制劑能夠使GSI對(duì)于嗜酸性粒細(xì)胞的上述作用消失。該研究表明Notch信號(hào)可能通過ERK通路調(diào)節(jié)嗜酸性細(xì)胞終末分化及其功能,故GSI可以用于嗜酸性細(xì)胞疾病的治療。而嗜酸性粒細(xì)胞浸潤(rùn)是造成變應(yīng)性鼻炎及部分慢性鼻竇炎持續(xù)炎癥反應(yīng)因素之一,這給我們有理由進(jìn)一步探索GSI對(duì)于慢性鼻炎是否有治療作用。
呼吸道上皮腺細(xì)胞分泌活動(dòng)增加,分泌過多粘蛋白也是呼吸道炎性疾病很重要的特征之一。Notch信號(hào)通路可以影響多種細(xì)胞的分化過程,相關(guān)研究表明其可減少氣道杯狀上皮的化生,促進(jìn)Clara細(xì)胞的增生,從而減少腺體的分泌[36]。Jag1配體的缺失可以引起呼吸道纖毛上皮的增多,上皮黏膜和神經(jīng)內(nèi)分泌細(xì)胞的化生,使得黏液分泌增多,同時(shí)伴有Hes-1和Hes-5的表達(dá)下調(diào)[37]。表皮生長(zhǎng)因子(epidermal growth factor,EGF)可以引起黏蛋白上升。Kang等[38]在近期的研究中發(fā)現(xiàn)用DAPT 或 L685,458阻斷培養(yǎng)細(xì)胞Notch信號(hào)通路后,發(fā)現(xiàn)MUC5AC的表達(dá)下降,并證實(shí)Notch引起MUC5AC的分泌是通過EGF-ERK通路的。有研究[39]在小鼠mtCC1-2細(xì)胞和人NCI-H292細(xì)胞中發(fā)現(xiàn)Notch可以調(diào)節(jié)MUC5AC的表達(dá),定點(diǎn)誘變測(cè)序發(fā)現(xiàn)Notch下游基因Hes-1可能與人和小鼠MUC5AC蛋白基因啟動(dòng)子作用而調(diào)節(jié)其表達(dá)。進(jìn)一步說明MUC5AC的分泌與Notch密切相關(guān),提示可通過Notch通路著手降低氣道黏液增生,減輕氣道炎癥反應(yīng)。
Notch信號(hào)通路與免疫炎癥反應(yīng)存在著密切關(guān)系,對(duì)于免疫細(xì)胞的分化成熟都有著至關(guān)重要的作用,與許多炎癥相關(guān)性疾病都有著密切關(guān)系。其對(duì)于呼吸道上皮炎性疾病的具體機(jī)制有待進(jìn)一步研究,但其發(fā)揮的重要作用已從多個(gè)方面被證實(shí)。由于Notch信號(hào)通路的復(fù)雜性,雖然已經(jīng)對(duì)它有一定的認(rèn)識(shí),但很多研究還是處于細(xì)胞和動(dòng)物實(shí)驗(yàn),對(duì)于Notch參與各種細(xì)胞、器官功能活動(dòng)的具體機(jī)制還不明確。因此進(jìn)一步探明Notch在相關(guān)疾病中發(fā)揮作用的具體機(jī)制,可以為治療免疫炎癥疾病提供新的思路。
[1] Kojika S, Griffin JD. Notch receptors and hematopoiesis[J]. Exp Hematol 2001,29(9):1041-1052.
[2] Gazave E, Lapebie P, Richards GS, et al. Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes[J]. BMC Evol Biol, 2009, 9:249.
[3] Maillard I, Adler SH, Pear WS. Notch and the immune system[J]. Immunity, 2003, 19(6):781-791.
[4] Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system[J]. Immunity, 2010, 32(1):14-27.
[5] Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism[J]. Cell, 2009, 137(2):216-233.
[6] Bray SJ. Notch signalling: a simple pathway becomes complex[J]. Nat Rev Mol Cell Biol, 2006, 7(9):678-689.
[7] Poellinger L, Lendahl U. Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms[J]. Curr Opin Genet Dev, 2008, 18(5):449-454.
[8] Hori K, Sen A, Kirchhausen T, et al. Synergy between the ESCRT-Ⅲ complex and Deltex defines a ligand-independent Notch signal[J]. J Cell Biol, 2011, 195(6):1005-1015.
[9] Sanalkumar R, Dhanesh SB, James J. Non-canonical activation of Notch signaling/target genes in vertebrates[J]. Cell Mol Life Sci, 2010, 67(17):2957-2968.
[10] Ho DM, Artavanis-Tsakonas S. The Notch-mediated proliferation circuitry[J]. Curr Top Dev Biol, 2016, 116(1):17-33.
[11] Adler SH, Chiffoleau E, Xu L, et al. Notch signaling augments t cell responsiveness by enhancing cd25 expression[J]. J Immunol, 2003, 171(6):2896-2903.
[12] Palaga T, Miele L, Golde TE, et al. TCR-mediated Notch signaling regulates proliferation and IFN-production in peripheral T cells[J]. J Immunol, 2003, 171(6):3019-3024.
[13] Okamoto M, Takeda K, Joetham A, et al. Essential role of Notch signaling in effector memory CD8+T cell-mediated airway hyperresponsiveness and inflammation[J]. J Exp Med, 2008, 205(5):1087-1097.
[14] Jurynczyk M, Jurewicz A, Raine CS, et al. Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase C theta and attenuates experimental autoimmune encephalomyelitis[J]. J Immunol, 2008, 180(4):2634-2640.
[15] Jiao Z, Wang W, Xu H, et al. Engagement of activated Notch signalling in collagen Ⅱ-specific T helper type 1 (Th1)- and Th17-type expansion involving Notch3 and Delta-like1[J]. Clin Exp Immunol, 2011, 164(1):66-71.
[16] Meng L, Bai Z, He S, et al. The Notch ligand DLL4 defines a capability of human dendritic cells in regulating Th1 and Th17 differentiation[J]. J Immunol, 2016, 196(3):1070-1080.
[17] Mochizuki K, He S, Zhang Y. Notch and inflammatory T-cell response: new developments and challenges[J]. Immunotherapy, 2011, 3(11):1353-1366.
[18] Solberg OD, Ostrin EJ, Love MI, et al. Airway epithelial miRNA expression is altered in asthma[J]. Am J Respir Crit Care Med, 2012, 186(10):965-974.
[19] Amsen D, Antov A, Jankovic D, et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch[J]. Immunity, 2007, 27(1):89-99.
[20] Hussar DA. Importance of patient compliance in effective antimicrobial therapy[J]. Pediatr Infect Dis J, 1987, 6(10):971-975.
[21] Mukherjee S, Rasky AJ, Lundy PA, et al. STAT5-induced lunatic fringe during Th2 development alters delta-like 4-mediated Th2 cytokine production in respiratory syncytial virus-exacerbated airway allergic disease[J]. J Immunology, 2014, 192(3):996-1003.
[22] Lin H, Song P, Zhao Y, et al. Targeting th17 cells with small molecules and small interference RNA[J]. Mediators Inflamm, 2015, 2015:290657.
[23] Jiao Z, Wang W, Hua S, et al. Blockade of Notch signaling ameliorates murine collagen-induced arthritis via suppressing Th1 and Th17 cell responses[J]. Am J Pathol, 2014, 184(4):1085-1093.
[24] Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions[J]. Immunity, 2015, 43(6):1040-1051.
[25] Shibata K, Yamada H, Sato T, et al. Notch-Hes1 pathway is required for the development of IL-17-producing gamma delta T cells[J]. Blood, 2011, 118(3):586-593.
[26] Wang Y, Xing F, Ye S, et al. Jagged-1 signaling suppresses the IL-6 and TGF-beta treatment-induced Th17 cell differentiation via the reduction of RORgammat/IL-17A/IL-17F/IL-23a/IL-12rb1[J]. Sci Rep, 2015, 5:8234.
[27] Huang MT, Dai YS, Chou YB, et al. Regulatory T cells negatively regulate neovasculature of airway remodeling via DLL4-Notch signaling[J]. J Immunol, 2009,183(7):4745-4754.
[28] Mota C, Nunes-Silva V, Pires AR, et al. Delta-like 1-mediated Notch signaling enhances theinvitroconversion of human memory CD4 T cells into FOXP3-expressing regulatory T cells[J]. J Immunol, 2014, 193(12):5854-5862.
[29] Samon JB,Champhekar A,Minter LM,et al.Notch1 and TGFbeta1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells[J]. Blood, 2008,112(5):1813-1821
[30] Bassil R, Zhu B, Lahoud Y, et al. Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development[J]. J Immunol, 2011, 187(5):2322-2328.
[31] Zhou M, Cui ZL, Guo XJ, et al. Blockade of Notch signalling by gamma-secretase inhibitor in lung T cells of asthmatic mice affects T cell differentiation and pulmonary inflammation[J]. Inflammation, 2015, 38(3):1281-1288.
[32] Kang JH, Kim BS, Uhm TG, et al. Gamma-secretase inhibitor reduces allergic pulmonary inflammation by modulating Th1 and Th2 responses[J]. Am J Respir Crit Care Med, 2009, 179(10):875-882.
[33] Jang S, Schaller M, Berlin AA, et al. Notch ligand delta-like 4 regulates development and pathogenesis of allergic airway responses by modulating IL-2 production and Th2 immunity[J]. J Immunol, 2010, 185(10):5835-5844.
[34] 鄭國(guó)璽,劉亮亮,??担?Notch基因在變應(yīng)性鼻炎小鼠模型中的表達(dá)及其意義[J].臨床耳鼻咽喉頭頸外科雜志,2014,28(20):1585-1589.
[35] Kang JH, Lee da H, Seo H, et al. Regulation of functional phenotypes of cord blood derived eosinophils by gamma-secretase inhibitor[J]. Am J Respir Cell Mol Biol, 2007, 37(5):571-577.
[36] Lafkas D, Shelton A, Chiu C, et al. Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung[J]. Nature, 2015, 528(7580):127-131.
[37] Zhang S, Loch AJ, Radtke F, et al. Jagged1 is the major regulator of Notch-dependent cell fate in proximal airways[J]. Dev Dyn, 2013, 242(6):678-686.
[38] Kang JH, Lee EH, Park SW, et al. MUC5AC expression through bidirectional communication of Notch and epidermal growth factor receptor pathways[J]. J Immunol, 2011, 187(1):222-229.
[39] Ou-Yang HF, Wu CG, Qu SY, et al. Notch signaling downregulates MUC5AC expression in airway epithelial cells through Hes1-dependent mechanisms[J]. Respiration, 2013, 86(4):341-346.
(本文編輯 楊美琴)
Function of Notch signaling in immunological regulation and respiratory tract inflammation diseases
SHILe,ZHENGChun-quan.
DepartmentofOtorhinolaryngology,EyeEarNoseandThroatHospitalofFudanUniversity,Shanghai200031,China
ZHENG Chun-quan, Email: 96zheng@sina.com
Notch, a highly conservative signaling, is of great importance in celluar activities, such as inter-cell identifying, differentiation, proliferation and apoptosis, thus influencing the process of forming, developing and function of organs. Lately, increasing proofs have revealed that Notch system can have an influence on immune response of disease. In the present review, the recent findings that explore the underlying mechanism of Notch signaling in immunological regulation and respiratory tract inflammation diseases were discussed.(Chin J Ophthalmol and Otorhinolaryngol,2016,16:446-449)
Notch signaling pathway; Immunoregulation; Respiratory tract inflammation disease
復(fù)旦大學(xué)附屬眼耳鼻喉醫(yī)院耳鼻喉科 上海 200031
鄭春泉(Email:96zheng@sina.com)
10.14166/j.issn.1671-2420.2016.06.023
2016-04-15)