• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      利用Kloosterman和刻畫一類超Bent函數(shù)

      2016-01-22 06:29:16唐春明亓延峰徐茂智
      關(guān)鍵詞:密碼學(xué)布爾刻畫

      唐春明,亓延峰,徐茂智

      (1.西華師范大學(xué)數(shù)學(xué)與信息學(xué)院,四川 南充 637002;2.杭州電子科技大學(xué)理學(xué)院,浙江 杭州 310018;3.北京大學(xué)數(shù)學(xué)科學(xué)學(xué)院,北京 100871)

      摘要:超Bent函數(shù)是一類具有特殊性質(zhì)的Bent函數(shù),在編碼、通信和密碼學(xué)中都有著重要的應(yīng)用。該文研究一類Dillon型布爾函數(shù),使用指數(shù)和給出了此類函數(shù)的超Bent性刻畫,并建立此類函數(shù)的超Bent性與Kloosterman和,三次和之間的聯(lián)系。在一些特殊情形下,具體考慮此類函數(shù)的超Bent性的刻畫,使用Kloosterman和以及三次和的一些特殊值來刻畫這些函數(shù)的超Bent性,并給出了一些具體超Bent函數(shù)的例子,方便地給出許多超Bent函數(shù),從而豐富和發(fā)展了超Bent函數(shù)理論。

      關(guān)鍵詞:Bent函數(shù);超Bent函數(shù);Dillon型函數(shù);Walsh-Hadamard變換;Kloosterman和

      DOI: 10.13954/j.cnki.hdu.2015.01.014

      利用Kloosterman和刻畫一類超Bent函數(shù)

      唐春明1,亓延峰2,徐茂智3

      (1.西華師范大學(xué)數(shù)學(xué)與信息學(xué)院,四川 南充 637002;2.杭州電子科技大學(xué)理學(xué)院,浙江 杭州 310018;3.北京大學(xué)數(shù)學(xué)科學(xué)學(xué)院,北京 100871)

      摘要:超Bent函數(shù)是一類具有特殊性質(zhì)的Bent函數(shù),在編碼、通信和密碼學(xué)中都有著重要的應(yīng)用。該文研究一類Dillon型布爾函數(shù),使用指數(shù)和給出了此類函數(shù)的超Bent性刻畫,并建立此類函數(shù)的超Bent性與Kloosterman和,三次和之間的聯(lián)系。在一些特殊情形下,具體考慮此類函數(shù)的超Bent性的刻畫,使用Kloosterman和以及三次和的一些特殊值來刻畫這些函數(shù)的超Bent性,并給出了一些具體超Bent函數(shù)的例子,方便地給出許多超Bent函數(shù),從而豐富和發(fā)展了超Bent函數(shù)理論。

      關(guān)鍵詞:Bent函數(shù);超Bent函數(shù);Dillon型函數(shù);Walsh-Hadamard變換;Kloosterman和

      DOI:10.13954/j.cnki.hdu.2015.01.014

      收稿日期:2014-06-06

      基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(10990011,11401480,61272499)

      作者簡(jiǎn)介:唐春明(1982-),男,四川南充人,講師,密碼學(xué)與信息安全.

      中圖分類號(hào):TN918.1

      文獻(xiàn)標(biāo)識(shí)碼::A

      文章編號(hào)::1001-9146(2015)01-0067-08

      Abstract:Hyper-Bent functions as a subclass of Bent functions can be applied to coding theory, communication and cryptography. This paper considers a class of Boolean functions with Dillon exponents, characterizes these functions with exponential sums, and presents the link of hyper-Bentness of these hyper-Bent functions with Kloosterman sums and cubic sums. For some special cases, we present the concrete characterization of these hyper-Bent functions with special values of Kloosterman sums and cubic sums, and give some concrete examples of hyper-Bent functions. From our method, many hyper-Bent functions can be given. That enriches the theory of hyper-Bent functions.

      0引言

      本文第一節(jié)給出了一些基本記號(hào),并回顧了bent函數(shù),超bent函數(shù),以及指數(shù)和的相關(guān)定義和結(jié)論。第二節(jié)研究一類布爾函數(shù)的超bent性,并利用Kloosterman和來刻畫此類函數(shù)的超Bent性,具體地使用Kloosterman和的特殊值給出了一些此類超bent函數(shù)。最后,第三節(jié)是全文的一個(gè)總結(jié)。

      1預(yù)備知識(shí)

      1.1 超bent函數(shù)

      若f是一個(gè)Bent函數(shù),那么n必然是一個(gè)偶數(shù),而且其代數(shù)次數(shù)deg(f)≤n/2。超Bent函數(shù)是Bent函數(shù)中的一個(gè)重要的子類,其定義如下。

      定義2一個(gè)Bent函數(shù)稱為超Bent函數(shù),若它對(duì)滿足(i,2n-1)=1的任意i,有f(xi)也是一個(gè)Bent函數(shù)。

      1.2 指數(shù)和

      下面介紹一些特殊的指數(shù)和的定義和結(jié)論。

      命題1設(shè)a∈F2m,則Km(a)∈[-2(m+2)/2+1,2(m+2)/2+1],而且Km(a)≡0mod 4。

      Kloosterman和的如下除法性質(zhì)也將經(jīng)常被用到[31]。

      命題3設(shè)m是一個(gè)奇整數(shù),則:

      1)Cm(1,1)=(-1)(m2-1)/82(m+1)/2;

      1)Km(a)≡1mod 3;

      2)Cm(a,a)=0;

      證明由命題2知,結(jié)論(1)與(3)等價(jià)。

      為了記號(hào)簡(jiǎn)單起見,記Cm(a):=Cm(a,a)。將要使用到如下的指數(shù)和:

      (1)

      式中,U3={u3:u∈U}。Mesnager給出了這個(gè)指數(shù)和與Kloosterman和,三次和之間的關(guān)系[16-17]。

      (2)

      2超Bent函數(shù)和Kloosterman和

      考慮如下Dillon型布爾函數(shù):

      (3)

      證明使用文獻(xiàn)[15,19]中的證明方法考慮f(x)的Walsh-Hadamard譜值,可以得到本引理的結(jié)論。

      定理1設(shè)f(x)如式(3)定義,則:

      綜上,定理得證。

      3結(jié)束語(yǔ)

      參考文獻(xiàn)

      [1]Rothaus O S. On “bent” functions[J]. Journal of Combinatorial Theory, Series A,1976,20(3):300-305.

      [2]Mesnager S. Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials[J]. Information Theory, IEEE Transactions on,2011,57(9):5 996-6 009.

      [3]Carlet C, Gaborit P. Hyper-bent functions and cyclic codes[J]. Journal of Combinatorial Theory, Series A,2006,113(3):466-482.

      [4]Carlet C. Boolean functions for cryptography and error correcting codes[J]. Boolean Models and Methods in Mathematics, Computer Science, and Engineering,2010,2:257-397.

      [5]Dobbertin H, Leander G. A survey of some recent results on bent functions[M]//Sequences and Their Applications-SETA 2004. Springer Berlin Heidelberg,2005:1-29.

      [6]Canteaut A, Charpin P, Kyureghyan G M. A new class of monomial bent functions[J]. Finite Fields and Their Applications,2008,14(1):221-241.

      [7]Charpin P, Gong G. Hyperbent functions, Kloosterman sums, and Dickson polynomials[J]. Information Theory, IEEE Transactions on,2008,54(9):4 230-4 238.

      [8]Charpin P, Kyureghyan G M. Cubic monomial bent functions: A subclass of M[J]. SIAM Journal on Discrete Mathematics,2008,22(2):650-665.

      [9]Dillon J F. Elementary Hadamard difference sets[D]. University of Maryland, College Park.,1974.

      [10] Dillon J F, Dobbertin H. New cyclic difference sets with Singer parameters[J]. Finite Fields and Their Applications,2004,10(3):342-389.

      [11]Dobbertin H, Leander G, Canteaut A, et al. Construction of bent functions via Niho power functions[J]. Journal of Combinatorial Theory, Series A,2006,113(5):779-798.

      [12]Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.)[J]. Information Theory, IEEE Transactions on,1968,14(1):154-156.

      [13]Leander N G. Monomial bent functions[J]. Information Theory, IEEE Transactions on,2006,52(2):738-743.

      [14]Kholosha A, Leander G. Bent Functions With 2^ r Niho Exponents[J]. IEEE Transactions on Information Theory,2006,52(12):5 529-5 532.

      [15]Mesnager S. Hyper-bent Boolean functions with multiple trace terms[M]//Arithmetic of Finite Fields. Springer Berlin Heidelberg,2010:97-113.

      [16]Mesnager S. A new class of bent and hyper-bent Boolean functions in polynomial forms[J]. Des. Codes Cryptography,2011,59(1-3):265-279.

      [17]Mesnager S. A new class of bent Boolean functions in polynomial forms[C] //International Workshop on Coding and Cryptography—WCC 2009. Springer Berlin Heidelberg,2009:5-18.

      [18]Mesnager S. A new family of hyper-bent Boolean functions in polynomial form[M]//Cryptography and Coding. Springer Berlin Heidelberg,2009:402-417.

      [19]Yu N Y, Gong G. Constructions of quadratic bent functions in polynomial forms[J]. Information Theory, IEEE Transactions on,2006,52(7):3 291-3 299.

      [20]Youssef A M, Gong G. Hyper-bent functions[M]. Berlin: Springer Berlin Heidelberg,2001:406-419.

      [21]Gong G, Golomb S W. Transform domain analysis of DES[J]. Information Theory, IEEE Transactions on,1999,45(6):2 065-2 073.

      [22]Lisonek P. An efficient characterization of a family of hyperbent functions[J]. Information Theory, IEEE Transactions on,2011,57(9):6 010-6 014.

      [23]Wang B, Tang C, Qi Y, et al. A New Class of Hyper-bent Boolean Functions with Multiple Trace Terms[J]. IACR Cryptology ePrint Archive,2011,2011:600.

      [24]Wang B, Tang C, Qi Y, et al. A generalization of the class of hyper-bent Boolean functions in binomial forms[J]. IACR Cryptology ePrint Archive,2011,2011:698.

      [25]Tang C, Qi Y, Xu M, et al. A new class of hyper-bent Boolean functions in binomial forms[J]. arXiv preprint arXiv:1112.0062,2011.

      [26]Flori J P, Mesnager S. An efficient characterization of a family of hyper-bent functions with multiple trace terms[J]. Journal of Mathematical Cryptology,2013,7(1):43-68.

      [27]Flori J P, Mesnager S. Dickson polynomials, hyperelliptic curves and hyper-bent functions[M]//Sequences and Their Applications-SETA 2012. Springer Berlin Heidelberg,2012:40-52.

      [28]Mesnager S, Flori J P. Hyperbent Functions via Dillon-Like Exponents[J]. Information Theory, IEEE Transactions on,2013,59(5):3 215-3 232.

      [29]Li N, Helleseth T, Tang X, et al. Several new classes of bent functions from Dillon exponents[J]. IEEE transactions on information theory,2013,59(3):1 818-1 831.

      [30]Lachaud G, Wolfmann J. The weights of the orthogonals of the extended quadratic binary Goppa codes[J]. Information Theory, IEEE Transactions on,1990,36(3):686-692.

      [31]Charpin P, Helleseth T, Zinoviev V. Divisibility properties of classical binary Kloosterman sums[J]. Discrete Mathematics,2009,309(12):3 975-3 984.

      [32]Carlitz L. Explicit evaluation of certain exponential sums[J]. Mathematica Scandinavica,1979,44:5-16.

      A Class of Hyper-Bent Functions Characterized by Kloosterman Sums

      Tang Chunming1, Qi Yanfeng2, Xu Maozhi3

      (1.SchoolofMathematicsandInformation,ChinaWestNormalUniversity,NanchongSichuan637002,China;

      2.SchoolofScience,HangzhouDianziUniversity,HangzhouZhejiang310018,China;

      3.LMAM,SchoolofMathematicalSciences,PekingUniversity,Beijing100871,China)

      Key words: Bent functions; hyper-Bent functions; functions with Dillon exponent; Walsh-Hadmard transform; Kloosterman sums

      猜你喜歡
      密碼學(xué)布爾刻畫
      圖靈獎(jiǎng)獲得者、美國(guó)國(guó)家工程院院士馬丁·愛德華·海爾曼:我們正處于密鑰學(xué)革命前夕
      布爾和比利
      幽默大師(2019年4期)2019-04-17 05:04:56
      布爾和比利
      幽默大師(2019年3期)2019-03-15 08:01:06
      布爾和比利
      幽默大師(2018年11期)2018-10-27 06:03:04
      布爾和比利
      幽默大師(2018年3期)2018-10-27 05:50:48
      刻畫細(xì)節(jié),展現(xiàn)關(guān)愛
      密碼學(xué)課程教學(xué)中的“破”與“立”
      矩陣在密碼學(xué)中的應(yīng)用
      ?(?)上在某點(diǎn)處左可導(dǎo)映射的刻畫
      Potent環(huán)的刻畫
      胶南市| 象州县| 襄樊市| 嵊州市| 成都市| 盐津县| 屏边| 旬阳县| 泽州县| 吴桥县| 乐陵市| 廉江市| 岳池县| 左贡县| 青铜峡市| 尼玛县| 西吉县| 疏勒县| 石河子市| 霍州市| 乌审旗| 南宫市| 宣化县| 曲周县| 尼玛县| 原平市| 望都县| 鲁山县| 集贤县| 景东| 黔西县| 怀集县| 咸阳市| 沈阳市| 河东区| 涪陵区| 拜泉县| 同心县| 佛教| 汝州市| 津南区|