唐春明,亓延峰,徐茂智
(1.西華師范大學(xué)數(shù)學(xué)與信息學(xué)院,四川 南充 637002;2.杭州電子科技大學(xué)理學(xué)院,浙江 杭州 310018;3.北京大學(xué)數(shù)學(xué)科學(xué)學(xué)院,北京 100871)
摘要:超Bent函數(shù)是一類具有特殊性質(zhì)的Bent函數(shù),在編碼、通信和密碼學(xué)中都有著重要的應(yīng)用。該文研究一類Dillon型布爾函數(shù),使用指數(shù)和給出了此類函數(shù)的超Bent性刻畫,并建立此類函數(shù)的超Bent性與Kloosterman和,三次和之間的聯(lián)系。在一些特殊情形下,具體考慮此類函數(shù)的超Bent性的刻畫,使用Kloosterman和以及三次和的一些特殊值來刻畫這些函數(shù)的超Bent性,并給出了一些具體超Bent函數(shù)的例子,方便地給出許多超Bent函數(shù),從而豐富和發(fā)展了超Bent函數(shù)理論。
關(guān)鍵詞:Bent函數(shù);超Bent函數(shù);Dillon型函數(shù);Walsh-Hadamard變換;Kloosterman和
DOI: 10.13954/j.cnki.hdu.2015.01.014
利用Kloosterman和刻畫一類超Bent函數(shù)
唐春明1,亓延峰2,徐茂智3
(1.西華師范大學(xué)數(shù)學(xué)與信息學(xué)院,四川 南充 637002;2.杭州電子科技大學(xué)理學(xué)院,浙江 杭州 310018;3.北京大學(xué)數(shù)學(xué)科學(xué)學(xué)院,北京 100871)
摘要:超Bent函數(shù)是一類具有特殊性質(zhì)的Bent函數(shù),在編碼、通信和密碼學(xué)中都有著重要的應(yīng)用。該文研究一類Dillon型布爾函數(shù),使用指數(shù)和給出了此類函數(shù)的超Bent性刻畫,并建立此類函數(shù)的超Bent性與Kloosterman和,三次和之間的聯(lián)系。在一些特殊情形下,具體考慮此類函數(shù)的超Bent性的刻畫,使用Kloosterman和以及三次和的一些特殊值來刻畫這些函數(shù)的超Bent性,并給出了一些具體超Bent函數(shù)的例子,方便地給出許多超Bent函數(shù),從而豐富和發(fā)展了超Bent函數(shù)理論。
關(guān)鍵詞:Bent函數(shù);超Bent函數(shù);Dillon型函數(shù);Walsh-Hadamard變換;Kloosterman和
DOI:10.13954/j.cnki.hdu.2015.01.014
收稿日期:2014-06-06
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(10990011,11401480,61272499)
作者簡(jiǎn)介:唐春明(1982-),男,四川南充人,講師,密碼學(xué)與信息安全.
中圖分類號(hào):TN918.1
文獻(xiàn)標(biāo)識(shí)碼::A
文章編號(hào)::1001-9146(2015)01-0067-08
Abstract:Hyper-Bent functions as a subclass of Bent functions can be applied to coding theory, communication and cryptography. This paper considers a class of Boolean functions with Dillon exponents, characterizes these functions with exponential sums, and presents the link of hyper-Bentness of these hyper-Bent functions with Kloosterman sums and cubic sums. For some special cases, we present the concrete characterization of these hyper-Bent functions with special values of Kloosterman sums and cubic sums, and give some concrete examples of hyper-Bent functions. From our method, many hyper-Bent functions can be given. That enriches the theory of hyper-Bent functions.
0引言
本文第一節(jié)給出了一些基本記號(hào),并回顧了bent函數(shù),超bent函數(shù),以及指數(shù)和的相關(guān)定義和結(jié)論。第二節(jié)研究一類布爾函數(shù)的超bent性,并利用Kloosterman和來刻畫此類函數(shù)的超Bent性,具體地使用Kloosterman和的特殊值給出了一些此類超bent函數(shù)。最后,第三節(jié)是全文的一個(gè)總結(jié)。
1預(yù)備知識(shí)
若f是一個(gè)Bent函數(shù),那么n必然是一個(gè)偶數(shù),而且其代數(shù)次數(shù)deg(f)≤n/2。超Bent函數(shù)是Bent函數(shù)中的一個(gè)重要的子類,其定義如下。
定義2一個(gè)Bent函數(shù)稱為超Bent函數(shù),若它對(duì)滿足(i,2n-1)=1的任意i,有f(xi)也是一個(gè)Bent函數(shù)。
下面介紹一些特殊的指數(shù)和的定義和結(jié)論。
命題1設(shè)a∈F2m,則Km(a)∈[-2(m+2)/2+1,2(m+2)/2+1],而且Km(a)≡0mod 4。
Kloosterman和的如下除法性質(zhì)也將經(jīng)常被用到[31]。
命題3設(shè)m是一個(gè)奇整數(shù),則:
1)Cm(1,1)=(-1)(m2-1)/82(m+1)/2;
1)Km(a)≡1mod 3;
2)Cm(a,a)=0;
證明由命題2知,結(jié)論(1)與(3)等價(jià)。
為了記號(hào)簡(jiǎn)單起見,記Cm(a):=Cm(a,a)。將要使用到如下的指數(shù)和:
(1)
式中,U3={u3:u∈U}。Mesnager給出了這個(gè)指數(shù)和與Kloosterman和,三次和之間的關(guān)系[16-17]。
(2)
2超Bent函數(shù)和Kloosterman和
考慮如下Dillon型布爾函數(shù):
(3)
證明使用文獻(xiàn)[15,19]中的證明方法考慮f(x)的Walsh-Hadamard譜值,可以得到本引理的結(jié)論。
定理1設(shè)f(x)如式(3)定義,則:
綜上,定理得證。
3結(jié)束語(yǔ)
參考文獻(xiàn)
[1]Rothaus O S. On “bent” functions[J]. Journal of Combinatorial Theory, Series A,1976,20(3):300-305.
[2]Mesnager S. Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials[J]. Information Theory, IEEE Transactions on,2011,57(9):5 996-6 009.
[3]Carlet C, Gaborit P. Hyper-bent functions and cyclic codes[J]. Journal of Combinatorial Theory, Series A,2006,113(3):466-482.
[4]Carlet C. Boolean functions for cryptography and error correcting codes[J]. Boolean Models and Methods in Mathematics, Computer Science, and Engineering,2010,2:257-397.
[5]Dobbertin H, Leander G. A survey of some recent results on bent functions[M]//Sequences and Their Applications-SETA 2004. Springer Berlin Heidelberg,2005:1-29.
[6]Canteaut A, Charpin P, Kyureghyan G M. A new class of monomial bent functions[J]. Finite Fields and Their Applications,2008,14(1):221-241.
[7]Charpin P, Gong G. Hyperbent functions, Kloosterman sums, and Dickson polynomials[J]. Information Theory, IEEE Transactions on,2008,54(9):4 230-4 238.
[8]Charpin P, Kyureghyan G M. Cubic monomial bent functions: A subclass of M[J]. SIAM Journal on Discrete Mathematics,2008,22(2):650-665.
[9]Dillon J F. Elementary Hadamard difference sets[D]. University of Maryland, College Park.,1974.
[10] Dillon J F, Dobbertin H. New cyclic difference sets with Singer parameters[J]. Finite Fields and Their Applications,2004,10(3):342-389.
[11]Dobbertin H, Leander G, Canteaut A, et al. Construction of bent functions via Niho power functions[J]. Journal of Combinatorial Theory, Series A,2006,113(5):779-798.
[12]Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.)[J]. Information Theory, IEEE Transactions on,1968,14(1):154-156.
[13]Leander N G. Monomial bent functions[J]. Information Theory, IEEE Transactions on,2006,52(2):738-743.
[14]Kholosha A, Leander G. Bent Functions With 2^ r Niho Exponents[J]. IEEE Transactions on Information Theory,2006,52(12):5 529-5 532.
[15]Mesnager S. Hyper-bent Boolean functions with multiple trace terms[M]//Arithmetic of Finite Fields. Springer Berlin Heidelberg,2010:97-113.
[16]Mesnager S. A new class of bent and hyper-bent Boolean functions in polynomial forms[J]. Des. Codes Cryptography,2011,59(1-3):265-279.
[17]Mesnager S. A new class of bent Boolean functions in polynomial forms[C] //International Workshop on Coding and Cryptography—WCC 2009. Springer Berlin Heidelberg,2009:5-18.
[18]Mesnager S. A new family of hyper-bent Boolean functions in polynomial form[M]//Cryptography and Coding. Springer Berlin Heidelberg,2009:402-417.
[19]Yu N Y, Gong G. Constructions of quadratic bent functions in polynomial forms[J]. Information Theory, IEEE Transactions on,2006,52(7):3 291-3 299.
[20]Youssef A M, Gong G. Hyper-bent functions[M]. Berlin: Springer Berlin Heidelberg,2001:406-419.
[21]Gong G, Golomb S W. Transform domain analysis of DES[J]. Information Theory, IEEE Transactions on,1999,45(6):2 065-2 073.
[22]Lisonek P. An efficient characterization of a family of hyperbent functions[J]. Information Theory, IEEE Transactions on,2011,57(9):6 010-6 014.
[23]Wang B, Tang C, Qi Y, et al. A New Class of Hyper-bent Boolean Functions with Multiple Trace Terms[J]. IACR Cryptology ePrint Archive,2011,2011:600.
[24]Wang B, Tang C, Qi Y, et al. A generalization of the class of hyper-bent Boolean functions in binomial forms[J]. IACR Cryptology ePrint Archive,2011,2011:698.
[25]Tang C, Qi Y, Xu M, et al. A new class of hyper-bent Boolean functions in binomial forms[J]. arXiv preprint arXiv:1112.0062,2011.
[26]Flori J P, Mesnager S. An efficient characterization of a family of hyper-bent functions with multiple trace terms[J]. Journal of Mathematical Cryptology,2013,7(1):43-68.
[27]Flori J P, Mesnager S. Dickson polynomials, hyperelliptic curves and hyper-bent functions[M]//Sequences and Their Applications-SETA 2012. Springer Berlin Heidelberg,2012:40-52.
[28]Mesnager S, Flori J P. Hyperbent Functions via Dillon-Like Exponents[J]. Information Theory, IEEE Transactions on,2013,59(5):3 215-3 232.
[29]Li N, Helleseth T, Tang X, et al. Several new classes of bent functions from Dillon exponents[J]. IEEE transactions on information theory,2013,59(3):1 818-1 831.
[30]Lachaud G, Wolfmann J. The weights of the orthogonals of the extended quadratic binary Goppa codes[J]. Information Theory, IEEE Transactions on,1990,36(3):686-692.
[31]Charpin P, Helleseth T, Zinoviev V. Divisibility properties of classical binary Kloosterman sums[J]. Discrete Mathematics,2009,309(12):3 975-3 984.
[32]Carlitz L. Explicit evaluation of certain exponential sums[J]. Mathematica Scandinavica,1979,44:5-16.
A Class of Hyper-Bent Functions Characterized by Kloosterman Sums
Tang Chunming1, Qi Yanfeng2, Xu Maozhi3
(1.SchoolofMathematicsandInformation,ChinaWestNormalUniversity,NanchongSichuan637002,China;
2.SchoolofScience,HangzhouDianziUniversity,HangzhouZhejiang310018,China;
3.LMAM,SchoolofMathematicalSciences,PekingUniversity,Beijing100871,China)
Key words: Bent functions; hyper-Bent functions; functions with Dillon exponent; Walsh-Hadmard transform; Kloosterman sums