• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于團(tuán)塊分析的人數(shù)統(tǒng)計(jì)

    2016-01-22 03:44:51李冬梅黃仁杰趙雪專
    關(guān)鍵詞:目標(biāo)跟蹤支持向量機(jī)

    李 濤,李冬梅,黃仁杰,趙雪專

    (1.電子科技大學(xué) 計(jì)算機(jī)科學(xué)與工程學(xué)院,四川 成都 611731;

    2. 河南廣播電視大學(xué) 信息工程系,河南 鄭州 450008;

    3. 中國(guó)科學(xué)院 成都計(jì)算機(jī)應(yīng)用研究所,四川 成都 610041)

    ?

    基于團(tuán)塊分析的人數(shù)統(tǒng)計(jì)

    李濤1,2,李冬梅2,黃仁杰1,趙雪專3

    (1.電子科技大學(xué) 計(jì)算機(jī)科學(xué)與工程學(xué)院,四川 成都611731;

    2. 河南廣播電視大學(xué) 信息工程系,河南 鄭州450008;

    3. 中國(guó)科學(xué)院 成都計(jì)算機(jī)應(yīng)用研究所,四川 成都610041)

    摘要:為了提高視頻監(jiān)控領(lǐng)域人數(shù)統(tǒng)計(jì)的準(zhǔn)確性,提出一種基于團(tuán)塊分析的人數(shù)統(tǒng)計(jì)方法.首先通過光流算法獲取前景團(tuán)塊的方向及能量強(qiáng)度信息,并結(jié)合團(tuán)塊大小等相關(guān)信息形成團(tuán)塊特征;然后針對(duì)人數(shù)統(tǒng)計(jì)提出一種新的目標(biāo)跟蹤算法;最后基于SVM對(duì)該團(tuán)塊特征進(jìn)行訓(xùn)練分析,得到人數(shù)估計(jì)模型.實(shí)驗(yàn)結(jié)果表明,該方法正確率達(dá)到95%以上,能準(zhǔn)確實(shí)現(xiàn)人數(shù)統(tǒng)計(jì).

    關(guān)鍵詞:光流算法;人數(shù)統(tǒng)計(jì);目標(biāo)跟蹤;支持向量機(jī)

    Received date:2014-10-03

    Foundation item:Supported by the Key Scientific and Technological Project of Henan Province (142102210010), the Key Research Project in Science and Technology of the Education Department of Henan Province (14A520028, 14A520052), the Ph.D. Programs Foundation of the Ministry of Education of China (YBXSZC20131031)

    Author’s brief:LI Tao(1979-), male, born in Linying of Henan Province, doctor degree candidate of University of Electronic Science and Technology of China, lecturer of Henan Radio & Television University.

    0Introduction

    With the popularization and development of the computer hardware and monitoring equipment, monitoring and analysis based on video are widely used. People counting based on video is an important application in this field. It is widely applied in a public place, and it plays an important role in the public safety, overflow arrangement, resource allocation, transport disposition, market decisions and so on.

    In practical application, the accuracy of people counting is affected by the uncertain factors under unconstrained condition (such as deformation, illumination) and the occlusions between moving human bodies in complex scenes. Vertical camera is used to reduce the disturbance of occlusion in the people counting[1]. In recent years, many approaches are proposed based on video-based techniques in order to solve these problems.

    These approaches[2-5]with machine learning based on feature extraction or pixel extraction are proposed. For example, the head profile, color and textural features are proposed to counting people in the video sequences[4-5]. The accuracy of these methods will drop significantly in complex scenes because of too many people with occlusions between each other.

    These methods[6-8]utilize the foreground segmentation by Gaussian Mixture Model or Frame Difference to count people. Some of methods can not count the people number accurately in complex scenes, because using semicircular or circular model in the basis of the foreground segmentation can not describe the head profile completely[7-8].

    Other methods[9-10]analyze the moving features and distribution of directions according to motion vectors of people in videos to count people. However, the error of the counting result is great in complex scene in which there are many people keeping out each other to mass.

    This paper proposes a novel method of people counting that can well solve the problem about the occlusion of people in complex scenes. First, the sizes of moving foreground masses and the histograms of the directions about optical flow of masses by quantizing are obtained to form the feature of mass. Then, the novel method of objects tracking is designed specially to aim at people counting. In the end, by training a support vector machine (SVM) classifier with the input of the feature of mass, the people counting model is obtained. Our main contribution is proposing a novel feature of mass which can characterize the intrinsic energy and size properties accurately and the novel method of objects tracking is also very efficient.

    The rest of this paper is organized as follows: How to realize the method of people counting based on the analysis of the mass is introduced in Section 1. Section 2 discusses experimental results of the proposed method. The conclusion is given in Section 3.

    1Overview of our method

    Fig.1 is the flow chart of our method. The framework of the method is shown in Fig.1. It consists of training section, detecting section. The training section consists of four parts: 1) get the foreground moving mass in the video of cameras by using Gaussian Mixture Model; 2) calculate the direction of the mass using the optical flow method at first, and then segment the people of different directions in the same mass according to the direction information, and complete the mass segmentation; 3) track the segmented mass, and get mass characteristic information related to the number of people (such as the length and width of the mass, the optical flow intensity histogram, the number of the mass pixels), track and select using the inter-frame coverage calculated according to the mass until out of the monitoring area; 4) train the SVM classifier using the obtained mass information, and get the people counting model in mass finally.

    The first three steps of the training section and detecting section are consistent, and then we put the mass characteristic information into the trained SVM classifier for people counting.

    1.1Get foreground mass region

    First of all, Gaussian Mixture Model is used for getting the moving foreground mass.

    (1)

    (2)

    1.2The extraction of optical flow information in the mass

    According to the mass area of current frame and the mass at the same position of the previous frame, we get the optical flow vector of the current pixel of mass as (u,v), whereuandvrepresent horizontal velocity and vertical velocity respectively in the process of the pixel moving from previous frame to current frame. The process is as follows:

    Firstly, we established objective function according to the assumption of the consistency of the gray level and gradient, and then we got the optical flow vector by calculating the minimum of the objective function. The objective function is

    (3)

    (4)

    where Kρis a Gaussian with standard deviationρ, * denotes convolution. We calculated the minimum of Eq.3 (one of w can make the objective function E(u,v) achieve the minimum), the optical flow vector is the corresponding(u,v) when the objective function is minimal. Eq.3 is calculated by Lagrange method as

    (5)

    Eq.5 is a nonlinear equation, we transfer it to linear equations in order to get a solution. Let us denote byJn mithe component (n,m) of the structure tensor Jρ(3f) in some pixeli. Then a finite difference approximation to the Eq.5 is given by

    (6)

    We got the unknown quantity (ui,vi) using iteration solution of the Gauss-Seidel method. And we solve the unknown quantity using the Gauss-Seidel iterative method based on grid method[11]for fast convergence. Thekiteration result is shown as Eq.7.

    We considered each point in the two-dimensional image as a point on the grid, and then we halved the grid number and increased the grid size into twice in the process of fine-to-coarse. We used the Gauss-Seidel iterative method on the coarse grid to calculate the unknown variable, and then switched to calculate on the fine grid after obtaining the exact value. In the iterative process of the grid method, the conversion of the fine grid into coarse grid used averaging over 2×2 pixels (restriction operator), and the conversion of coarse grid into fine grid used prolongation operator (interpolation method). In the program, we integrate the “V” multi-grid method with nonlinear multi-grid to get the fastest convergence speed without any cost of calculation. If thekdenotes the iteration step, the Gauss-Seidel interactive method can be written as

    (7)

    where,his the size of the grid,N(i) denotes the number of neighbors of pixelithat belong to the image domain.Mis the size of the coarse grid. In order to simplify the programming,Mis equal to 2h.

    Considering each pixel point in moving mass area at the current frame image as a point on the grid, we get the optical flow vector of each pixel in the moving mass area by the iterate conversion of coarse grid into fine grid. Fig.3 is the figure of optical flow vectors in the mass foreground. Optical flow mass vector diagram is shown in Fig.3.

    1.3Method of tracking mass

    People counting usually get the number by setting a counting line in the monitoring area. Method of mass tracking which is different from the conventional tracking method is designed. Fig.4 is the contrast of the mass tracking method in this paper and the conventional tracking method. As shown in Fig.4, the dotted track line denotes the tracking trajectory before segmentation, the solid track denotes the whole tracking trajectory before and after segmentation, and the pecked track tine shows the difference between the tracking trajectories in this paper.

    In traditional tracking object methods, there are two tracking targets respectively when the mass is segmented. One of the new target paths after segmentation started from the segmentation position. However, the start positions of the two targets after the segmentation are consistent in our tracking object method, and they are both the recorded position before segmentation. The advantage is that the two masses all followed the original tracking trajectory, so there are at least two masses in the mass if there is mass separation when across the counting line. In the tracking process, if there is mass merge, such as mass 1, mass 2 and mass 3, we will choose the one which has the longest tracking range (assuming mass 2), and then put mass 1 and mass 3 into the tracking linked list of which has the longest tracking range (mass 2).

    (8)

    OR≥αor(αordenotes the threshold of the overlap, and the overlap rate is effective only when it is greater than this), we take the mass which has the largest overlap rate as the target.

    1.4Analysis of mass by using SVM

    As a supervised learning method, SVM (support vector machines)[12]is widely applied in many fields. It can not only enable to learn in high dimensional spaces, but also obtain high performance with limited training samples. It also can avoid the structure selection and local minimum point problem of the neural network. Therefore, we use the linear SVM to analysis the feature of the mass, and then get the number of people in mass.

    We extract the feature of each mass as the input vector. The variableli denotes the width of the mass andhi denotes the height of the mass. The variableni denotes the number of the mass pixel andHi denotes the mass flow histogram with an eight dimensional vector (The value of the pixel optical flow intensity is normalized to [0,1], and divided into eight bins. Then we record the value of optical flow intensity of each pixel in the mass, and form an eight dimensional data). As a training sample, each mass correspond with a eleven dimension feature vectorsi is given by

    (9)

    where, the three variables (hi,li,ni) have been serious affected by the distance from the camera to objects. The variable α denotes the weight of liand hiof the mass and niof the mass, and is directly proportional to the distance from the camera to objects.

    The relation of corresponding features (hi,li,ni) and the distance from the camera is described by the ratio of the foreground mass size of a single pedestrian in different locations and the largest foreground mass of the pedestrian in the fixed scene. The weight α is obtained as follows:

    (1) The Ajdenotes the foreground size of a single pedestrian for thejareas (1≤j≤n,n denotes the number of areas in the scene) in the fixed scene, and the maximum foreground mass size of a single pedestrianAis equal to max{Aj}.

    (2) The weightαin different areas can be represented as follows

    (10)

    (3) The feature vectorsi in training is finally represented as:

    (11)

    In our method, we utilize SVM to fit the feature vector si(si∈Rd,d=11) and the number of people in the mass yi(yi∈R).

    First of all, linear regression function f(x)=w*s+b is considered to solve the problem of fitting data {xi,yi}, i=1,…,n,and all training data is assumed to use linear function fitting under the precisionεwithout error, that is given by

    (12)

    (13)

    The optimization goal becomes the minimization of the term as follows

    (14)

    (15)

    We get the regression function

    (16)

    At last, the result of counting people is obtained through the functionf(x).

    2Experimental results

    In this section, we verify the validity and availability of the people counting method in this paper. The proposed framework is evaluated on one public datasets Crowd-PETS09[13], and the other videos are collected from the internet and our shooting. The experiments are performed inCon a 2.3 GHz Pentium with a 2 G memory. We realize this program using VC and OPENCV programming for the test of many different type videos including scenes with occlusion (including the same and different directions). The frame rate is 33 fps·s-1, and the resolution is 720*576 in the set of videos.

    2.1Discussion of feature selection

    In this section, the experimental result shows the influence about the feature of the mass as the SVM input to the result of people counting.

    As shown in Fig.5, the videos are obtained according to the different views of camera. The first line of a figure in Fig.5 records the mass and optical flow distribution in the same and different directions. Similarly, the second line a figure or b figure records the mass and optical flow distribution in the same direction from the different views of camera.

    When the moving directions are different, the people of different directions are in the same large mass as shown in the first line of a figure, which is a binary image. As shown in the first line (left) the optical flow in a figure is used to get internal movement direction in the mass, the mass segmentation is completed through the direction difference, and the large mass is segmented into two masses. The second line of a figure and all of b figure show the condition of the same direction, and the mass do not need to be segmented in this condition. Because there are two conditions in same direction: 1) many people with long distance, there are many masses; 2) many people with closer distance, although it is a mass in this condition, but we can put the mass characteristic information into the trained people counting model based on SVM in this paper directly, so we can still get an accurate number of people. As shown in Fig.5, there is direct relation with the mass area and the distances between the foreground mass and the camera. In general, the large foreground mass contains more people than the little one in the same distance. The change in the size of the mass is relation with the distance of the foreground mass and the camera is shown in a figure and b figure. We also can see in Fig.5 that the strength of the optical flow information from different distances also directly reflects the number of people, because the speed of people is similar in the scenes in the same distance. The energy of optical flow about mass can reflect the people number in mass indirectly.

    2.2The evaluation of experiments

    The experiment analyzes the confusion matrix[14]to evaluate the method performance. TP is the correct number of the system. FN represents the number that is not counted and FP represents the number that is wrong counting. The confusion matrix is used to estimate the precision and recalled as follows

    (17)

    (18)

    The measureFwhich called the weight harmonic mean is a way to combine PR and RE for obtaining a general quality measure

    F=2PR·RE/(PR+RE).

    (19)

    Fig.5 is the influence of the optical flow distribution to the segmentation. In experiment, our method and a classic people counting method[10]are tested with multiple videos, some of which are presented in Fig.5. Tab.1 is the result of people counting (the result of our method/the result of the paper [10]). As shown in Tab.1, the accuracy in 1-4th videos is 100% when the interference is not serious in our method, but the method[10]counts the wrong number of people with optical flow because it neglects the size of mass. In 5-6th videos, the results of experiment dropped by using our method and the method[10]because there lies severe disruption in scenes (such as people keep walking around, the mass overlap each other is too much, and the illuminance and the shadow are stronger). These factors cause some error in optional flow foreground extraction and interference with the mass area information which causes the deterioration of method precision.

    3Conclusion

    The novel method for people counting is proposed in complex scenarios. We integrate the optional flow intensity information of moving people and the size of the mass area to form the feature of mass, and a novel method of tracking object is proposed. We put the feature into the SVM for people counting analysis.

    The results show that, the energy and shape information of mass are adequately considered in the method, so the accuracy is close to 100%.The method still has some error detection and leak detection in complex scenarios. In the later study, we will consider joining foreground analysis strategies without shadow to the method for mass information, in order to improve the detection rate.

    References:

    [1]Antic B, Letic D, Culibrk D, et al. K-means based segmentation for real-time zenithal people counting[C]//International Conference on Image Processing (ICIP),2009:2565-2568.

    [2]Chan A B, Liang Z S J, Vasconcelos N. Privacy preserving crowd monitoring: Counting people without people models or tracking[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,IEEE,2008:1-7.

    [3]Rabaud V, Belongie S. Counting crowded moving objects[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,IEEE,2006:705-711.

    [4]Zeng C B, Ma H D. Robust thead-shoulder detection by PCA-based multilevel HOG-LBP detector for people counting[C]//20th International Conference on Pattern Recognition, Istanbul, 2010:2069-2072.

    [5]Zhang Z, Gunes H, Piccardi M. Head detection for video surveillance based on categorical hair and skin colour models[C]//2009 IEEE International Conference on Image Processing(ICIP),Cairo, 2009:1137-1140.

    [6]Kim J W, Choi K S, Park W S, et al. Robust real-time people tracking system for security[J]. IBS Journal, 2002,2(3):184-190.

    [7]Jaijing K, Kaewtrakulpong P, Siddhichai S. Object detection and modeling algorithm for automatic visual people counting system[C]//6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Pattaya, honburi, 2009:1062-1065.

    [8]Gardel A, Bravo I, Jimenez P, et al. Real time head detection for embedded vision modules[C]//IEEE International Symposium on Intelligent Signal Processing, IEEE, 2007:1-6.

    [9]Cong Y,Gong H F, Zhu S C, et al. Flow mosaicking: real-time pedestrian counting without scene-specific learning[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Miami,USA, 2009:1093-1100.

    [10]Benabbas Y, Ihaddadene N, Yahiaoui T,et al. Spatio-temporal optical flow analysis for people counting [C]//7th IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, USA, 2010:212-217.

    [11]Andres B,Joachim W, Christian F, et al. Real-time optic flow computation with variational methods[J].Computer Science,2003,2756:222-229.

    [12]Vapnik V. Statistical learning theory[M]. New York:Springer,1995.

    [13]Chan A B, Vasconcelos N. Counting people with low-level features and Bayesian regression[J]. Image Processing, IEEE Transactions, 2012,21(4):2160-2177.

    [14]Barandiaran J, Murguia B, Fernando B. Real-time people counting using multiple lines[C]//9th International Workshop on Image Analysis for Multimedia Interactive Services, Klagenfurt, Austria,2008:159-162.

    (責(zé)任編輯鄭小虎)

    猜你喜歡
    目標(biāo)跟蹤支持向量機(jī)
    多視角目標(biāo)檢測(cè)與跟蹤技術(shù)的研究與實(shí)現(xiàn)
    基于改進(jìn)支持向量機(jī)的船舶縱搖預(yù)報(bào)模型
    基于SVM的煙草銷售量預(yù)測(cè)
    動(dòng)態(tài)場(chǎng)景中的視覺目標(biāo)識(shí)別方法分析
    論提高裝備故障預(yù)測(cè)準(zhǔn)確度的方法途徑
    基于改進(jìn)連續(xù)自適應(yīng)均值漂移的視頻目標(biāo)跟蹤算法
    基于重采樣粒子濾波的目標(biāo)跟蹤算法研究
    航空兵器(2016年5期)2016-12-10 17:12:24
    基于熵技術(shù)的公共事業(yè)費(fèi)最優(yōu)組合預(yù)測(cè)
    基于支持向量機(jī)的金融數(shù)據(jù)分析研究
    空管自動(dòng)化系統(tǒng)中航跡濾波算法的應(yīng)用與改進(jìn)
    科技視界(2016年5期)2016-02-22 12:25:31
    青春草国产在线视频| 黑人高潮一二区| 国产精品三级大全| 在线 av 中文字幕| 久久精品熟女亚洲av麻豆精品| 欧美日韩综合久久久久久| 国产黄频视频在线观看| 丰满乱子伦码专区| 亚洲四区av| 亚洲国产成人一精品久久久| 成人免费观看视频高清| 91国产中文字幕| 国国产精品蜜臀av免费| 五月天丁香电影| 精品人妻一区二区三区麻豆| 久久久久久久久久久免费av| 99久久中文字幕三级久久日本| 久久 成人 亚洲| 国产亚洲一区二区精品| 久久av网站| 91午夜精品亚洲一区二区三区| xxx大片免费视频| 成人无遮挡网站| 国产精品久久久久久久久免| av有码第一页| av福利片在线| 国产免费一区二区三区四区乱码| 国产日韩欧美亚洲二区| 国产免费现黄频在线看| 99热国产这里只有精品6| 免费大片18禁| 18禁动态无遮挡网站| 日韩成人伦理影院| 国产 一区精品| 大片电影免费在线观看免费| 9热在线视频观看99| 亚洲国产精品国产精品| 国产在线视频一区二区| 人人妻人人澡人人看| 久久久久久久精品精品| 免费黄网站久久成人精品| 成年人免费黄色播放视频| 中文欧美无线码| 久久ye,这里只有精品| 9热在线视频观看99| 美女中出高潮动态图| 免费观看av网站的网址| xxx大片免费视频| 在现免费观看毛片| 内地一区二区视频在线| 亚洲在久久综合| 午夜福利网站1000一区二区三区| 大香蕉久久成人网| 国产亚洲午夜精品一区二区久久| 又粗又硬又长又爽又黄的视频| 一个人免费看片子| 婷婷成人精品国产| 婷婷成人精品国产| 国产男女超爽视频在线观看| 久久这里只有精品19| 亚洲精品av麻豆狂野| 美女视频免费永久观看网站| videosex国产| 日韩三级伦理在线观看| 日韩 亚洲 欧美在线| 亚洲丝袜综合中文字幕| 欧美精品一区二区大全| 精品一区在线观看国产| 少妇人妻精品综合一区二区| 9热在线视频观看99| 精品亚洲成国产av| 中文天堂在线官网| 欧美少妇被猛烈插入视频| 亚洲欧美中文字幕日韩二区| av视频免费观看在线观看| 天天躁夜夜躁狠狠久久av| 国产男女内射视频| 国产69精品久久久久777片| 热99久久久久精品小说推荐| 国产熟女午夜一区二区三区| 午夜老司机福利剧场| 涩涩av久久男人的天堂| av网站免费在线观看视频| 国产精品免费大片| 一二三四在线观看免费中文在 | 成人免费观看视频高清| 大码成人一级视频| 亚洲五月色婷婷综合| 亚洲精华国产精华液的使用体验| av免费观看日本| 亚洲 欧美一区二区三区| 如何舔出高潮| 久久久久久久久久人人人人人人| 女人精品久久久久毛片| 国产成人aa在线观看| 少妇被粗大的猛进出69影院 | 在线观看免费高清a一片| 中文字幕免费在线视频6| 少妇高潮的动态图| 精品久久久久久电影网| av女优亚洲男人天堂| 成年动漫av网址| 国产永久视频网站| 人人澡人人妻人| 国产一级毛片在线| 精品国产一区二区三区久久久樱花| av片东京热男人的天堂| 又黄又粗又硬又大视频| 亚洲人成网站在线观看播放| 五月伊人婷婷丁香| 中文乱码字字幕精品一区二区三区| 亚洲丝袜综合中文字幕| 超色免费av| 人人妻人人添人人爽欧美一区卜| 伊人久久国产一区二区| a级毛片在线看网站| 国产片内射在线| a级毛色黄片| 91精品三级在线观看| 欧美日韩精品成人综合77777| 人人妻人人添人人爽欧美一区卜| 高清在线视频一区二区三区| 久久免费观看电影| 成人18禁高潮啪啪吃奶动态图| 亚洲av综合色区一区| 欧美日本中文国产一区发布| 各种免费的搞黄视频| 亚洲国产色片| 亚洲在久久综合| 日韩制服骚丝袜av| 97人妻天天添夜夜摸| 97超碰精品成人国产| 91aial.com中文字幕在线观看| 久久99热这里只频精品6学生| 九九爱精品视频在线观看| 99视频精品全部免费 在线| 精品久久蜜臀av无| 国产无遮挡羞羞视频在线观看| 国产成人精品福利久久| 国产激情久久老熟女| 秋霞在线观看毛片| 99精国产麻豆久久婷婷| 国产日韩一区二区三区精品不卡| 午夜福利视频在线观看免费| 91aial.com中文字幕在线观看| 亚洲成人手机| 少妇被粗大的猛进出69影院 | 日韩 亚洲 欧美在线| 91精品三级在线观看| 色婷婷av一区二区三区视频| 亚洲人与动物交配视频| 久久久久久久久久久免费av| 欧美精品av麻豆av| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 亚洲欧美一区二区三区黑人 | 秋霞在线观看毛片| 全区人妻精品视频| 久久久久久久精品精品| 日韩一区二区视频免费看| 只有这里有精品99| 欧美 亚洲 国产 日韩一| 亚洲精华国产精华液的使用体验| 成人国产av品久久久| 在线观看国产h片| 亚洲国产欧美日韩在线播放| 久久99一区二区三区| 久久影院123| 中文字幕免费在线视频6| 永久网站在线| 中国国产av一级| 内地一区二区视频在线| 男女边摸边吃奶| 啦啦啦中文免费视频观看日本| 国产色爽女视频免费观看| a级毛片在线看网站| 观看美女的网站| 十八禁高潮呻吟视频| 天天操日日干夜夜撸| 精品第一国产精品| 国产xxxxx性猛交| av在线观看视频网站免费| 午夜福利视频精品| 精品人妻在线不人妻| 亚洲美女黄色视频免费看| 久久人人爽av亚洲精品天堂| 亚洲第一av免费看| 国产精品久久久久久久电影| 中文字幕人妻熟女乱码| 91国产中文字幕| 又大又黄又爽视频免费| 性高湖久久久久久久久免费观看| 99视频精品全部免费 在线| 国产一区二区三区av在线| 王馨瑶露胸无遮挡在线观看| 少妇的逼水好多| 国产一区二区在线观看日韩| 欧美xxxx性猛交bbbb| 少妇的逼水好多| 国产欧美日韩综合在线一区二区| 王馨瑶露胸无遮挡在线观看| 精品少妇黑人巨大在线播放| 大码成人一级视频| 如日韩欧美国产精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 欧美亚洲日本最大视频资源| 国产熟女欧美一区二区| 国产综合精华液| 丝袜喷水一区| 美女主播在线视频| 人妻系列 视频| 欧美最新免费一区二区三区| 色视频在线一区二区三区| 国产亚洲av片在线观看秒播厂| av在线观看视频网站免费| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 亚洲一级一片aⅴ在线观看| 秋霞在线观看毛片| 国产女主播在线喷水免费视频网站| 亚洲欧美日韩卡通动漫| 国产不卡av网站在线观看| 日本wwww免费看| 国产黄色视频一区二区在线观看| 午夜福利在线观看免费完整高清在| 久久久久久久精品精品| 国产不卡av网站在线观看| 七月丁香在线播放| 久久久久久人妻| 亚洲激情五月婷婷啪啪| 五月天丁香电影| av有码第一页| 校园人妻丝袜中文字幕| 欧美变态另类bdsm刘玥| 日本wwww免费看| 国产精品国产三级国产专区5o| 久久久久久久久久人人人人人人| 国产日韩一区二区三区精品不卡| 精品一品国产午夜福利视频| 一级毛片 在线播放| 亚洲成人一二三区av| 亚洲欧美精品自产自拍| 国产av国产精品国产| 人妻 亚洲 视频| 亚洲av.av天堂| 婷婷成人精品国产| 国产极品天堂在线| 美女国产高潮福利片在线看| 99国产综合亚洲精品| 免费大片18禁| 97超碰精品成人国产| 免费不卡的大黄色大毛片视频在线观看| 丰满饥渴人妻一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 卡戴珊不雅视频在线播放| kizo精华| 免费av中文字幕在线| 精品亚洲成a人片在线观看| 免费人妻精品一区二区三区视频| 亚洲国产色片| 亚洲欧美一区二区三区黑人 | 飞空精品影院首页| 街头女战士在线观看网站| 成年人午夜在线观看视频| 女人久久www免费人成看片| 国国产精品蜜臀av免费| 亚洲国产看品久久| 最近最新中文字幕免费大全7| 妹子高潮喷水视频| 男女啪啪激烈高潮av片| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花| 黄色怎么调成土黄色| 成人午夜精彩视频在线观看| 一边亲一边摸免费视频| 国产高清三级在线| 成人亚洲精品一区在线观看| 成人国语在线视频| 极品少妇高潮喷水抽搐| 久久这里只有精品19| 成人二区视频| 两性夫妻黄色片 | 人体艺术视频欧美日本| 91精品国产国语对白视频| 熟女av电影| 亚洲内射少妇av| 亚洲伊人色综图| 国产精品无大码| 午夜激情av网站| 美女脱内裤让男人舔精品视频| 日韩成人av中文字幕在线观看| 精品一品国产午夜福利视频| 国产亚洲欧美精品永久| 国产精品麻豆人妻色哟哟久久| 一区二区av电影网| 高清毛片免费看| 国产精品偷伦视频观看了| 久久久久精品性色| 日本黄大片高清| 美女内射精品一级片tv| 久久久久久久久久久免费av| 卡戴珊不雅视频在线播放| 亚洲性久久影院| av一本久久久久| 日韩电影二区| 国产欧美另类精品又又久久亚洲欧美| 又黄又爽又刺激的免费视频.| 国产一区二区在线观看日韩| 在线亚洲精品国产二区图片欧美| 一区在线观看完整版| 久久精品夜色国产| 国产永久视频网站| 国产成人aa在线观看| 日本免费在线观看一区| 性色avwww在线观看| 国产在线免费精品| 久久精品久久精品一区二区三区| 久久久久久久久久成人| 成人18禁高潮啪啪吃奶动态图| 一区二区日韩欧美中文字幕 | 乱人伦中国视频| 久久精品国产自在天天线| a级毛色黄片| 亚洲精品乱码久久久久久按摩| av不卡在线播放| 久久久久久久久久人人人人人人| 午夜福利视频精品| 免费av不卡在线播放| 黄色毛片三级朝国网站| 国产白丝娇喘喷水9色精品| 在线观看美女被高潮喷水网站| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级| 中国美白少妇内射xxxbb| 91久久精品国产一区二区三区| 亚洲av在线观看美女高潮| 高清黄色对白视频在线免费看| 国产男女超爽视频在线观看| 国产熟女午夜一区二区三区| 国产精品一区www在线观看| 日韩熟女老妇一区二区性免费视频| 搡女人真爽免费视频火全软件| 欧美日韩av久久| 全区人妻精品视频| 国产av国产精品国产| 两个人免费观看高清视频| 五月玫瑰六月丁香| 如何舔出高潮| 国产精品久久久久久久电影| 久久97久久精品| 久久精品aⅴ一区二区三区四区 | 欧美激情极品国产一区二区三区 | 中国美白少妇内射xxxbb| 亚洲国产av新网站| 免费看av在线观看网站| 国产免费一级a男人的天堂| 大片免费播放器 马上看| 免费在线观看完整版高清| 亚洲av男天堂| 久热久热在线精品观看| 日韩av在线免费看完整版不卡| 久久午夜福利片| 国产不卡av网站在线观看| 亚洲国产精品专区欧美| 欧美成人午夜精品| 欧美日韩一区二区视频在线观看视频在线| 久热这里只有精品99| av在线观看视频网站免费| 在现免费观看毛片| 老司机影院毛片| 久久午夜综合久久蜜桃| 国产深夜福利视频在线观看| 成年美女黄网站色视频大全免费| 国语对白做爰xxxⅹ性视频网站| 最近中文字幕2019免费版| 午夜老司机福利剧场| 精品国产露脸久久av麻豆| 王馨瑶露胸无遮挡在线观看| 90打野战视频偷拍视频| 午夜福利影视在线免费观看| 在线看a的网站| av不卡在线播放| 大话2 男鬼变身卡| 9热在线视频观看99| 一级片免费观看大全| 下体分泌物呈黄色| 日韩av在线免费看完整版不卡| 人妻少妇偷人精品九色| 欧美亚洲 丝袜 人妻 在线| 丰满饥渴人妻一区二区三| 如日韩欧美国产精品一区二区三区| 蜜桃国产av成人99| 婷婷色综合大香蕉| 丝瓜视频免费看黄片| 亚洲欧美成人综合另类久久久| 亚洲精品一区蜜桃| 亚洲成国产人片在线观看| 亚洲第一av免费看| av一本久久久久| 热99久久久久精品小说推荐| 日韩成人av中文字幕在线观看| 欧美日本中文国产一区发布| av国产久精品久网站免费入址| 国产高清不卡午夜福利| 亚洲精品日本国产第一区| 美女大奶头黄色视频| 国产精品99久久99久久久不卡 | 人体艺术视频欧美日本| 在线 av 中文字幕| 久久免费观看电影| 婷婷色av中文字幕| 久久久久精品久久久久真实原创| 91成人精品电影| 大码成人一级视频| 91成人精品电影| 在线观看三级黄色| 国产成人午夜福利电影在线观看| 看免费av毛片| 国产一区二区三区综合在线观看 | 国产成人精品在线电影| 丰满迷人的少妇在线观看| 欧美另类一区| videossex国产| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 国产色婷婷99| 欧美精品一区二区免费开放| 午夜老司机福利剧场| 亚洲精品久久成人aⅴ小说| 日韩精品有码人妻一区| 免费看av在线观看网站| 最近最新中文字幕大全免费视频 | 亚洲情色 制服丝袜| 免费少妇av软件| 亚洲欧美成人综合另类久久久| 大香蕉97超碰在线| 90打野战视频偷拍视频| 多毛熟女@视频| 日日啪夜夜爽| 黄片无遮挡物在线观看| 在现免费观看毛片| 成人亚洲精品一区在线观看| 久久午夜综合久久蜜桃| 免费黄频网站在线观看国产| 街头女战士在线观看网站| 亚洲五月色婷婷综合| videosex国产| 在线观看美女被高潮喷水网站| 久久精品aⅴ一区二区三区四区 | 国产探花极品一区二区| 制服丝袜香蕉在线| 好男人视频免费观看在线| kizo精华| 国产片内射在线| 国产高清三级在线| 亚洲国产精品专区欧美| 亚洲av在线观看美女高潮| 欧美精品一区二区免费开放| 久久久久精品性色| 色94色欧美一区二区| 黑人欧美特级aaaaaa片| 亚洲国产看品久久| 极品人妻少妇av视频| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| 性色avwww在线观看| 女性生殖器流出的白浆| 日本av手机在线免费观看| 免费看不卡的av| 国产欧美另类精品又又久久亚洲欧美| 高清毛片免费看| 日本与韩国留学比较| 毛片一级片免费看久久久久| 日本欧美视频一区| 制服诱惑二区| 久久精品国产综合久久久 | 看非洲黑人一级黄片| 欧美 日韩 精品 国产| 婷婷色综合大香蕉| 天天影视国产精品| 久久影院123| 亚洲成色77777| 曰老女人黄片| 五月伊人婷婷丁香| tube8黄色片| 搡老乐熟女国产| videosex国产| 熟女人妻精品中文字幕| 日本色播在线视频| 午夜福利视频在线观看免费| 久久午夜综合久久蜜桃| 国产高清不卡午夜福利| 久久久久国产精品人妻一区二区| 婷婷色综合大香蕉| 亚洲三级黄色毛片| 两个人看的免费小视频| 九九在线视频观看精品| 最近的中文字幕免费完整| 蜜臀久久99精品久久宅男| 丝瓜视频免费看黄片| 日本猛色少妇xxxxx猛交久久| 亚洲精品美女久久久久99蜜臀 | 91午夜精品亚洲一区二区三区| 晚上一个人看的免费电影| 色吧在线观看| 免费在线观看完整版高清| 久久精品国产综合久久久 | 久久人人97超碰香蕉20202| 国产欧美另类精品又又久久亚洲欧美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产在视频线精品| 男女边摸边吃奶| 熟妇人妻不卡中文字幕| 夫妻午夜视频| 亚洲成色77777| 亚洲人与动物交配视频| 精品国产乱码久久久久久小说| 亚洲三级黄色毛片| 久久97久久精品| 午夜福利网站1000一区二区三区| 黄网站色视频无遮挡免费观看| 色婷婷av一区二区三区视频| a级片在线免费高清观看视频| 十八禁高潮呻吟视频| 亚洲综合色网址| 日本黄色日本黄色录像| 亚洲欧美清纯卡通| 中文欧美无线码| 国产高清三级在线| 色视频在线一区二区三区| 久久人妻熟女aⅴ| 亚洲av综合色区一区| 亚洲精品色激情综合| 99re6热这里在线精品视频| 亚洲四区av| 亚洲熟女精品中文字幕| 欧美精品高潮呻吟av久久| 观看美女的网站| 日本黄大片高清| 晚上一个人看的免费电影| 高清av免费在线| 少妇高潮的动态图| 欧美xxxx性猛交bbbb| 草草在线视频免费看| 午夜免费男女啪啪视频观看| 大片免费播放器 马上看| 亚洲av中文av极速乱| 亚洲少妇的诱惑av| 黑人欧美特级aaaaaa片| 欧美xxⅹ黑人| 18禁动态无遮挡网站| 国产精品三级大全| 成人亚洲精品一区在线观看| 秋霞在线观看毛片| 成人国语在线视频| 久久久久精品人妻al黑| 欧美日韩av久久| 日本wwww免费看| 亚洲精品一二三| 午夜老司机福利剧场| 中文欧美无线码| 日韩视频在线欧美| 午夜福利视频精品| 国产精品国产三级专区第一集| 高清在线视频一区二区三区| 国产精品一区二区在线不卡| 免费观看av网站的网址| 18禁动态无遮挡网站| 欧美另类一区| 国产有黄有色有爽视频| 国产黄色视频一区二区在线观看| 亚洲国产精品专区欧美| 午夜福利,免费看| www日本在线高清视频| 蜜桃在线观看..| 中文字幕人妻丝袜制服| 亚洲欧美中文字幕日韩二区| 插逼视频在线观看| 秋霞在线观看毛片| 日本色播在线视频| 精品亚洲乱码少妇综合久久| 日韩av在线免费看完整版不卡| 三上悠亚av全集在线观看| 欧美精品国产亚洲| 欧美+日韩+精品| 午夜福利视频精品| 天堂中文最新版在线下载| 水蜜桃什么品种好| 日本免费在线观看一区| av不卡在线播放| 如日韩欧美国产精品一区二区三区| 中文字幕制服av| 日韩三级伦理在线观看| 久久av网站| 好男人视频免费观看在线| 日韩人妻精品一区2区三区| 中文字幕免费在线视频6| 日韩av免费高清视频| 亚洲精品美女久久久久99蜜臀 | 在线免费观看不下载黄p国产| 精品国产一区二区久久| 久久精品熟女亚洲av麻豆精品| 美女xxoo啪啪120秒动态图| 精品国产露脸久久av麻豆| 日韩一区二区三区影片| 国产精品成人在线| 国产欧美日韩一区二区三区在线| 又粗又硬又长又爽又黄的视频| 精品一品国产午夜福利视频| 精品国产乱码久久久久久小说| 精品视频人人做人人爽| 久久青草综合色| 大香蕉久久网|