間隙條件下刨煤機(jī)刨頭接觸碰撞動(dòng)態(tài)特性研究
毛君1,張瑜1,劉占勝2,李國平3,陳洪月1,郭辰光1
(1.遼寧工程技術(shù)大學(xué)機(jī)械工程學(xué)院,遼寧阜新123000;2. 中國煤礦機(jī)械裝備有限責(zé)任公司,北京100011; 3.中煤張家口煤礦機(jī)械有限責(zé)任公司,河北張家口076250)
摘要:考慮了刨頭與滑架之間的水平和豎直間隙,通過點(diǎn)到直線的距離來進(jìn)行碰撞檢驗(yàn)的方法,構(gòu)造了刨頭與滑架接觸碰撞判別條件。采用非線性彈簧阻尼接觸力模型,建立了間隙條件下的刨頭三自由度碰撞振動(dòng)動(dòng)力學(xué)模型,并采用龍哥庫塔法進(jìn)行數(shù)值仿真分析,分析表明間隙條件下刨頭與滑架之間產(chǎn)生了單點(diǎn)、兩點(diǎn)、三點(diǎn)碰撞;刨頭與滑架各接觸點(diǎn)的最大碰撞力隨著豎直間隙的增大而先增大隨后降低,隨著水平間隙增大而逐漸增大。采用RecurDyn對(duì)刨頭動(dòng)力學(xué)模型進(jìn)行了仿真,其結(jié)果與理論分析相吻合。
關(guān)鍵詞:刨煤機(jī);接觸碰撞;間隙;動(dòng)態(tài)特性
中圖分類號(hào):TD421.62
文獻(xiàn)標(biāo)志碼:A
DOI:10.13465/j.cnki.jvs.2015.19.036
Abstract:Horizontal clearance and vertical one between plough head and sliding framework were considered. The criterion of contact-impact between plough head and sliding framework were established with the collision detection method using the distance between a point and a line. The plough head’s dynamic equation with 3-DOF vibro-impact under clearance conditions was established by using a nonlinear spring-damper contact force model. The numerical simulation was performed by using Runge-Kutta method. The results showed that there are single-point impact, two-point impact and three-point impact between plough head and sliding framework under clearance conditions; the maximum collision force at each contact point between plough head and sliding framework firstly increases and then decreases with increase in vertical clearance, and increases with increase in horizontal clearance. The plough head’s dynamic model was adopted for simulation with RecurDyn. The results agreed well with those of the theoretical analysis.
Dynamic characteristics of plough head under contact-impact with clearances
MAOJun1,ZHANGYu1,LIUZhan-sheng2,LIGuo-ping3,CHENHong-yue1,GUOChen-guang1(1. College of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China;2. China National Coal Mining Equipment Co. Ltd, Beijing 100011, China; 3. China Coal Zhangjiakou Coal Mining Machinery Co. Ltd, Zhangjiakou 076250, China)
Key words:plough; contact-impact; clearance; dynamic characteristics
刨煤機(jī)作為開采薄煤層的主要采煤機(jī)械而被廣泛應(yīng)用。刨頭是刨煤機(jī)系統(tǒng)的工作機(jī)構(gòu),其動(dòng)態(tài)特性直接影響刨煤機(jī)的工作性能??禃悦舻萚1]對(duì)刨頭的穩(wěn)定性進(jìn)行了分析,得出刨頭高度和刨削深度對(duì)刨頭穩(wěn)定性產(chǎn)生了一定的影響。郝志勇等[2]對(duì)滑行刨煤機(jī)刨頭進(jìn)行了三維受力分析。李曉豁等[3]建立了刨頭在截割煤層時(shí)的載荷數(shù)學(xué)模型,分析了刨頭不同部位載荷的分布。賀洪華等[4]建立了刨頭平面振動(dòng)的動(dòng)力學(xué)方程,分析了刨頭平面振動(dòng)特性。以上學(xué)者在研究過程中均未考慮間隙對(duì)刨頭動(dòng)態(tài)特性的影響。
由于制造裝配的需要以及刨頭相對(duì)滑架運(yùn)行時(shí)產(chǎn)生磨損等原因,刨頭與滑架之間存在一定的間隙,而間隙對(duì)刨頭的運(yùn)動(dòng)穩(wěn)定性產(chǎn)生較大的影響,使刨頭在運(yùn)行過程中與滑架產(chǎn)生碰撞與沖擊,從而影響其動(dòng)力特性、可靠性等??梢娧芯块g隙條件刨頭的碰撞振動(dòng)特性具有工程實(shí)際意義。針對(duì)間隙碰撞振動(dòng),金棟平等[5]闡述了機(jī)械系統(tǒng)碰撞振動(dòng)的典型現(xiàn)象,并提煉了間隙碰撞振動(dòng)的解析方法,研究了碰撞振動(dòng)系統(tǒng)的非線性動(dòng)力學(xué)行為。占甫等[6-7]從不同角度分析了三維間隙空間可展機(jī)構(gòu)的動(dòng)力學(xué)行為。Bapat等[8-13]采用連續(xù)接觸碰撞力模型對(duì)不同機(jī)構(gòu)的接觸碰撞做了大量研究。如Ravn[14]采用連續(xù)接觸模型分析了對(duì)曲柄滑塊機(jī)構(gòu)的動(dòng)態(tài)特性的影響。Flores[15]建立了間隙旋轉(zhuǎn)鉸的接觸條件以及采用連續(xù)接觸碰撞力模型,對(duì)間隙條件下的平面四連桿機(jī)構(gòu)動(dòng)態(tài)特性進(jìn)行了分析。
本文基于以上分析,建立了考慮間隙條件的刨頭三自由度碰撞振動(dòng)動(dòng)力學(xué)模型,提出了刨頭與滑架的碰撞判別條件。并采用數(shù)值方法對(duì)該動(dòng)力學(xué)模型進(jìn)行求解,分析了間隙條件下刨頭的動(dòng)態(tài)特性,以及不同間隙量對(duì)刨頭動(dòng)態(tài)特性的影響。
1碰撞條件
將刨頭與滑架相對(duì)運(yùn)動(dòng)模型簡化,見圖1。由于刨頭與滑架之間存在間隙,刨頭在外部激勵(lì)的作用下會(huì)出現(xiàn)擺動(dòng)以及豎直方向、水平方向移動(dòng),導(dǎo)致刨頭在運(yùn)行過程中與滑架出現(xiàn)分離,接觸。為了描述刨頭的運(yùn)動(dòng)特性,需要判斷刨頭在運(yùn)動(dòng)過程中與滑架碰撞的條件。
圖1 刨頭間隙碰撞簡化平面圖 Fig.1 Simplified planar graph of clearance impact of coal plow
設(shè)圖1中矩形abcd為滑架固定不動(dòng),矩形ABCD為刨頭相對(duì)滑架擺動(dòng)、移動(dòng),判別其相對(duì)運(yùn)動(dòng)過程中是否產(chǎn)生重疊的算法,其原理為:檢驗(yàn)滑架的各頂點(diǎn)到刨頭對(duì)邊的距離之和是否大于其相鄰邊長,如果大于則產(chǎn)生碰撞,若果等于則未碰撞。如判斷滑架中頂點(diǎn)b是否與刨頭產(chǎn)生碰撞的條件為:檢驗(yàn)頂點(diǎn)b到邊lAB的距離與頂點(diǎn)b到邊lCD距離之和是否大于邊lBC長。
本文以判斷b點(diǎn)產(chǎn)生碰撞條件為例。設(shè)刨頭運(yùn)動(dòng)之前各頂點(diǎn)坐標(biāo)為Xi=(xi,yi),,i=1,2,3,4,b點(diǎn)坐標(biāo)為(x0,y0)。則刨頭運(yùn)動(dòng)之后位置為圖1中矩形A′B′C′D′,其各點(diǎn)坐標(biāo)Nj=(xj,yj),j=1,2,3,4,其轉(zhuǎn)化表達(dá)式為:
Nj=P1,2·XTi+M
(1)
式中,P1,2為旋轉(zhuǎn)矩陣,刨頭逆針轉(zhuǎn)動(dòng)為
則刨頭順時(shí)針擺動(dòng)且移動(dòng)之后,各點(diǎn)坐標(biāo)為:
NTj=(xicosθ+yisinθ+xp,-xisinθ+yicosθ+yp)
令
xNj=xicosθ+yisinθ+xp,
yNj=-xisinθ+yicosθ+yp
則根據(jù)兩點(diǎn)直線公式得直線lAB:
(yN1-yN2)x+(xN2-xN1)y+(xN1yN2-xN2yN1)=0
lCD:(yN3-yN4)x+(xN4-xN3)y+(xN3yN4-xN4yN3)=0
令A(yù)0=yN1-yN2,B0=xN2-xN1,C0=xN1yN2-xN2yN1,A1=yN3-yN4,B1=xN4-xN3,C1=xN3yN4-xN4yN3,根據(jù)點(diǎn)到直線距離,點(diǎn)b到直線lAB與lCD的距離之和為:
(2)
此時(shí),如果滑架b點(diǎn)與刨頭產(chǎn)生碰撞,則
s>lBC
(3)
如果滑架b點(diǎn)與刨頭未產(chǎn)生碰撞,則
s=lBC
(4)
在外部激勵(lì)作用下,刨頭與滑架在二維平面內(nèi)將產(chǎn)生三種接觸碰撞形式,圖2為刨頭順時(shí)針擺動(dòng)時(shí),刨頭與滑架產(chǎn)生的三種不同碰撞狀態(tài),逆時(shí)針同理。刨頭與滑架在三維空間內(nèi)簡圖見圖3(a)。在外部激勵(lì)作用下,刨頭將會(huì)與滑架產(chǎn)生如下幾種碰撞狀態(tài):①當(dāng)刨頭水平擺動(dòng)時(shí),刨頭上方前端邊lAB(或者前端下方邊)以及后端下方邊(或者后端上方邊)與滑架產(chǎn)生碰撞見圖3(b);②當(dāng)刨頭側(cè)向擺動(dòng)時(shí),刨頭前端左邊上下兩邊(或者前端右方下方邊)以及后端右方的邊(或者后方左端上下兩邊)與滑架產(chǎn)生碰撞見圖3(c);③刨頭擺動(dòng)時(shí)同樣會(huì)產(chǎn)生單點(diǎn)瞬時(shí)碰撞見圖3(d);④由于刨頭自重的原因,刨頭上端面與滑架產(chǎn)生面碰撞見圖3(e),同時(shí)在外部激勵(lì)作用下,刨頭右端面也會(huì)與滑架產(chǎn)生面碰撞。本文僅研究二維平面刨頭與滑架的碰撞動(dòng)力學(xué)特性。
圖2 三種接觸碰撞狀態(tài) Fig.2 Three states of contact-impact
圖3 三維空間接觸碰撞狀態(tài) Fig.3 Contact-impact of three-dimensional space
2間隙條件下刨頭動(dòng)力學(xué)模型建立
為了分析間隙對(duì)刨頭與滑架接觸碰撞動(dòng)態(tài)特性的影響,將刨煤機(jī)刨頭與滑架機(jī)構(gòu)簡化為圖4受力模型,以滑架中心處為坐標(biāo)原點(diǎn),見圖4,設(shè)坐標(biāo)系為xoy。定義θ為刨頭轉(zhuǎn)動(dòng)角位移(設(shè)逆時(shí)針轉(zhuǎn)動(dòng)為正),x為刨頭水平位移,y為刨頭豎直位移,根據(jù)牛頓運(yùn)動(dòng)定律,建立刨頭擺動(dòng)、豎直移動(dòng)和水平移動(dòng)相耦合的三自由度運(yùn)動(dòng)平衡微分方程:
圖4 刨頭受力模型 Fig.4 Force model of coal plow
(5)
(6)
3數(shù)值模擬
根據(jù)式(5)所建立刨頭三自由度動(dòng)力學(xué)模型,采用龍格一庫塔方法對(duì)其進(jìn)行數(shù)值求解,并利用Matlab軟件編程進(jìn)行仿真分析,其仿真流程圖見圖5。
本文以某種刨頭的結(jié)構(gòu)參數(shù)為例進(jìn)行數(shù)值求解,m=2430kg,I=1265kg·m2,lab=lcd=0.27m,lad=lbc=0.33m,lx1=0.72m,lx2=0.415m,lx3=0.01m,ly=lyN=0.615m,lg=0.255m;刨頭所受外部激勵(lì)以及激勵(lì)頻率,F(xiàn)y=11kN,F(xiàn)x1=92kN,F(xiàn)x2=36kN,F(xiàn)x3=96kN,ω=2rad/s。通過數(shù)值仿真得到含間隙碰撞模型在間隙條件下非線性響應(yīng)的時(shí)域波形圖和碰撞力圖。
圖5 仿真流程圖 Fig.5 Flow chart of simulation
圖(6)為豎直間隙為30 mm、水平間隙為25 mm時(shí)刨頭質(zhì)心與滑架質(zhì)心相對(duì)運(yùn)動(dòng)時(shí)域圖。從圖中可知,由于刨頭與滑架之間存在碰撞,使得刨頭質(zhì)心擺角幅值及刨頭質(zhì)心水平、豎直移動(dòng)量出現(xiàn)了不同程度的振蕩。而豎直振動(dòng)受重力影響,其反向振動(dòng)大于正向振動(dòng)幅度。
圖7為刨頭與滑架各點(diǎn)碰撞力。從圖中可知,由于間隙的存在,刨頭與滑架各點(diǎn)均產(chǎn)生了間斷碰撞。對(duì)圖7中各點(diǎn)碰撞力同時(shí)取平均值和最大值,則刨頭與滑架各點(diǎn)逆時(shí)針碰撞力最大平均值為a點(diǎn),其值為74kN,刨頭與滑架各點(diǎn)順時(shí)針的碰撞力最大平均值產(chǎn)生在b點(diǎn),其值為82kN,而刨頭與滑架a,b,c,d各點(diǎn)逆時(shí)針碰撞力最大值同樣產(chǎn)生在a點(diǎn):其值為153kN,刨頭與滑架各點(diǎn)順時(shí)針的碰撞力最大值為b點(diǎn),其值為177kN。由于刨頭重力而引起偏心力的影響,滑架上面a,b兩點(diǎn)所受碰撞力均值以及最大值均大于c,d兩點(diǎn)。
圖6 刨頭質(zhì)心與滑架質(zhì)心相對(duì)運(yùn)動(dòng)時(shí)域圖 Fig.6 Time domain chart of mass center relative motion of sliding framework and coal plow
圖7 刨頭與滑架各點(diǎn)碰撞力 Fig.7 The collision force of sliding framework and coal plow
將圖7刨頭與滑架各點(diǎn)碰撞力局部放大。見圖8為刨頭逆時(shí)針與滑架各點(diǎn)碰撞力局部放大圖,從圖中可知,刨頭與滑架存在單點(diǎn)、兩點(diǎn)及三點(diǎn)逆時(shí)針碰撞,以兩點(diǎn)碰撞為主。如在53.8s時(shí)刻,刨頭僅與滑架b點(diǎn)逆時(shí)針碰撞,在53.03s時(shí)刻,刨頭與滑架a,d點(diǎn)產(chǎn)生兩點(diǎn)碰撞。在52.95s時(shí)刻,刨頭與滑架a,b,d三點(diǎn)產(chǎn)生了逆時(shí)針碰撞。圖9為刨頭順時(shí)針與滑架各點(diǎn)碰撞力局部放大圖,從圖中可知,刨頭與滑架同樣存在單點(diǎn)、兩點(diǎn)及三點(diǎn)順時(shí)針碰撞,如在56.55s時(shí)刻,刨頭僅與滑架a點(diǎn)產(chǎn)生碰撞,在56.8s時(shí)刻,刨頭與滑架b,c兩點(diǎn)碰撞。在57.85s時(shí)刻,刨頭與滑架a,b,c三點(diǎn)產(chǎn)生了逆時(shí)針碰撞??梢?,由于間隙的存在,刨頭與滑架各點(diǎn)產(chǎn)生了單點(diǎn)、兩點(diǎn)、三點(diǎn)碰撞。
圖8 刨頭與滑架逆時(shí)針碰撞局部放大圖 Fig.8 Local enlarging graphs of counterclockwise collision between sliding framework and coal plow
圖9 刨頭與滑架順時(shí)針碰撞局部放大圖 Fig.9 Local enlarging graphs of clockwise collision between sliding framework and coal plow
4間隙對(duì)刨頭穩(wěn)定性的影響
圖10為水平間隙為20mm,豎直間隙從20~30 mm變化時(shí)各點(diǎn)最大碰撞力變化規(guī)律。從圖中可知,刨頭與滑架各點(diǎn)的最大碰撞力隨著豎直間隙的增大而先增大隨后降低。圖11為豎直間隙為20mm,水平間隙從20~30 mm變化時(shí)各點(diǎn)最大碰撞力變化規(guī)律。從圖中可知,刨頭與滑架各點(diǎn)的最大碰撞力隨著水平間隙增大而逐漸增大。此外,從圖10、圖11可知,隨著間隙的增大,刨頭與滑架的最大碰撞力發(fā)生在a點(diǎn)或者b點(diǎn)。
圖10 豎直間隙變化時(shí)各點(diǎn)最大碰撞力 Fig.10 The maximum collision force with vertical clearance changes
圖11 水平間隙變化時(shí)各點(diǎn)最大碰撞力 Fig.11 The maximum collision force with horizontal clearance changes
5模型驗(yàn)證
為了驗(yàn)證模型的正確性,在Pro/e軟件中建立含間隙刨頭與滑架模型,并將其映射到RecurDyn軟件中進(jìn)行多剛體動(dòng)力學(xué)仿真。在RecurDyn中,設(shè)置仿真時(shí)間20s,定義接觸剛度與阻尼以及所受激勵(lì),其模型見圖12。
圖12 RecurDyn仿真模型 Fig.12 RecurDyn simulation model
圖13為刨頭4個(gè)內(nèi)表面與滑架碰撞力局部放大圖。從圖中可知,標(biāo)注1處為刨頭逆時(shí)針擺動(dòng)時(shí)單面與滑架產(chǎn)生碰撞,2處為刨頭順時(shí)針擺動(dòng)時(shí)兩面與滑架產(chǎn)生碰撞,3處為刨頭順時(shí)針擺動(dòng)時(shí)三面與滑架產(chǎn)生碰撞。可見其碰撞規(guī)律與前述理論分析結(jié)果基本吻合,從而驗(yàn)證了該方法的有效性。
圖13 模型仿真碰撞力 Fig13.Simulation collision force of model
基于第4節(jié)所分析的不同間隙對(duì)刨頭穩(wěn)定性的影響,通過RecurDyn對(duì)其進(jìn)行驗(yàn)證。選取三種豎直間隙、水平間隙:20mm、25mm、30mm進(jìn)行仿真,其仿真結(jié)果見圖14~圖15??梢娕鲎糙厔?shì)與4節(jié)分析相符,說明理論分析的正確性。
圖14 增加豎直間隙仿真結(jié)果圖 Fig.14 Simulation results figure as horizontal clearance increasing
圖15 增加水平間隙仿真結(jié)果圖 Fig.15 Simulation results figure as vertical clearance increasing
6結(jié)論
(1)由于間隙的存在,使得刨頭動(dòng)態(tài)特性發(fā)生了變化,具體表現(xiàn)為:使得刨頭質(zhì)心擺角幅值及刨頭質(zhì)心水平、豎直移動(dòng)量出現(xiàn)了不同程度的振蕩;刨頭與滑架之間產(chǎn)生了單點(diǎn)、兩點(diǎn)、三點(diǎn)碰撞;可見,間隙使得刨頭的運(yùn)動(dòng)穩(wěn)定性降低。
(2)在一定間隙范圍內(nèi),當(dāng)水平間隙固定時(shí),刨頭與滑架各點(diǎn)的最大碰撞力隨著豎直間隙的增大而先增大隨后降低;當(dāng)豎直間隙固定時(shí),刨頭與滑架各點(diǎn)的最大碰撞力隨著水平間隙增大而逐漸增大。因此,在保證刨頭正常運(yùn)行的情況下,適當(dāng)降低刨頭水平間隙,將豎直間隙控制在一定范圍內(nèi)。
(3)同時(shí),為驗(yàn)證結(jié)論的可靠性,采用RecurDyn對(duì)刨煤機(jī)刨頭動(dòng)力學(xué)模型進(jìn)行了模擬仿真,對(duì)刨頭與滑架的碰撞規(guī)律以及間隙對(duì)刨頭與滑架碰撞力影響趨勢(shì)的仿真結(jié)果與理論分析結(jié)果基本吻合。證實(shí)了結(jié)論的可靠性。
參考文獻(xiàn)
[1]康曉敏,李貴軒. 刨煤機(jī)刨頭的穩(wěn)定性分析[J].中國機(jī)械工程,2012,23(22):2739-2742.
KANG Xiao-min, LI Gui-xuan.Stability analysis of plow body of Coal plow[J]. China Mechanical Engineering, 2012,23(22):2739-2742.
[2]郝志勇,李貴軒,康曉敏. 滑行刨煤機(jī)刨頭的受力分析[J]. 煤礦機(jī)電,2005(1):21-23.
HAO Zhi-yong, LI Gui-xuan, KANG Xiao-min. The force analysis of sliding plough body[J].Colliery Mechanical & Electrical Technology, 2005(1):21-23.
[3]李曉豁,付偉麗,張飛虎,等. 刨頭上不同位置刨刀的隨機(jī)載荷模擬研究[J]. 微計(jì)算機(jī)信息,2011, 27(12):24-26.
LI Xiao-huo, FU Wei-li, ZHANG Fei-hu. Simulation and study of random loads on plow tools at different locations of plough head[J]. Microcomputer Information, 2011, 27(12):24-26.
[4]賀洪華,陸儉. 刨煤機(jī)刨頭的振動(dòng)分析與仿真研究[J].煤礦機(jī)電,2013(22):5-7.
HE Jin-hua, LU Jian.Vibration analysis and simulation study of coal plough head[J]. Colliery Mechanical & Electrical Technology, 2013(22):5-7.
[5]金棟平,胡海巖.碰撞振動(dòng)與控制[M].北京:科學(xué)出版社,2005.
[6]占甫,關(guān)富玲. 含三維間隙鉸空間可展機(jī)構(gòu)動(dòng)力學(xué)數(shù)值分析[J].浙江大學(xué)學(xué)報(bào),2009,43(1):177-182.
ZHAN Pu, GUAN Fu-ling.Dynamics numerical analysis of space deployable mechanism with three-dimensional clearance revolute joint[J]. Journal of Zhejiang Uniwersity, 2009,43 (1):177-182.
[7]周益君,關(guān)富玲. 考慮桿件彈性和三維間隙鉸機(jī)構(gòu)動(dòng)力學(xué)研究[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2012,44 (10);122-127.
ZHOU Yi-jun, GUAN Fu-ling.Dynamics analysis of mechanisms with elastic bars and three-dimensional clearance revolute joints[J]. Journal of Harbin Institute of University, 2012,44 (10):122-127.
[8]Bapat C N. The general motion of an inclined impact damper with friction [J]. Journal of Sound Vibration,1995, 184(11):417-427.
[9]Ahn K Y, Ryu B J. A modeling of impact dynamics and its application to impact force prediction[J]. Journal of Mechanical Science and Technology, 2005,19(1):422-428.
[10]Flores P, Ambrosio J, Pimenta Claro J C, et al. Influence of the contact impact force model on the dynamic response of multibody systems [J].Proceedings of the Institution of Mechanical Engineers,Part K: Journal of Multi-body Dynamics, 2006,220 (1):21-34.
[11]Gerasimov S A. Vibrational-impact dynamics [J]. Russian Engineering Research,2013,33(3):130-132.
[12]Flores P, Ambrósio J. On the contact detection for contact-impact analysis in multibody systems [J].Multibody System Dynamics,2010, 24(1): 103-122.
[13]Flores P,Ambrósio J,Pimenta Claro J C. Contact-impact force models for mechanical systems[J]. Kinematics and Dynamics of Multibody Systems with Imperfect Joints, 2008,34:47-66.
[14]Ravn P. A continuous analysis method for planar multibody systems with joint clearance [J]. Multibody system dynamics, 1998, 2:1-24.
[15]Flores P,Ambr6sio J,Pimenta Claro J C, et al. Dynamic behaviour of planar rigid multi-body systems including revolute joints with clearance[J].Proceedings of the Institution of Mechanical EngineersPart K: Journal of Multi-body Dynamics,2007, 221(2):161-174.
[16]Tasora A, Prati E, Silvestri M. A compliant measuring system for revolute joints with clearance [C] //AITC-AIT 2006 International Conference on Tribology. Parma:Parma University, 2006:726-732.
[17]Muvengei O, Kihiu J, Ikua B. Dynamic analysis of planar rigid-body mechanical systems with two-clearance revolute joints [J]. Nonlinear Dynamics, 2013, 73:259-273.