• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A nucleotide substitution at the 5′splice site of intron 1 of rice HEADING DATE 1(HD1)gene homolog in foxtail millet,broadly found in landraces from Europe and Asia

    2015-12-21 07:47:34KenjiFukungNokoIzukTkehiroHchikenStoshiMizuguchiHidemiItoKtsuyukiIchitni
    The Crop Journal 2015年6期

    Kenji Fukung*,Noko IzukTkehiro HchikenStoshi Mizuguchi Hidemi ItoKtsuyuki Ichitni

    aFaculty of Life and Environmental Sciences,Prefectural University of Hiroshima,562 Nanatsuka-cho,Shobara,Hiroshima,Japan,727-0023

    bFaculty of Agriculture,Kagoshima University,1-21-24 Korimoto,Kagoshima,Japan,890-8580

    A nucleotide substitution at the 5′splice site of intron 1 of rice HEADING DATE 1(HD1)gene homolog in foxtail millet,broadly found in landraces from Europe and Asia

    Kenji Fukunagaa,*,Naoko Izukaa,Takehiro Hachikena,Satoshi Mizuguchia, Hidemi Itoa,Katsuyuki Ichitanib

    aFaculty of Life and Environmental Sciences,Prefectural University of Hiroshima,562 Nanatsuka-cho,Shobara,Hiroshima,Japan,727-0023

    bFaculty of Agriculture,Kagoshima University,1-21-24 Korimoto,Kagoshima,Japan,890-8580

    A R T I C L E I N F O

    Article history:

    Accepted 6 August 2015

    Available online 15 August 2015

    Foxtail millet Geographicaldistribution HD1(HEADING DATE 1)homolog Setaria italica Splice site

    We investigated genetic variation of a rice HEADING DATE 1(HD1)homolog in foxtail millet. First,we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding sequence of the gene.We compared full HD1 gene sequences of 11 accessions(including Yugu 1,a Chinese cultivar used for genome sequencing)from various regions in Europe and Asia,found a nucleotide substitution at a putative splice site of intron 1,and designated the accessions with the nucleotide substitution as carrying a splicing variant.We verified by RT-PCR that this single nucleotide substitution causes aberrant splicing of intron 1.We investigated the geographical distribution of the splicing variant in 480 accessions of foxtail millet from various regions of Europe and Asia and part of Africa by dCAPS and found that the splicing variant is broadly distributed in Europe and Asia.Differences of heading times between accessions with wild type allele of the HD1 gene and those with the splicing variant allele were unclear.We also investigated variation in 13 accessions of ssp.viridis,the wild ancestor,and the results suggested that the wild type is predominant in the wild ancestor.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license

    (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Foxtail millet[Setaria italica(L.)P.Beauv.]is one of the oldest cereals in the Old World.This millet adapts to various environmental conditions such as temperate and tropical climate and high-and low-altitude conditions,and its agronomic traits show large variation as a result of adaptation to local environments and cultivation under various cultural conditions.Given that foxtail millet has some advantages for genetic studies,such as diploidy with small chromosome numbers(2n=2x=18),small genome size(ca.500 Mb),inbreeding habit,and a relatively short growth period,it hasbecome a modelplantfor panicoid grass species such as biofuel grasses(switchgrass and Napier grass)and other millet species such as pearlmillet[1].The foxtailmillet genome sequence has recently been determined[2,3].Owing to its high variation in several agronomic traits as a result of adaptation to variable environmental condition and human selection,this millet will be also a good material for studying crop evolution.

    Heading time is one ofthe mostimportanttraits in adaptation to localenvironments.This trait has already been investigated in foxtail millet;landraces show high variability in heading time, and this trait is determined by a combination of length of the basic vegetative growth period and sensitivity to short-day conditions[4,5].A recent phylogenetic analysis has shown that heading time is associated with phylogenetic differentiation of foxtailmillet landraces[6].This trait is known to be variable also in other plant species and has been investigated in detail[7-9]. Recently,molecular mechanisms of this trait have been studied in severalplant species,particularly in model plants such as rice and Arabidopsis[10].Among the most important genes for flowering/heading are CONSTANS(CO)in Arabidopsis[11]and its ortholog HEADINGDATE 1(HD1)in rice[12],which are associated with sensitivity to photoperiod and regulate expression of FT in Arabidopsis and Hd3a in rice.In severalplant species,homologs of this gene have also been isolated and analyzed[13-17],revealing that the gene is important in flowering of all plant species. Although this gene(andalso other genes involvedin heading)has been investigated in detail in the context of domestication and adaptation to local conditions in rice[18,19],only a few genetic studies[20,21]of heading time of foxtail millet,which has been cultivated more broadly than rice since ancient times,have been performed.Ichitani et al.performed genetic analyses of heading time using progenies derived from a single cross and suggested that heading characteristics are controlled by polygenes[20]. Mauro-Herrera etal.performed QTL analyses for flowering time and genetic analyses of candidate genes and reported that HD1/ CO colocalized with one of the QTLs on chromosome 4[21]. More recently,Jia et al.performed genome-wide association mapping and suggested some candidate genes for this trait[6]. However,no detailed work on specific genes involved in heading time has yet been performed.

    In the present study,we performed sequencing analyses for the foxtail millet HD1(CO)gene homolog,identified a splicing variant of the gene,and investigated the geographical distribution of the variant.We also investigated the relationships between HD1 genotype and heading time.

    2.Materials and methods

    2.1.Plant materials and DNA extraction

    We used a total of 480 foxtail millet accessions and 13 accessions of S.italica ssp.viridis,the wild ancestor of foxtail millet,as shown in Table S1.Most of the foxtail millet accessions were landraces directly collected in fields,and some were obtained frominstitutes in other countries.These samples cover the entire traditional cultivation area of this millet fromeast Asia to western Europe and part of Africa.All of the foxtail millet samples are maintained at the National Institute of Agrobiological Sciences(NIAS)Genebank,Tsukuba, Japan.All of the ssp.viridis accessions were obtained from the United States Department of Agriculture(USDA)Genebank.The 13 accessions included three from Turkey,two each from Russia,Afghanistan,Iran and mainland China,and one each from Chile and Mongolia.As foxtail millet and ssp.viridis are predominantly self-pollinating species,a single plant for each accession was chosen for the analyses.DNAwas extracted from seedling leaves according to Murray and Thompson[22]with some modifications or using a Qiagen DNaeasy Plant Mini Kit according to the manufacturer's instructions.

    2.2.Search for an HD1 gene homolog in foxtail millet,PCR amplification,and comparison of the sequences

    A search was performed for a rice HEADING DATE 1(HD1) homolog in the foxtail millet genome database(http://www. plantdg.org/SiGDB/)by BLAST(http://www.plantgdb.org/SiGDB/ cgi-bin/blastGDB.pl,blastn with E-value=1e-20)using a rice HD1 gene sequence,AB041837,as a query.We designed a primer pair to amplify the entire coding sequence of the gene and primers for sequencing(Figs.1,and S1,and Table S2). Primers were designed with Primer3(http://primer3.wi.mit. edu/).We amplified 10 accessions of foxtail millet from various geographical areas of Europe and Asia(two from Japan(NIAS JP71626 and 71640),two from Taiwan of China(JP 73913,222588),one from the Philippines(JP 222569),one from Myanmar(JP 222570),two from India(JP 222981 and 222982), one from ex-Czechoslovakia(JP 222971),and one from France (JP 223004))and determined the sequences by direct sequencing using the primers listed in Table S2.Sequences of 10 landraces and one Chinese accession,Yugu 1,used for genome sequencing by Bennetzen et al.[2]were aligned with CLUSTALW (http://www.genome.jp/tools/clustalw/).Structures of the gene (positions ofexons and intron)were deduced by comparison with those in other plant species including rice,maize(EU302135), wheat(AB094487),and barley(AF490468).

    2.3.mRNA extraction,RT-PCR,and comparison between wild type and variant

    Sequence analysis indicated that some landraces carry a point mutation on the putative 5′splice site of intron 1resulting in loss of function of this gene(see results).To verify that this point mutation causes aberrant splicing,we performed RT-PCR of the gene including intron 1 in a variant type(AT type)of a landrace from Taiwan of China (JP 73913,see Table S1)and also a wild type(GTtype)from Japan (JP 71640).RNA was extracted from young leaves grown in naturalday conditions according to Wang et al.[23],and cDNA synthesis and RT-PCR were performed with a Takara Prime Script RT-PCR Kit according to manufacturer's instructions.The primer pair ConsNewF1(5′-CAGCAAGGATCCTGACAACA-3′) and ConsNewR2(5′-CTTGATCCT TGGTC GTGCTT-3′)was used for amplification(Figs.1,and S1,Table S2).PCRconditions were 5 min at 94°C;35 cycles of 1 min at 94°C,1 min at 56°C,and 2 min at 72°C;and 2 min at 72°C.After purification with a Wizard SV Gel and PCR Clean-Up System(Promega Co.Ltd.), PCR products were ligated into the pGEM vector(Promega Co. Ltd.)and transformed into JM108 Escherichia coli cells.Sequencing was performed with a BigDye terminator kit v3.1 accordingto the instructions of the manufacturer(Applied Biosystems) and M13 primers.Two clones for the wild type and seven clones for the splicing variant were sequenced.Samples were sequenced on an ABIPRISM 3130xl Genetic Analyzer/ABIPRISM 3500xl Genetic Analyzer at the Institute of Gene Research, Kagoshima University.

    Fig.1–Structure of the HD1 gene of foxtail millet,primers used for amplification/sequencing,and indels and SNPs found between accessions.Black boxes indicate exons.Horizontal arrows indicate primers and directions(Table S2).Verticalarrows indicate indels and SNPs.Accessions(Yugu 1,mainland China;JP 71626&71640,Japan;JP 222588&73913,Taiwan of China;JP 222569,the Philippines;JP 222981&222982,India;JP 222570,Myanmar;JP 222971,ex-Czechoslovakia;JP 223004,France)with indels and SNPs are indicated in parentheses(See details in Fig.S1).

    2.4.dCAPS analysis of landraces and assessment of geographicaldistribution

    After verifying that one nucleotide sequence substitution that occurs at the 5′splice site of intron 1 leads to loss of function of the gene by comparison with the sequence of the ortholog of rice and other grass species and sequencing of RT-PCR products(see results),we analyzed this point mutation in 480 accessions of foxtail millet from various cultivation areas.To detect this single-nucleotide polymorphism(SNP),we developed a dCAPS marker[24]for the SNP.dCAPS primers were designed with dCAPS Finder version 2.0(http://helix.wustl. edu/dcaps/dcaps.html).Primer sequences were HD1dCAPSF (5′-AGCAGTACCGAAGGCA AGAA-3′)and HD1dCAPSR(5′-AGCA TAGTAATAGATGAACGCA-3′)(Figs.1,S1,and S2 and Table S2). PCR was performed with TOYOBO 2×Quick Taq and PCR conditions were 5 min at 94°C;35 cycles of 1 min at 94°C, 1 min at 50°C,and 2 min at 72°C;and 5 min at 72°C.After digestion with Sph I,electrophoresis was performed on 2.0% agarose gel.Approximately 220-bp bands were scored as the wild-type allele and 200-bp bands as the splicing variant allele.

    2.5.Cultivation experiments

    Six individuals of each of97 accessions were cultivated in pots in a greenhouse in the Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima,Shobara,Hiroshima(34°50′N,132°59′E).These 97 accessions cover a broad cultivation area from East Asia to Europe and fromhigh to low latitude(Table S3). Of the 97,16 carried the wild-type allele and 81 the splicing variant allele.Seeds were sown in pots on May 22,2011 under natural day-length conditions.Days to heading was defined as the number of days until the panicle on the main culm was first visible in the sheath of the flag leaf.

    3.Results

    3.1.Sequence of HD1 homolog in foxtail millet and sequence variation between landraces

    A homolog of rice HEADING DATE 1(HD1)was found on chromosome 4 of the foxtail millet genome sequence[21]. The collinearity of chromosome 4 of foxtail millet with rice chromosome 6[25],on which the rice HD1 gene is located[12], suggested that the gene on foxtail millet chromosome 4 is an ortholog of the rice HD1 gene.We also aligned the HD1 gene in the foxtailmillet genome with predicted Setaria italica zinc finger protein HD1-like(LOC101768789)(XM_004965163)as a query and confirmed that the gene on chromosome 4 is a foxtail millet HD1 homolog.We also found a gene showing much lower identity with the rice HD1 gene on foxtailmillet chromosome 1, but it may be a paralog of the gene.

    We determined 2835-2837 bp of the gene of 10 landraces from various regions of Eurasia(DDBJ:AB807720-AB807729) and compared the full gene sequences from Yugu 1 and the 10 landraces to identify polymorphisms in the gene.The most important polymorphism between accessions was a single-nucleotide substitution of GT by AT at the 5′end of intron 1(splice site)found in 7 of the 11 accessions,which may cause loss of function of the gene as shown in Fig.1. Other polymorphisms were also found.Two specific SNPs were found in the 5′region of the gene and in intron 1 in Yugu 1 and a Japanese landrace(JP 71640)(Fig.1).A landrace from Myanmar(JP 222570)had several nucleotide substitutions innon-coding sequences and also a substitution in the coding region leading to an amino acid substitution(Fig.1).This substitution may change the function of the product,but in this study,we focused on the SNP(single nucleotide polymorphism)in intron 1,which apparently causes loss of function of the gene.We designated the accessions with AT at the 5′end of intron 1 as“splicing variant”.

    3.2.Verification of splicing variation by RT-PCR

    We determined the sequences of two clones ofa wild type and seven clones of a splicing variant,and the results of sequencing are summarized in Fig.2.Expected splicing of intron 1 was observed in both of the two clones of the wild type(JP 71640),whereas three different aberrant splicing products were found in the variant(a Taiwanese accession,JP 73913),designated as types 1-3 as shown in Fig.2.Of the seven clones,four showed a type 1 splicing pattern,two showed a type 2 pattern,and one showed a type 3 pattern(Fig.2).In all three types,intron 1 was spliced at GT in exon 1(33 bp upstream of the 5′splice site of the wild type)instead of the end of intron 1 and also at a different AG instead of the 3′end of intron 1 in types 2-3(68 and 25 bp,respectively,upstream of the 3′splice site of the wild type)(Figs.2 and S1).

    3.3.Geographicaldistribution of the splicing variant in foxtail millet and variation in the wild ancestor revealed by dCAPS analysis

    Genotyping of wild type and splicing variant was successfully performed by dCAPS analysis as shown in Fig.3.We investigated the geographical distribution of the splicing variant allele in 480 accessions offoxtailmillet fromvarious areas of Europe and Asia and a part of Africa(Fig.4).We also confirmed that results of dCAPS are consistent with G-A substitution by sequencing the region including the 5′end of intron 1 of 8 randomly chosen accessions(data not shown).Surprisingly,of the 480 accessions, only 90 showed the wild-type allele(18.8%)and 390 showed the splicing variant allele(81.2%).The splicing variant allele is not evenly distributedin Europe and Asia:31(27.6%)ofthe accessions from Japan,11(26.8%)from Korea Peninsula,12(14.6%)from mainland China,one(11.1%)from the Philippines,2(28.6%)from Indonesia,1(50%)from Thailand,3(10%)from Myanmar,20 (45.5%)from India,5(83.3%)from Sri Lanka,2(40%)from Turkey, and one each from Primorskaya province of the ex-USSR and Poland.The wild-type allele was observed most frequently in accessions from India and Sri Lanka of south Asia and at lower frequencies in accessions from Japan,Korea Peninsula,and mainland China of east Asia but rarely in accessions from the Nansei Islands of Japan,Taiwan of China,the Philippines,Nepal, Central Asia,West Asia,Europe and Africa(Fig.3).

    As for ssp.viridis,2 accessions from Afghanistan had a variant allele,whereas the 11 other accessions from mainland China,Mongolia,Russia,Iran,Turkey and Chile,had a wild-type allele,suggesting that the wild type is predominant in ssp.viridis.

    3.4.Relationships between HD1 genotype and heading time

    A histogram of the distribution of heading time of accessions with the wild-type allele and those with the splicing variant allele is shown in Fig.5.One very late-heading accession from Halmahera Island,Indonesia(169 days),had the wild-type allele,and a few late heading accessions from Thailand, Myanmar,and Luzon island in the Philippines also had the wild-type allele.Most of the accessions with the wild-type and variant alleles showed early to late heading(34-119 days)but the average heading times of accessions with the wild-type allele and those with the splicing variant allele were 85.8 and 65.7 days,respectively.Comparison(by t-test)between accessions with the wild-type allele and those with the splicing variant allele with all 97 accessions showed a significant difference between the two alleles(P<0.01),but when the very late-heading accession from Halmahera Island wasexcluded,there was no significant difference between the two types.

    Fig.2–Results of sequencing of RT-PCR products of the wild-type and variant alleles.Sequences in boxes indicate cDNA sequences amplified by RT-PCR and sequences between boxes indicate spliced sequences.Stars indicate a nucleotide substitution at the 5′splice site of the intron 1.The wild-type allele was spliced at expected GT–AG sequences,whereas the variant allele was spliced at different GT and AGs.Three different RT-PCR products were obtained and designated as types 1–3. All three types were spliced at the same GT(33 bp upstream of the 5′splice site of the wild type)in exon 1.Type 1 was spliced at the same AG as the wild type,and types 2 and 3 were spliced at different AGs(68 and 25 bp upstream of the 3′splice site of the wild type)in intron 1.

    Fig.3–A gel image of the results of genotyping of wild-type and splicing variant type of HD1 gene in foxtail millet.M indicates a 100-bp ladder size marker.Number above photo indicates cultivation number of the samples(see Table S1) and“w”denotes wild type.The 220-and 200-bp bands correspond to wild type and splicing variant,respectively.

    4.Discussion

    4.1.Aberrant splicing at the 5′end of intron 1 of HD1 gene

    We identified a nucleotide substitution at the 5′end of the intron 1 of the HD1 gene by sequencing analysis(Fig.1)and confirmed the occurrence of aberrant splicing by sequencing of the RT-PCR products with the splicing variant(Fig.2).At least three types of splicing(types 1-3)occurred in the splicing variant of the HD1 gene(Fig.2).A nucleotide substitution at the 5′end of intron 1 leads to multiple different aberrant splicing products in the waxy gene of rice[26].Judging from the putative amino acid sequences deduced from these nucleotide sequences,a protein of type 1 lacks 11 amino acids from the HD1 protein compared with the wild type,and a frame shift and a premature stop codon occur in types 2 and 3(Fig.S3).Given that a zinc finger motif is encoded in exon 1 of the HD1 gene,whereas a nuclear localization signal is encoded in exon 2 ofthe gene[12],this nucleotide substitution likely leads to loss of function of the gene in types 2 and 3. However,it is possible that type 1 is functional despite the deletion of 11 amino acids.Given that a simple G-to-A transition in a splicing donor site leads to mis-spliced mRNA with a premature stop codon in the rice waxy gene[27,28]and the pea flower color(bHLH)gene[29],the results of RT-PCR in the present study strongly suggest that mis-splicing occurs in intron 1 because of a single nucleotide substitution at the 5′end of intron 1.

    4.2.Geographicaldistribution of the splicing variant in foxtail millet and variation in the wild ancestor

    As shown in Fig.4,the splicing variant is predominant in Europe and Asia and the wild type is frequently found in limited regions:east Asia including Japan,Korea Peninsula, and mainland China,south Asia including India and Sri Lanka,and Southeast Asia,and also sporadically in the ex-USSR and Europe.Takei and Sakamoto[5]reported that foxtail millet landraces from intermediate latitudes(between 27°N and 34°N)are sensitive to change in day length,and landraces from an intermediate latitude would be expected to carry the wild-type allele.However,the wild-type allele of the HD1 gene is distributed broadly from high latitudes in Primorskaya province,ex-USSR,and northeast China to low latitudes in Luzon island,Philippines and Halmahera Island, Indonesia.Mauro-Herrera et al.[21]reported that one of three maize candidate genes in the Setaria QTL intervals is an HD1 (CO)homolog,suggesting that the HD1 gene influences foxtail millet heading time.

    The results for the geographicaldistribution ofthe wild type of the HD1 gene in Asia,particularly in south and east Asia,are congruent with those of rDNA-RFLP analysis[30],suggesting that some genetic exchanges occurred between countries in east Asia such as Japan,Korea Peninsula,and mainland China and countries in south Asia such as India and Sri Lanka. However,another interpretation is also possible:that this point mutation arose and was selected at multiple times during the spread of this millet in Europe and Asia because of some advantage of the splicing variant in adaptation to local environments.Detailed phylogenetic studies of HD1 gene in foxtail millet will be helpful for determining how the mutant type arose and spread in Europe and Asia.

    As for ssp.viridis,two accessions from Afghanistan had the variant allele,whereas the other 11 accessions had the wild-type allele,suggesting that the wild type is predominantin ssp.viridis.Interestingly,our observations in the cultivation experiment showed that these two accessions from Afghanistan had morphological characteristics similar to those of Afghan landraces of foxtail millet(data not shown), which have morphological characteristics similar to ssp.viridis except for large grains and a non-shattering habit[31].These accessions may have been misclassified or may have arisen through introgression between foxtail millet and its wild ancestor.In these cases,the variant allele may have originated after domestication.However,further study of ssp.viridis accessions from a broader geographicalarea is needed.

    4.3.Relationships between HD1 genotype and heading time

    As shown in Fig.5,differences in heading between the wild type and variant are unclear.Regulation of heading time may be so complex that the effect of a single gene on heading time is masked by the effects of other genes influencing the trait, although the HD1 gene is colocalized with a QTL for heading time[21]and seems a likely candidate for control of heading time variation in foxtail millet.Ehd1 confers short-day promotion offlowering in the absence of a functionalallele of Hd1[32] and several other genes are also involved in heading time in rice[9,33].Recently,in sorghum,another gene,pseudoresponse regulator protein 37(PRR37),involved in regulation of heading time has also been identified[15].This gene is also importantin adaptation to different latitudes.In maize,the HD1 gene has been mapped and QTL analysis for flowering time has been performed[34],but the results do not provide evidence of theeffect ofthe gene on flowering time photoperiod responses.It appears that HD1(CONSTANS)does not always play an important role in latitudinal adaptation in sorghum and maize.Jia et al.[6]identified several genes including NF-YC9 (also known as HAP5C)and FIE1 that influence heading time in foxtail millet by genome-wide association studies.Comparative genetic studies of control of flowering time among multiple grass species willhelp in an understanding of grass evolution.

    Fig. 4 – Geographical distribution of the wild-type allele (indicated in black) and variant allele (indicated in white). “n” indicatesnumber of accessions investigated.

    Fig.5–Distribution of number of days to heading of 97 accessions.Accessions with the wild-type allele are indicated in gray and those with the variant allele are indicated in black.One very late-heading accession from Halmahera Island,Indonesia is indicated by an arrow.

    5.Conclusions

    Foxtail millet is cultivated over a broad area in Europe and Asia and is highly variable in heading time.Although heading/flowering is genetically controlled in a complex manner,an HD1(CO)gene homolog was analyzed in the present study as the first step for elucidating the genetic basis of this trait.We found that a splicing variant(putative non-functional)allele of the gene is broadly distributed in Europe and Asia but found no clear association between genotype and heading time,suggesting that several genes influence the trait,as reported in rice,maize,and sorghum. Given that not only conserved but also lineage-specific genes influence latitudinal adaptation in cereal species,it is desirable to analyze variation in other candidate genes influencing this trait in foxtail millet and also to evaluate the effects of genes in segregating populations under different photoperiods.We are also now developing recombinant inbred lines (RILs)from a cross between a landrace from a temperate area and one from a subtropical area[35]for this purpose.

    Acknowledgments

    We thank J.Bennetzen and R.Percifield for providing information on foxtailmillet genome sequence before publication.This work was partially supported by the NIAS Genebank Project, NIAS,Japan.

    Supplementary material

    Supplementary material to this article can be found online at http://dx.doi.org/10.1016/j.cj.2015.07.003.

    R E F E R E N C E S

    [1]A.N.Doust,E.A.Kellogg,K.M.Devos,J.L.Bennetzen,Foxtail millet:a sequence-driven grass model system,Plant Physiol. 149(2009)137-141.

    [2]J.L.Bennetzen,J.Schmutz,H.Wang,R.Percifield,J.Hawkins, A.C.Pontaroli,M.Estep,L.Feng,J.N.Vaughn,J.Grimwood,J. Jenkins,K.Barry,E.Lindquist,U.Hellsten,S.Deshpande,X. Wang,X.Wu,T.Mitros,J.Triplett,X.Yang,C.Y.Ye,M. Mauro-Herrera,L.Wang,P.Li,M.Sharma,R.Sharma,P.C. Ronald,O.Panaud,E.A.Kellogg,T.P.Brutnell,A.N.Doust,G.A. Tuskan,D.Rokhsar,K.M.Devos,Reference genome sequence of the model plant Setaria,Nat.Biotechnol.30(2012)555-561.

    [3]G.Zhang,X.Liu,Z.Quan,S.Cheng,X.Xu,S.Pan,M.Xie,P. Zeng,Z.Yue,W.Wang,Y.Tao,C.Bian,C.Han,Q.Xia,X.Peng, R.Cao,X.Yang,D.Zhan,J.Hu,Y.Zhang,H.Li,H.Li,N.Li,J. Wang,C.Wang,R.Wang,T.Guo,Y.Cai,C.Liu,H.Xiang,Q. Shi,P.Huang,Q.Chen,Y.Li,J.Wang,Z.Zhao,J.Wang, Genome sequence of foxtailmillet(Setaria italica)provides insights into grass evolution and biofuel potential,Nat. Biotechnol.30(2012)549-554.

    [4]E.Takei,S.Sakamoto,Geographical variation of heading response to daylength in foxtailmillet(Setaria italica P. Beauv.),Jpn.J.Breed.37(1987)150-158.

    [5]E.Takei,S.Sakamoto,Further analysis of geographical variation of heading response to daylength in foxtail millet (Setaria italica P.Beauv.),Jpn.J.Breed.39(1989)285-298.

    [6]G.Jia,X.Huang,H.Zhi,Y.Zhao,Q.Zhao,W.Li,Y.Chai,L. Yang,K.Liu,H.Lu,C.Zhu,Y.Lu,C.Zhou,D.Fan,Q.Weng,Y. Guo,T.Huang,L.Zhang,T.Lu,Q.Feng,H.Hao,H.Liu,P.Lu,N.Zhang,Y.Li,E.Guo,B.Zhang,W.Li,Y.Wang,H.Li,B.Zhao,J. Li,X.Diao,B.Han,A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet(Setaria italica),Nat.Genet.45(2013)957-961.

    [7]K.Ichitani,Y.Okumoto,T.Tanisaka,Photoperiod sensitivity of Se-1 locus found in photoperiod insensitivity rice cultivars of the northern limit region of rice cultivation,Breed.Sci.47 (1997)145-152.

    [8]M.Koornneef,C.Alonso-Blanco,D.Vreugdenhil,Naturally occurring genetic variation in Arabidopsis thaliana,Annu.Rev. Plant Biol.55(2004)141-172.

    [9]M.Yano,Genetic controlof flowering time in rice,a short-day plant,Plant Physiol.127(2000)1425-1429.

    [10]T.Izawa,Y.Takahashi,M.Yano,Comparative biology comes into bloom:genomic and genetic comparison of flowering pathways in rice and Arabidopsis,Curr.Opin.Plant Biol.6 (2003)113-120.

    [11]J.Putterill,F.Robson,K.Lee,R.Simon,G.Coupland,The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors,Cell 80(1995)847-857.

    [12]M.Yano,Y.Katayose,M.Ashikari,U.Yamanouchi,L.Monna, T.Fuse,T.Baba,K.Yamamoto,Y.Umehara,Y.Nagamura,T. Sasaki,Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS,Plant Cell12(2000)2473-2484.

    [13]J.Clotault,A.C.Thuillet,M.Buiron,S.De Mita,M.Couderc, B.I.G.Haussmann,C.Mariac,Y.Vigouroux,Evolutionary history of pearl millet(Pennisetum glaucum[L.]R.Br.)and selection on flowering genes since its domestication,Mol. Biol.Evol.29(2012)1199-1212.

    [14]T.A.Miller,E.H.Muslin,J.E.Dorweiler,Amaize CONSTANS-like gene,conz1,exhibits distinct diurnalexpression patterns in varied photoperiods,Planta 227(2008)1377-1388.

    [15]R.L.Murphy,R.R.Klein,D.T.Morishige,J.A.Brad,W.L.Rooney, F.R.Miller,D.V.Dugas,P.E.Klein,J.E.Mullet,Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37)controls photoperiodic flowering in sorghum,Proc. Natl.Acad.Sci.U.S.A.108(2011)16469-16474.

    [16]C.Navarro,J.A.Abelenda,E.Cruz-Oró,C.A.Cuéllar,S. Tamaki,J.Silva,K.Shimamoto,S.Prat,Control of flowering and storage organ formation in potato by FLOWERING LOCUS T,Nature 478(2011)119-122.

    [17]F.Valverde,CONSTANS and the evolutionary origin of photoperiodic timing of flowering,J.Exp.Bot.62(2011) 2453-2463.

    [18]Y.Takahashi,K.Shimamoto,Heading date 1(Hd1),an ortholog of Arabidopsis CONSTANS,is a possible target of human selection during domestication to diversify flowering times of cultivated rice,Genes Genet.Syst.86(2011)175-182.

    [19]Y.Takahashi,K.M.Teshima,S.Yokoi,H.Innan,K. Shimamoto,Variations in Hd1 proteins,Hd3a promoters,and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice,Proc.Natl.Acad.Sci.U.S.A.106(2009) 4555-4560.

    [20]K.Ichitani,K.Nagao,Y.Narita,K.Fujikawa,M.Samejima,S. Taura,M.Sato,Genetic analysis of heading characters in foxtail millet(Setaria italica(L.)P.Beauv.)using the progeny from the cross between the two diverse strains,Gai 53 and Kuromochi,Mem.Fac.Agr.Kagoshima Univ.38(2003)17-25.

    [21]M.Mauro-Herrera,X.W.Wang,H.Barbier,T.P.Brutnell,K.M. Devos,A.N.Doust,Genetic controland comparative genomic analysis of flowering time in Setaria(Poaceae),G3-Genes Genom,Genet.3(2013)283-295.

    [22]M.G.Murray,W.F.Thompson,Rapid isolation of high-molecular-weight plant DNA,Nucleic Acids Res.8(1980) 4321-4325.

    [23]Z.Y.Wang,F.Q.Zheng,G.Z.Shen,J.P.Gao,D.P.Snustad,M.G. Li,J.L.Zhang,M.M.Hong,The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene,Plant J.7(1995)613-622.

    [24]M.M.Neff,E.Turk,M.Kalishman,Web-based primer design for single nucleotide polymorphism analysis,Trends Genet. 18(2002)613-615.

    [25]K.M.Devos,Z.M.Wang,J.Beales,T.Sasaki,M.D.Gale, Comparative genetic maps of foxtailmillet(Setaria italica)and rice(Oryza sativa),Theor.Appl.Genet.96(1998)63-68.

    [26]X.L.Cai,Z.Y.Wang,Y.Y.Xing,J.L.Zhang,M.M.Hong,Aberrant splicing of intron 1 leads to the heterogeneous 5′UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content,Plant J.14(1998)459-465.

    [27]H.Y.Hirano,M.Eiguchi,Y.Sano,A single base change altered the regulation of the Waxy gene at the posttranscriptional levelduring the domestication of rice,Mol.Biol.Evol.15 (1998)978-987.

    [28]M.Isshiki,K.Morino,M.Nakajima,R.J.Okagaki,S.R.Wessler, T.Izawa,K.Shimamoto,A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′splice site of the first intron,Plant J.15(1998)133-138.

    [29]R.P.Hellens,C.Moreau,K.Lin-Wang,K.E.Schwinn,S.J. Thomson,M.W.E.J.Fiers,T.J.Frew,S.R.Murray,J.M.I.Hofer, J.M.E.Jacobs,K.M.Davies,A.C.Allan,A.Bendahmane,C.J. Coyne,G.M.Timmerman-Vaughan,T.H.N.Ellis, Identification of Mendel's white flower character,PLoS ONE 5 (2010),e13230http://dx.doi.org/10.1371/journal.pone.0013230.

    [30]M.Eda,A.Izumitani,K.Ichitani,M.Kawase,K.Fukunaga, Geographicalvariation of foxtail millet,Setaria italica(L.)P. Beauv.based on rDNAPCR-RFLP,Genet.Resour.Crop.Evol.60 (2013)265-274.

    [31]S.Sakamoto,Origin and phylogenetic differentiation of cereals in the Southwest Eurasia,in:S.Sakamoto(Ed.), Domesticated Plants and Animals of the Southwest Eurasian Agro-pastroral Culture Complex,Kyoto University,Kyoto 1987,pp.1-45.

    [32]K.Doi,T.Izawa,T.Fuse,U.Yamanouchi,T.Kubo,Z. Shimatani,M.Yano,A.Yoshimura,Ehd1,a B-type response regulator in rice,confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1, Gene Dev.18(2004)926-936.

    [33]K.Ebana,T.Shibaya,J.Wu,K.Matsubara,H.Kanamori,H. Yamane,U.Yamanouchi,T.Mizubayashi,I.Kono,A. Shomura,S.Ito,T.Ando,K.Hori,T.Matsumoto,M.Yano, Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars,Theor.Appl.Genet.122(2011)1199-1210.

    [34]N.D.Coles,M.D.McMullen,P.J.Balint-Kurti,R.C.Pratt,J.B. Holland,Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis,Genetics 184 (2010)799-812.

    [35]K.Sato,Y.Mukainari,K.Naito,K.Fukunaga,Construction ofa foxtailmillet linkage map and mapping spikelet-tipped bristles 1(stb1)with transposon display markers and simple sequence repeat markers with genome sequence information, Mol.Breed.31(2013)675-684.

    3 April 2015

    in revised form 4 July 2015

    .Tel./fax:+824 74 1714,+824 74 0191.

    E-mail address:fukunaga@pu-hiroshima.ac.jp(K.Fukunaga).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    videosex国产| 国产成人影院久久av| 欧美精品啪啪一区二区三区| 久久久久久亚洲精品国产蜜桃av| 一区二区日韩欧美中文字幕| 亚洲国产欧美日韩在线播放| 精品久久久精品久久久| 久久草成人影院| 90打野战视频偷拍视频| 成人三级黄色视频| 亚洲av成人不卡在线观看播放网| 久久婷婷成人综合色麻豆| 欧美日韩福利视频一区二区| 久久国产精品男人的天堂亚洲| 国产视频一区二区在线看| 久久久久精品国产欧美久久久| 日本vs欧美在线观看视频| 国产极品粉嫩免费观看在线| 黄色片一级片一级黄色片| 中国美女看黄片| 国产高清有码在线观看视频 | 亚洲精品国产区一区二| 我的亚洲天堂| 免费搜索国产男女视频| 制服丝袜大香蕉在线| 国产高清激情床上av| 亚洲伊人色综图| 制服人妻中文乱码| 在线天堂中文资源库| 黄色 视频免费看| 日日爽夜夜爽网站| 日本撒尿小便嘘嘘汇集6| 国产色视频综合| 欧美日韩乱码在线| 国产亚洲欧美在线一区二区| 精品国产美女av久久久久小说| 精品一品国产午夜福利视频| 精品国产超薄肉色丝袜足j| 美女国产高潮福利片在线看| 成人18禁在线播放| 欧美日韩一级在线毛片| 黑丝袜美女国产一区| 久久国产精品影院| 成人18禁高潮啪啪吃奶动态图| 丝袜人妻中文字幕| 美女国产高潮福利片在线看| 亚洲免费av在线视频| 中文字幕另类日韩欧美亚洲嫩草| 在线永久观看黄色视频| 亚洲第一av免费看| 亚洲成人久久性| 日韩中文字幕欧美一区二区| 亚洲五月色婷婷综合| 亚洲欧洲精品一区二区精品久久久| 亚洲avbb在线观看| 色综合欧美亚洲国产小说| 久99久视频精品免费| 免费搜索国产男女视频| 国产精品自产拍在线观看55亚洲| av视频免费观看在线观看| 18禁观看日本| 一二三四在线观看免费中文在| 国产成人av激情在线播放| 91麻豆av在线| 黄色片一级片一级黄色片| 成年人黄色毛片网站| 高清黄色对白视频在线免费看| 淫秽高清视频在线观看| 久久人妻福利社区极品人妻图片| 嫩草影院精品99| 国产黄a三级三级三级人| 91精品三级在线观看| 国产私拍福利视频在线观看| 亚洲成人精品中文字幕电影| 妹子高潮喷水视频| 国产亚洲av高清不卡| 精品久久久久久久人妻蜜臀av | 亚洲精品国产色婷婷电影| 99久久精品国产亚洲精品| 国产精品久久视频播放| 国产精品日韩av在线免费观看 | 在线观看免费午夜福利视频| 免费搜索国产男女视频| av视频在线观看入口| 他把我摸到了高潮在线观看| 亚洲三区欧美一区| 免费在线观看视频国产中文字幕亚洲| 精品国内亚洲2022精品成人| 制服人妻中文乱码| 亚洲第一欧美日韩一区二区三区| 午夜福利视频1000在线观看 | 午夜久久久在线观看| 天天添夜夜摸| 久久精品影院6| 男女做爰动态图高潮gif福利片 | 久久亚洲精品不卡| 99国产精品一区二区三区| 欧美最黄视频在线播放免费| 久久人人爽av亚洲精品天堂| 久久国产精品人妻蜜桃| 日日夜夜操网爽| 黄色a级毛片大全视频| 日韩欧美在线二视频| 美女扒开内裤让男人捅视频| 欧美色欧美亚洲另类二区 | 精品国产超薄肉色丝袜足j| 国产乱人伦免费视频| 97人妻天天添夜夜摸| 国产视频一区二区在线看| 亚洲熟女毛片儿| 嫩草影视91久久| 亚洲三区欧美一区| 午夜激情av网站| 99精品在免费线老司机午夜| 桃红色精品国产亚洲av| 91精品三级在线观看| 999精品在线视频| 91九色精品人成在线观看| 91大片在线观看| 国产激情久久老熟女| 亚洲精品国产一区二区精华液| 欧美国产日韩亚洲一区| 国产高清videossex| svipshipincom国产片| 国产aⅴ精品一区二区三区波| 我的亚洲天堂| 窝窝影院91人妻| 欧美一级a爱片免费观看看 | 99久久久亚洲精品蜜臀av| 国产精品国产高清国产av| 亚洲中文日韩欧美视频| 亚洲欧美精品综合久久99| 18禁美女被吸乳视频| 伊人久久大香线蕉亚洲五| 亚洲国产日韩欧美精品在线观看 | 午夜福利高清视频| 久热爱精品视频在线9| 亚洲精品国产区一区二| 亚洲国产精品sss在线观看| 免费高清视频大片| 久久久久久久精品吃奶| 99精品久久久久人妻精品| 亚洲男人的天堂狠狠| 成人欧美大片| 日日爽夜夜爽网站| 国产免费男女视频| 老熟妇乱子伦视频在线观看| 国产精品国产高清国产av| 咕卡用的链子| 成人永久免费在线观看视频| 韩国av一区二区三区四区| 无限看片的www在线观看| 亚洲欧美精品综合一区二区三区| 成年版毛片免费区| 欧美日韩瑟瑟在线播放| 精品福利观看| 国产精品乱码一区二三区的特点 | 涩涩av久久男人的天堂| 乱人伦中国视频| 国产一级毛片七仙女欲春2 | 91在线观看av| 人妻久久中文字幕网| 嫁个100分男人电影在线观看| 亚洲精品中文字幕一二三四区| 日韩av在线大香蕉| 叶爱在线成人免费视频播放| 18禁美女被吸乳视频| 91国产中文字幕| 女警被强在线播放| 亚洲欧美精品综合久久99| 国产aⅴ精品一区二区三区波| 黄色毛片三级朝国网站| 天天一区二区日本电影三级 | 亚洲av美国av| 免费在线观看完整版高清| 99在线人妻在线中文字幕| 久久精品人人爽人人爽视色| 51午夜福利影视在线观看| 1024视频免费在线观看| 成年人黄色毛片网站| av福利片在线| www国产在线视频色| 法律面前人人平等表现在哪些方面| 欧美中文综合在线视频| 黄片播放在线免费| 99精品在免费线老司机午夜| 热re99久久国产66热| 咕卡用的链子| 黄片大片在线免费观看| 亚洲五月天丁香| 女警被强在线播放| 天堂影院成人在线观看| 精品久久久久久成人av| 91大片在线观看| netflix在线观看网站| www日本在线高清视频| 天天一区二区日本电影三级 | 亚洲中文字幕一区二区三区有码在线看 | 国产精品日韩av在线免费观看 | 黄色a级毛片大全视频| 级片在线观看| 真人做人爱边吃奶动态| 国产精品电影一区二区三区| 国产精品国产高清国产av| 一边摸一边做爽爽视频免费| 在线观看www视频免费| 国产一区二区三区视频了| 午夜福利18| 国产欧美日韩一区二区三| 97人妻精品一区二区三区麻豆 | 99久久精品国产亚洲精品| 久久亚洲真实| 成年人黄色毛片网站| av福利片在线| 首页视频小说图片口味搜索| 国产日韩一区二区三区精品不卡| 欧美日本视频| 精品国产亚洲在线| 亚洲国产精品999在线| 亚洲熟妇熟女久久| 母亲3免费完整高清在线观看| 很黄的视频免费| 热re99久久国产66热| 国产精品一区二区精品视频观看| 日本免费一区二区三区高清不卡 | 两性夫妻黄色片| 十分钟在线观看高清视频www| 久久国产精品人妻蜜桃| 欧美精品啪啪一区二区三区| 国产精品影院久久| 亚洲片人在线观看| 久久精品人人爽人人爽视色| 欧美在线一区亚洲| 香蕉国产在线看| 久久久国产成人精品二区| 中文字幕久久专区| 一区二区三区激情视频| 在线永久观看黄色视频| 免费看美女性在线毛片视频| 成人手机av| 在线观看日韩欧美| 精品熟女少妇八av免费久了| 亚洲欧美精品综合久久99| 久久热在线av| 国产亚洲精品综合一区在线观看 | 日韩视频一区二区在线观看| a在线观看视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 国产激情欧美一区二区| 亚洲一区二区三区色噜噜| 日韩欧美一区二区三区在线观看| 国产三级黄色录像| 国产色视频综合| 制服人妻中文乱码| 99久久99久久久精品蜜桃| 身体一侧抽搐| 涩涩av久久男人的天堂| 精品国产一区二区三区四区第35| 国产欧美日韩一区二区三| 久久人妻福利社区极品人妻图片| 欧美人与性动交α欧美精品济南到| 亚洲欧美精品综合久久99| 国产亚洲精品综合一区在线观看 | 免费看美女性在线毛片视频| 欧美一级毛片孕妇| 亚洲av成人一区二区三| 黄网站色视频无遮挡免费观看| 搡老岳熟女国产| 天堂√8在线中文| 久久久久久久久久久久大奶| 国产成人av教育| 久久久久精品国产欧美久久久| 国产伦一二天堂av在线观看| 97碰自拍视频| 天堂√8在线中文| 黄片大片在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 精品卡一卡二卡四卡免费| 悠悠久久av| 亚洲av成人av| www.www免费av| 亚洲国产中文字幕在线视频| 老司机深夜福利视频在线观看| 午夜免费成人在线视频| 在线天堂中文资源库| 男人的好看免费观看在线视频 | 色综合亚洲欧美另类图片| 亚洲一码二码三码区别大吗| 美女国产高潮福利片在线看| 亚洲国产欧美日韩在线播放| 亚洲av成人av| 午夜精品久久久久久毛片777| 91老司机精品| 亚洲成人久久性| 长腿黑丝高跟| 午夜福利视频1000在线观看 | 国产成人系列免费观看| 黑丝袜美女国产一区| bbb黄色大片| 亚洲av成人一区二区三| 嫩草影视91久久| 久久中文字幕一级| 两人在一起打扑克的视频| 国产熟女xx| 村上凉子中文字幕在线| 亚洲七黄色美女视频| 成年女人毛片免费观看观看9| 香蕉久久夜色| 女人高潮潮喷娇喘18禁视频| 免费看美女性在线毛片视频| 久久影院123| 满18在线观看网站| 老司机午夜十八禁免费视频| 久久久久久久久免费视频了| 国产精品亚洲美女久久久| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 久久中文字幕人妻熟女| 久久久久久亚洲精品国产蜜桃av| 欧美日韩瑟瑟在线播放| 在线视频色国产色| 久久人妻福利社区极品人妻图片| 很黄的视频免费| 欧美性长视频在线观看| 亚洲少妇的诱惑av| 久久人妻福利社区极品人妻图片| 国内精品久久久久久久电影| 中文字幕精品免费在线观看视频| 亚洲伊人色综图| 91成年电影在线观看| x7x7x7水蜜桃| 9191精品国产免费久久| 欧美+亚洲+日韩+国产| 一个人免费在线观看的高清视频| 97超级碰碰碰精品色视频在线观看| 色综合婷婷激情| 免费在线观看影片大全网站| 日本三级黄在线观看| 久久影院123| 欧美激情久久久久久爽电影 | 午夜亚洲福利在线播放| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 国产精品影院久久| 国产精品精品国产色婷婷| 久久久久久亚洲精品国产蜜桃av| 亚洲一区中文字幕在线| 亚洲成人精品中文字幕电影| 日韩视频一区二区在线观看| 亚洲人成电影免费在线| 国产精品电影一区二区三区| 少妇粗大呻吟视频| 老汉色av国产亚洲站长工具| 青草久久国产| 亚洲在线自拍视频| 亚洲中文字幕一区二区三区有码在线看 | 午夜免费鲁丝| 国产99白浆流出| 一二三四社区在线视频社区8| 后天国语完整版免费观看| 91大片在线观看| 国产一级毛片七仙女欲春2 | 久热这里只有精品99| 久久久久久久久久久久大奶| 成人18禁在线播放| 午夜激情av网站| 男女下面进入的视频免费午夜 | 男人舔女人下体高潮全视频| 国产精华一区二区三区| 怎么达到女性高潮| 久久人人97超碰香蕉20202| 亚洲片人在线观看| 亚洲人成电影观看| 级片在线观看| 亚洲午夜精品一区,二区,三区| 一进一出好大好爽视频| 麻豆国产av国片精品| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 叶爱在线成人免费视频播放| 国产激情久久老熟女| 亚洲欧美日韩另类电影网站| 日韩三级视频一区二区三区| 狂野欧美激情性xxxx| 国产精品99久久99久久久不卡| 亚洲第一青青草原| 国产极品粉嫩免费观看在线| 国产精品野战在线观看| 亚洲少妇的诱惑av| cao死你这个sao货| xxx96com| 韩国精品一区二区三区| 制服丝袜大香蕉在线| √禁漫天堂资源中文www| 女人被躁到高潮嗷嗷叫费观| 大型av网站在线播放| 亚洲在线自拍视频| 99久久久亚洲精品蜜臀av| 满18在线观看网站| 一级毛片精品| 国产高清激情床上av| av片东京热男人的天堂| 99国产精品一区二区三区| 国产精品香港三级国产av潘金莲| 波多野结衣一区麻豆| 中文字幕久久专区| 国产xxxxx性猛交| 久久性视频一级片| 亚洲 欧美一区二区三区| 伊人久久大香线蕉亚洲五| 久久久久久大精品| 国内精品久久久久久久电影| 午夜免费鲁丝| 午夜精品国产一区二区电影| 91成年电影在线观看| aaaaa片日本免费| 国产免费男女视频| 免费少妇av软件| 给我免费播放毛片高清在线观看| 丝袜美足系列| 在线观看免费视频网站a站| 男人操女人黄网站| 免费在线观看视频国产中文字幕亚洲| 国产主播在线观看一区二区| 久久久国产成人免费| 国产免费男女视频| 在线免费观看的www视频| bbb黄色大片| 日本黄色视频三级网站网址| 久久人妻福利社区极品人妻图片| 啦啦啦观看免费观看视频高清 | 国产精品av久久久久免费| 亚洲天堂国产精品一区在线| 久久欧美精品欧美久久欧美| 啪啪无遮挡十八禁网站| 国产99久久九九免费精品| 国产成人系列免费观看| 给我免费播放毛片高清在线观看| 成人国产综合亚洲| 亚洲人成伊人成综合网2020| 日韩大尺度精品在线看网址 | 后天国语完整版免费观看| 精品久久久精品久久久| 亚洲视频免费观看视频| 国产麻豆69| 午夜两性在线视频| 精品国产乱码久久久久久男人| 正在播放国产对白刺激| 久久久久亚洲av毛片大全| 国产欧美日韩一区二区精品| 亚洲欧美精品综合一区二区三区| av在线天堂中文字幕| 亚洲情色 制服丝袜| 亚洲全国av大片| 一级片免费观看大全| 亚洲中文日韩欧美视频| 国产免费av片在线观看野外av| 亚洲人成伊人成综合网2020| 女同久久另类99精品国产91| 免费观看人在逋| 脱女人内裤的视频| 涩涩av久久男人的天堂| 久久午夜亚洲精品久久| 日韩国内少妇激情av| 日韩三级视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 成人av一区二区三区在线看| 满18在线观看网站| 黄色毛片三级朝国网站| 久热这里只有精品99| x7x7x7水蜜桃| 精品国产亚洲在线| 久久精品国产亚洲av高清一级| 亚洲精品av麻豆狂野| 国产精品,欧美在线| 色综合欧美亚洲国产小说| 自线自在国产av| 国产成人影院久久av| 99国产精品一区二区三区| 国产一区二区在线av高清观看| 99久久综合精品五月天人人| 欧美一区二区精品小视频在线| 麻豆av在线久日| 少妇熟女aⅴ在线视频| 久久久久久国产a免费观看| 国产片内射在线| 丁香欧美五月| 国产欧美日韩综合在线一区二区| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品久久久久5区| 中文字幕av电影在线播放| 深夜精品福利| svipshipincom国产片| 亚洲自拍偷在线| 免费在线观看黄色视频的| 亚洲中文字幕日韩| 免费人成视频x8x8入口观看| 成人永久免费在线观看视频| 亚洲人成77777在线视频| 亚洲精品av麻豆狂野| 久久狼人影院| 可以在线观看的亚洲视频| 黑人巨大精品欧美一区二区mp4| 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 岛国视频午夜一区免费看| 午夜久久久在线观看| 日韩成人在线观看一区二区三区| 午夜精品久久久久久毛片777| 欧美精品亚洲一区二区| 搡老妇女老女人老熟妇| 丝袜美足系列| 国产精品九九99| 夜夜躁狠狠躁天天躁| 午夜免费观看网址| 91麻豆av在线| 国产三级在线视频| 午夜老司机福利片| 老汉色∧v一级毛片| 国产成人影院久久av| 国产乱人伦免费视频| 一夜夜www| 香蕉久久夜色| 久久久国产精品麻豆| 亚洲 欧美一区二区三区| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久| 国产一区在线观看成人免费| 成人国语在线视频| 亚洲少妇的诱惑av| 99久久国产精品久久久| 国产午夜福利久久久久久| 最近最新免费中文字幕在线| 岛国在线观看网站| 欧美激情高清一区二区三区| 丝袜美足系列| 黄色视频不卡| 精品国内亚洲2022精品成人| 日韩欧美三级三区| 法律面前人人平等表现在哪些方面| 国产在线观看jvid| 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| 久久香蕉激情| 欧美一区二区精品小视频在线| 91国产中文字幕| 国产精品亚洲一级av第二区| 视频在线观看一区二区三区| 成人国产综合亚洲| 午夜亚洲福利在线播放| 丝袜美足系列| 欧美日韩中文字幕国产精品一区二区三区 | 99久久精品国产亚洲精品| 亚洲少妇的诱惑av| 国产区一区二久久| 国产亚洲精品第一综合不卡| 两人在一起打扑克的视频| 久久欧美精品欧美久久欧美| 99久久国产精品久久久| ponron亚洲| 在线观看日韩欧美| 麻豆久久精品国产亚洲av| 好男人在线观看高清免费视频 | 色婷婷久久久亚洲欧美| 满18在线观看网站| 欧美激情久久久久久爽电影 | 99久久99久久久精品蜜桃| 久久香蕉国产精品| 一级毛片精品| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 99国产精品免费福利视频| 淫妇啪啪啪对白视频| 国产一卡二卡三卡精品| 正在播放国产对白刺激| 国产精品久久久人人做人人爽| 美女扒开内裤让男人捅视频| 男人舔女人下体高潮全视频| 亚洲av电影不卡..在线观看| 亚洲国产看品久久| 99久久综合精品五月天人人| 久久国产精品男人的天堂亚洲| 婷婷丁香在线五月| av在线播放免费不卡| 国产成人啪精品午夜网站| 久久亚洲精品不卡| svipshipincom国产片| 日韩欧美一区二区三区在线观看| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| 高潮久久久久久久久久久不卡| 欧美激情 高清一区二区三区| 久久久久久久久免费视频了| 国产三级黄色录像| 我的亚洲天堂| 久久香蕉国产精品| 麻豆一二三区av精品| 亚洲精品粉嫩美女一区| 欧美最黄视频在线播放免费| 久久久国产精品麻豆| 好看av亚洲va欧美ⅴa在| 亚洲狠狠婷婷综合久久图片| 女人爽到高潮嗷嗷叫在线视频| 叶爱在线成人免费视频播放| 成人国产综合亚洲| 十八禁人妻一区二区| 少妇粗大呻吟视频| 热99re8久久精品国产| 男女午夜视频在线观看| 少妇的丰满在线观看| 久久亚洲精品不卡| 九色国产91popny在线| 天堂√8在线中文| 真人做人爱边吃奶动态| 嫩草影院精品99|