• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Barnyard millet globalcore collection evaluation in the submontane Himalayan region of India using multivariate analysis

    2015-12-21 07:47:38SlejSoodRjeshKhuleArunKumrPwnAgrwlHriDUpdhyy
    The Crop Journal 2015年6期

    Slej Sood*,Rjesh K.KhuleArun Kumr R.Pwn K.AgrwlHriD.Updhyy

    aIndian Council of Agricultural Research—Vivekananda Institute of Hill Agriculture,Almora,Uttarakhand 263601,India

    bInternational Crop Research Institute for the Semi-Arid Tropics(ICRISAT),Patancheru,502 324 Telangana,India

    Barnyard millet globalcore collection evaluation in the submontane Himalayan region of India using multivariate analysis

    Salej Sooda,*,Rajesh K.Khulbea,Arun Kumar R.a,Pawan K.Agrawala,HariD.Upadhyayab

    aIndian Council of Agricultural Research—Vivekananda Institute of Hill Agriculture,Almora,Uttarakhand 263601,India

    bInternational Crop Research Institute for the Semi-Arid Tropics(ICRISAT),Patancheru,502 324 Telangana,India

    A R T I C L E I N F O

    Article history:

    Accepted 6 August 2015

    Available online 15 August 2015

    Agro-morphological variation Barnyard millet core germplasm Cluster analysis Echinochloa spp Principal component analysis

    Barnyard millet(Echinochloa spp.)is one of the most underresearched crops with respect to characterization of genetic resources and genetic enhancement.A total of 95 germplasm lines representing global collection were evaluated in two rainy seasons at Almora, Uttarakhand,India for qualitative and quantitative traits and the data were subjected to multivariate analysis.High variation was observed for days to maturity,five-ear grain weight,and yield components.The first three principal component axes explained 73%of the total multivariate variation.Three major groups were detected by projection of the accessions on the first two principalcomponents.The separation of accessions was based mainly on trait morphology.Almost all Indian and origin-unknown accessions grouped together to form an Echinochloa frumentacea group.Japanese accessions grouped together except for a few outliers to form an Echinochloa esculenta group.The third group contained accessions from Russia,Japan,Cameroon,and Egypt.They formed a separate group on the scatterplot and represented accessions with lower values for all traits except basal tiller number.The interrelationships between the traits indicated that accessions with tall plants,long and broad leaves,longer inflorescences,and greater numbers of racemes should be given priority as donors or parents in varietal development initiatives.Cluster analysis identified two main clusters based on agro-morphological characters.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license

    (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Barnyard millet(Echinochloa spp.)is one of the oldest domesticated millets in the semiarid tropics of Asia and Africa.Two main species,Echinochloa esculenta(A.Braun)H.Scholz;syn. Echinochloa utilis Ohwi et Yabuno(Japanese barnyard millet) and Echinochloa frumentacea Link;syn.Echinochloa colona var. frumentacea(Link)Ridl.(Indian barnyard millet)are cultivated and grown as cereals.It is a staple cereal in areas where climatic and edaphic conditions are unsuitable for rice cultivation[1].In India,barnyard millet is grown in the Himalayan region from the north to the Deccan plateau in the south.It is generally cultivated in hill slopes and undulating fields of hilly,tribal,or marginal areas,wherefew options exist for crop diversification.In addition to the two domesticated species,the genus includes about 20-30 annualand perennialwild species distributed worldwide[2,3], many of which can grow in wet or well-watered situations and compete successfully with rice.

    Barnyard millet has a wide adaptation capacity and can grow up to an altitude of 2000 m above mean sea levelduring summer season[4].Diversity in barnyard millet has fast eroded,owing to a considerable reduction in acreage and changing socio-cultural and economic dimensions of the farming community in India[5].Many efforts have been made to preserve the crop diversity ex situ,but information about on-farm and in situ conservation of all small millets is scarce[6].

    The classification of the genus Echinochloa on the basis of inflorescence morphology into two species,four subspecies,and eight races is simple and reliable and helps to elucidate not only the patterns of variation but also the paths of evolutionary history.However,it is difficult to categorize the variation in germplasm collections for economic purposes[7].Multivariate methods are useful for characterization,evaluation,and classification of plant genetic resources when a large number of accessions are to be assessed for severalcharacters ofagronomic and physiological importance[8].The utility of multivariate methods for handling morphological variation in germplasm collections has been demonstrated in many crop plants(finger millet[9];sorghum[10];barnyard millet[4]).The information generated can be useful for identifying groups of accessions that have desirable characters for crossing,planning efficient germplasm collecting expeditions,establishing core collections, revealing the patterns ofvariation in germplasm collections,and investigating aspects of crop evolution[8,11-15].

    The present study describes the characterization of a recently developed barnyard millet global core germplasm collection[16]and identification of groups of accessions with similar quantitative characters,using a range of multivariate statistical methods,for genotypes grown in the submontane Himalayan region where this crop occupies a special place as food and fodder[17].

    2.Materials and methods

    2.1.Plant materials

    The 95 germplasm accessions used include 89 accessions from the barnyard millet core collection developed by ICRISAT and six check genotypes[16].The accessions with their source countries are presented in Table S1.

    The crop was raised from July to November,2011 and 2012 at the experimental farm of the ICAR-Vivekananda Institute of Hill Agriculture(79°39′E latitude and 25°35′N longitude, 1250 m above sea level).During 2011,a single row of each accession was planted in an augmented design,whereas in2012 two rows of each accession were planted in an alpha lattice design with two replications.Five blocks constituted one replication with 19 accessions in each block.The row length was 3 m with a row-to-row spacing of 22.5 cm.Thinning was applied within a month after sowing to maintain a plant-to-plant spacing of 7.5 cm within rows.

    Table 1–Qualitative trait analyses in a barnyard millet core germplasm collection based on two years of data.

    Fertilizer was applied at 40:20:0(N:P:K)kg ha-1,where the entire amount of phosphorus and half of the nitrogen was applied as a basal dose during field preparation.The remaining half of the nitrogen was applied as top dressing 45 days after sowing and after the second weeding.Manual weeding was performed twice during the crop season,20 and 40 days after sowing.

    2.2.Data recording

    Data were recorded for 7 qualitative and 16 quantitative traits, following the descriptors of barnyard millet[18].For every accession in a plot,five individualplants were used for recording the data,exceptfor days to flowering and days to maturity,which were recorded on a plot basis.

    2.3.Statisticalanalysis

    The agro-morphologicaldata of each year separately as wellas the pooled data were analyzed.The data could not be subjected to a combined analysis of variance,owing to the unavailability of replicated data in the first year.The adjusted mean values of the first and second years were used for further analysis.The adjusted mean values of the two years were pooled and mean values were computed for combined analysis.Statistical analyses were performed using JMP 2009(JMP,Version 9.0.0.SAS Institute Inc.,Cary,NC)and SPSS(Statistical Package for Social Science,SPSS Inc.,Chicago,IL).For multifactorial comparison, principal component analysis(PCA)was used to display the correlations between the various morphological and related parameters and their relationship with different barnyard millet genotypes.Two-way cluster analysis was performed with JMP 2009.One accession(IEc 566)did not set seeds and was not included in the analysis.

    3.Results and discussion

    The qualitative trait data showed that the predominant growth habit in barnyard millet is erect with green plant pigmentation. Culm branching was low in most ofthe accessions belonging to the E.frumentacea group.Medium and high culm branching was observed in eight accessions of Japanese and Russian origin.Among inflorescence traits,a pyramidalopen shape with straight lower racemes was abundant.The five accessions having branching in the lower raceme were all of Japanese origin(Table 1).The qualitative trait data showed marked differences between Japanese accessions in comparison to other accessions,indicating them to be of a group of different origin:E.esculenta.

    Morphological characterization is important for identification of accessions with desirable traits intended to be employed directly as cultivars or as trait donors for use in crop improvementprograms[19].We founda wide range ofvariation in agronomic performance among the accessions evaluated. The mean,range,genotypic variance,error variance,heritability(bs-broad-sense)and coefficient of variation(CV)of quantitative traits are presented in Table 2.In the analysis of quantitative traits,the coefficient of variation varied from 0.79%for days to maturity to 36.43 for basal tiller number.The h2bsestimates ranged from 70.14 for inflorescence length to 99.87 for days to maturity.Allofthe studied traits exhibited high heritability.Sonnad et al.[20]also observed high heritability for allquantitative traits in finger millet.

    The highest five-ear grain weight was found in check variety PRJ 1(24.25 g)followed by all accessions of Indian origin up to the yield level of 17.54 g.The accessions from Japan were low-yielding,except for PRJ 1,IEc 552(17.52 g),and IEc 530 (16.71 g).We observed a range of 58-91 for days to maturity, 1.14-9.28 for basal tiller number,2.57-9.17 mm for culm thickness,79.68-156.85 cm for plant height,4.19-9.16 for number of nodes,12.28-31.26 cm for flag leaf length, 1.38-3.02 cm for flag leaf width,6.86-14.42 cm for flag leaf sheath length,8.09-29.84 cm for peduncle length,from-0.47 to 19.0 cmfor panicle exertion,12.12-24.02 cmfor inflorescencelength,2.36-5.79 cm for inflorescence width,8.73-49.74 for raceme number,1.78-6.16 cm for lower raceme length,and 4.20-24.25 g for five-ear grain weight in the global core germplasm collection(Table 2).The normal maturity duration of released varieties of barnyard millet in this ecology is 80-90 days.While,we observed several accessions with less than 64 days to maturity(Table 5),which can be used in the breeding program for earliness in crop maturity.Most of these early accessions were of Japanese and Russian origin.We observed high variation for grain yield,also reported previously [21-23].The availability of genetic diversity in the core germplasm collection provides an opportunity to select best genotypes for different environments.

    Table 2–Variance components of a barnyard millet core germplasm collection.

    3.1.Principalcomponent analysis

    Interrelationships among the different parameters were evaluated by principal component analysis(PCA).The first three PCA components provided a reasonable summary of the data and explained 73%of the total variation,and subsequent components contributed 5%or less(Table 3).The first principal component(PC1)was the most important and explained 45%of the total variation.PC1 was attributed to days to flowering,days to maturity,culm thickness,plant height,number of nodes,flag leaf length,flag leaf width, inflorescence length,raceme number,and five-ear grain weight for largest positive loadings.Basal tiller number,flag leaf sheath length,peduncle length,panicle exsertion,and lower raceme length had largest negative loadings.As a result,the first PC differentiated the accessions mainly by the contribution of high values for culm thickness,number of nodes,and raceme number.The second PC explained an additional 15.75%of the total variation and was attributed to positive loadings of plant height,flag leaf length,flag leaf sheath length,peduncle length,panicle exsertion,inflorescence length inflorescence width,and lower raceme length. The third PC,which explained 11.7%of the total variation, differentiated the accessions by higher numbers of basal tillers and narrow flag leaves and low levels of grain yield. Three fourths of the parameters occupied the right side of the biplot and one fourth were observed in the upper left side (Fig.1).

    Three major groups were detected on the basis of projection of the accessions on the first two principal components.The majority of Indian and origin-unknown accessions were on the right-hand side in the biplot,whereas most of the Japanese accessions,namely,IEc 455,IEc 487,IEc 435,IEc 448,IEc 449,IEc 452,IEc 471,IEc 516,IEc 423,IEc 498,IEc 552,IEc 404,IEc 521,IEc 530,and PRJ1 were on the top left.Six accessions from Japan(IEc 436,IEc 519,IEc 517,IEc 511,IEc 537,and IEc 561),three from Russia(IEc 330,IEc 331,and IEc 338),and one each from Cameroon(IEc 624),Egypt(IEc 353),and the Syrian Arab Republic(IEc 346)constituted the third cluster(Fig.2).

    Principalcomponentanalysis revealed that days to flowering, days to maturity,culmthickness,plant height,number of nodes, flag leaf length,flag leaf width,inflorescence length,raceme number,and five-ear grain weight contributed most to genetic diversity.A scatterplot of PC1 and PC2 showed overlapping of accessions of Indian origin with accessions of unknown origin along with one accession from Pakistan.A possible explanationfor this overlap may be that all accessions of unknown origin either originated in the Indian subcontinent or have similar morphologies.Given thatthe separation ofaccessions was based mainly on agro-morphological traits,all the Indian accessions along with accessions ofunknown origin and one accession each of Pakistan and Malawi grouped together.These accessions possibly belong to the E.frumentacea group.The Japanese accessions formed a second group,indicating them to be of the E.esculenta group.The third group contained a mix of accessions from Russia,Japan,Cameroon,and Egypt.The reason for the clear separation of Indian and Japanese accessions was their trait morphology and growth habitat.The accessions of Indian and unknown origin in the first group were characterized by thicker culms,taller plants,greater number ofnodes,longer flag leaves,longer inflorescence,greater number ofracemes,and late maturity.The Japanese accessions in the second group,in contrast,typically had longer flag leaf sheath,longer peduncles, high panicle exsertion,and early maturity.The third group comprised accessions with lower values for alltraits except basal tiller number.This finding matches previous observations that the races of E.colona do not correspond to geographic,ecological, or ethnological divisions,but are instead based on morphology [24].E.frumentacea accessions are generally of longer growth duration and are adapted to both temperate as well as tropical climatic conditions,whereas E.esculenta accessions are adapted to temperate ecology and perform poorly in tropical conditions. Our results ofthree different groups in the barnyard millet global core collection are in agreementwith results of Wallace et al.[25] who also obtained three groups using multidimensionalscaling and PCA in SNP data generated by genotyping by sequencing in the same core germplasm.The accessions in the third group were speculated to be results of seed contamination[25],but hybrids between these two species are known to be sterile[26]. We accordingly propose that the third group consists of accessions belonging to wild,weedy species of Echinochloa,given their higher basal tiller numbers,weak culms,low yield, and values for yield component traits.

    Table 3–Principal component analysis based on morphological and agronomic traits of 94 barnyard millet accessions,and significant loadings(in bold)of the first three principalcomponents from mean data of two years.

    Fig.1–Loading plot of PC1–PC2 for 94 barnyard millet genotypes.DTFF,days to 50%flowering;DTM,days to maturity;BTN, basaltiller number;CT,culm thickness;PH,plant height;NN,number of nodes;FLL,flag leaflength;FLW,flag leafwidth;FLSL, flag leaf sheath length;PL,peduncle length;PE,panicle exsertion;IL,inflorescence length;IW,inflorescence width;RN,raceme number;LRL,lower raceme length;FEGW,five-ear grain weight.

    3.2.Relationship between traits

    The correlation coefficients between traits are presented in Table 4.Character associations may be used to identify a few traits that are less relevant and could be of low priority in germplasm evaluation[19].The evaluation data provides a valuable opportunity for assessing relationships among traits to test the similarity between different groups[27].This practice simplifies work and saves resources.Association studies among different traits are important for barnyard millet breeders in effective selection of desirable genotypes. Of the 120 character associations estimated,five associations, namely peduncle length with panicle exsertion(0.925),days to maturity with days to flowering(0.852),number of nodes with raceme number(0.801),days to maturity with number of nodes(0.796)and culm thickness with raceme number(0.790) had high estimates,indicating that in future characterization of barnyard germplasm,tedious observations such as of panicle exsertion,number of nodes,and culm thickness may be avoided.Upadhyaya et al.[19]also observed a strong association of peduncle length with panicle exsertion in finger millet and emphasized recording observations of the easy trait,peduncle length,and not panicle exsertion.Gupta et al.[4]found a positive association of grain yield with raceme number and flag leaf width.In finger millet too,a positive association of finger number per ear with grain weight per ear was observed[20].These associations suggest that raceme number and flag leaf width will be effective selection indices for grain yield.In addition,culm thickness and flag leaf width were highly positively correlated with five-ear grain weight, revealing the roles of biomass and photosynthesis,respectively,in sink development.

    Fig.2–Score plot of PC1–PC2 for 94 barnyard millet genotypes.

    ?

    Fig.3–Two way hierarchical clustering of 94 barnyard millet core accessions.

    3.3.Cluster analysis

    Two-way cluster analysis separated the accessions as well as traits into two major groups(Fig.3).Group A contained 43 accessions,of which eight(IEc 786,IEc 701,IEc 706,IEc 788,IEc 731,IEc 722,IEc 747,and IEc 751)were of unknown origin,one each were from Japan(IEc 402)and Malawi(IEc 348)and the rest were Indian.This group was further subdivided into two groups.Group B contained 51 accessions of diverse origins. This group was subdivided into three subgroups(B1,B2,and B3)representing 27,10,and 14 accessions,respectively. Subgroup B1 contained one accession each from Pakistan (IEc 661),Japan(IEc 459),Cameroon(IEc 624),Egypt(IEc 353) and Syrian Arab Republic(IEc 346)and four accessions(IEc 264,IEc 725,IEc 758,IEc 699)of unknown origin,and the rest were Indian.Subgroups B2 and B3 contained all Japanese accessions except for three lines from Russia.

    Two-way cluster analysis broadly separated the accessions based on trait variation.The first group A contained accessions with late maturity,high culm thickness,more nodes, taller plants,larger and broader flag leaves,larger inflorescences,more racemes,and high five-ear grain weight.This group contained all Indian and origin-unknown accessions, clearly indicating that Indian and origin-unknown accessions can be used as donors for these traits.The accessions in group B had more basal tillers,longer flag leaf sheaths,longer peduncles,high panicle exsertion,wider inflorescences,and longer lowest racemes.The subgrouping in cluster B also showed separation of accessions based on geographical origin.All the accessions from Japan and Russia were grouped together in subgroups B2 and B3,whereas B1 contained accessions of Indian,origin-unknown,Syrian Arab Republic, Egypt and Cameroon origin.This diversity may be due to migration of material from one region to another,and some ecological conditions could also influence the traits.The check genotypes VL 207(E.frumentacea)and PRJ-1(E.esculenta) occupied A1 and B3 clusters,respectively,clearly indicating the separation of the two different species of Echinochloa by hierarchical clustering.The results are in agreement with Wallace et al.[25]where the separation of two species was based on SNP data and the intermediate accessions were reported to be seed mixtures.But,in our opinion,the intermediate(based on trait values)accessions among both species are potential candidates for exploiting trait variation for genetic improvement of the crop.

    Overall,there was a high level of genetic diversity of morphological and agronomic characters in the barnyard millet core collection.Gowda et al.[28]also observed high diversity in smallmillet germplasmcollections of ICRISATand identified trait-specific diverse lines in foxtail and finger millet.We too identified some promising trait donors (Table 5)which could be efficiently used in breeding programs for the improvement of this orphan crop.The PCA and cluster analyses provided a simplified classification ofbarnyard millet core accessions for use in breeding.Categorizing germplasm accessions into morphologically similar and presumably genetically similar groups is useful for selecting parents for crossing[15].Crossing accessions belonging to different clusters would maximize opportunities for transgressive segregation because of the higher probability that unrelated genotypes will contribute unique desirable alleles at multiple loci[8,9,29,30].Thus,the grouping of accessions by multivariate methods in the present study will be of practical value to barnyard millet breeders in allowing them to choose elite accessions from different clusters as parental lines for crossing programs.

    Acknowledgments

    We thank Dr.M.V.C.Gowda,Project Coordinator,AICSMIP,UAS, Bangalore,India for initiating and facilitating the movement of barnyard millet core germplasmfrom ICRISAT.Authors are alsograteful to Prof.James Nelson from Kansas State University, United States for English editing of the manuscript.

    Table 5–Promising trait donors identified from mean data of barnyard millet core germplasm evaluation.

    Supplementary material

    Supplementary material to this article can be found online at http://dx.doi.org/10.1016/j.cj.2015.07.005.

    R E F E R E N C E S

    [1]T.Yabuno,Japanese Barnyard Millet(Echinochloa utilis, Poaceae)in Japan,Econ.Bot.41(1987)484-493.

    [2]W.D.Clayton,S.A.Renvoise,Genera Graminium,in:T.A. Cope(Ed.),Grasses of the World,Royal Botanic Garden,Kew, UK 2009,pp.280-281.

    [3]K.W.Hilu,Evidence from RAPD markers in the evolution of Echinochloa millets(Poaceae),Plant Syst.Evol.189(1994)247-257.

    [4]A.Gupta,V.Mahajan,M.Kumar,H.S.Gupta,Biodiversity in the barnyard millet(Echinochloa frumentacea Link,Poaceae) germplasmin India,Genet.Resour.Crop.Evol.56(2009)883-889.

    [5]R.K.Maikhuri,K.S.Rao,R.S.Semwal,Changing scenario of Himalayan agro-ecosystem:loss of agro-biodiversity an indicator of environment change in Central Himalaya,India, Environmentalist 21(2001)23-29.

    [6]S.Padulosi,M.Bhag,S.Bala Ravi,J.Gowda,K.T.K.Gowda,G. Shanthakumar,N.Yenagi,M.Dutta,Food security and climate change:role of plant genetic resources of minor millets,Indian,J.Plant Genet.Resour.22(2009)1-16.

    [7]K.E.Prasada Rao,M.H.Mengesha,V.G.Reddy,International use of a sorghum germplasm collection,in:A.H.D.Brown, D.R.Marshall,O.H.Frankel,J.T.Williams(Eds.),The Use of Plant Genetic Resources,Cambridge University Press, Cambridge 1989,pp.49-67.

    [8]J.P.Peeters,J.A.Martinelli,Hierarchical cluster analysis as a tool to manage variation in germplasm collections,Theor. Appl.Genet.78(1989)42-48.

    [9]S.H.Hussaini,M.M.Goodman,D.H.Timothy,Multivariate analysis and geographical distribution of the world collections of finger millet,Crop Sci.17(1977)257-263.

    [10]A.Ayana,E.Bekele,Multivariate analysis of morphological variation in sorghum(Sorghum bicolor(L.)Moench) germplasm from Ethiopia and Eritrea,Genet.Resour.Crop. Evol.46(1999)273-284.

    [11]A.Camussi,E.Ottaviano,T.Calinski,Z.Kaczmarek,Genetic distances based on quantitative traits,Genetics 111(1985) 945-962.

    [12]N.M.Cowen,K.J.Frey,Relationships between three measures of genetic distance and breeding methods in oat(Avena sativa L.),Genome 29(1987)97-106.

    [13]J.S.Brown,Principal component and cluster analyses of cotton cultivar variability across the U.S.Cotton Belt,Crop Sci.31(1991)915-922.

    [14]M.C.Perry,M.S.McIntosh,Geographical patterns of variation in the USDA soybean germplasm collection:I.morphological traits,Crop Sci.31(1991)1350-1355.

    [15]E.Souza,M.E.Sorrells,Relationships among 70 American oat germplasm:I.Cluster analysis using quantitative characters, Crop Sci.31(1991)599-605.

    [16]H.D.Upadhyaya,S.L.Dwivedi,S.K.Singh,S.Singh,M. Vetriventhan,S.Sharma,Forming core collections in Barnyard,Kodo,and Little Millets using morpho-agronomic descriptors,Crop Sci.54(2014)2673-2682.

    [17]S.Sood,R.K.Khulbe,A.Gupta,P.K.Agrawal,H.D.Upadhyaya, J.C.Bhatt,Barnyard millet-a potential food and feed crop of future,Plant Breed.134(2015)135-147.

    [18]IPGRI(The International Board for Plant Genetic Resources),Echinochloa millet descriptors,Rome,http:// www.bioversityinternational.org/uploads/tx_news/ Echinochloa_millet_descriptors_394.pdf 1983(accessed April 3rd,2015.).

    [19]H.D.Upadhyaya,C.L.L.Gowda,R.P.S.Pundir,V.G.Reddy,S. Singh,Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits,Genet.Resour.Crop.Evol.53(2006) 679-685.

    [20]S.K.Sonnad,G.Santhakumar,P.M.Salimath,Genetic variability and character association studies in white ragi (Eleusine coracana Gaertn.),Karnataka,J.Agric.Sci.21(2008) 572-575.

    [21]B.B.Bandyopadhyay,Genotypic differences in relation to climatic adaptation of two cultivated barnyard millet species at Garhwal Hills,Indian,J.Genet.Plant Breed.59(1999) 105-108.

    [22]H.Mehta,P.C.Tyagi,K.P.Mohapatra,Genetic diversity in Barnyard millet(Echinochloa frumentacea Roxb.),Indian,J. Genet.Plant Breed.65(2005)293-295.

    [23]V.Joshi,Assessment of Genetic Variability and identification of genotypes for different traits in Barnyard millet (Echinochola spp.),Int.J.Agric.Food Sci.Technol.4(2013) 65-67.

    [24]K.E.Prasada Rao,J.M.J.De Wet,V.Gopal Reddy,M.H. Mengesha,Diversity in the smallmillets collection at ICRISAT,in:K.W.Riley,S.C.Gupta,A.Seetharam,J.N. Mushonga(Eds.),Advances in Small Millets,Oxford and IBH Publishing Co.Pvt.Ltd.,New Delhi,India 1993,pp.331-346.

    [25]J.G.Wallace,H.D.Upadhyaya,M.Vetriventhan,E.S.Buckler, C.Tom Hash,P.Ramu,The genetic makeup of a global barnyard millet germplasm collection,Plant Genome 8(2014) http://dx.doi.org/10.3835/plantgenome 2014.10.0067.

    [26]S.Sood,R.K.Khulbe,N.Saini,A.Gupta,P.K.Agrawal, Interspecific hybrid between Echinochloa esculenta(Japanese barnyard millet)and E.frumentacea(Indian barnyard millet)-a new avenue for genetic enhancement of barnyard millet,Electron.J.Plant Breed.5(2014)248-253.

    [27]D.Z.Skinner,G.R.Bauchan,G.Auricht,S.Hughes,A method for the efficient management and utilization of large germplasm collection,Crop Sci.39(1999)1237-1242.

    [28]C.L.L.Gowda,H.D.Upadhyaya,V.G.Reddy,S.Singh, Diversity in small millets germplasm and enhancing its use in crop improvement,http://www.intlcss.org/files/icss/ congress-proceedings/2008-papers/cs2-s1/cs2-s1-o2-laxmipathi-c-l-gowda.pdf 2008(accessed April 3rd,2015).

    [29]S.C.Beer,J.Goffreda,T.D.Phillips,J.P.Murphy,M.E.Sorrells, Assessment of genetic variation in Avena sterilis using morphological traits,isozymes,and RFLPs,Crop Sci.33(1993) 1386-1393.

    [30]K.S.Kanwal,R.M.Singh,J.Singh,R.B.Singh,Divergent gene pools in rice improvement,Theor.Appl.Genet.65(1983) 263-267.

    16 April 2015

    in revised form22 July 2015

    .Tel.:+91 9411706285;fax:+91 5962241250.

    E-mail address:salej1plp@gmail.com(S.Sood).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    亚洲精品久久午夜乱码| 99久国产av精品国产电影| 精品人妻偷拍中文字幕| 麻豆精品久久久久久蜜桃| 色哟哟·www| 亚洲,欧美,日韩| 国产老妇伦熟女老妇高清| 欧美精品国产亚洲| 大陆偷拍与自拍| 中文字幕制服av| 久久综合国产亚洲精品| av网站免费在线观看视频| 亚洲美女搞黄在线观看| 久久综合国产亚洲精品| 亚洲真实伦在线观看| av在线老鸭窝| 国内精品宾馆在线| 精品久久国产蜜桃| 国内少妇人妻偷人精品xxx网站| 中文字幕亚洲精品专区| 国产亚洲午夜精品一区二区久久| 肉色欧美久久久久久久蜜桃| 亚洲在久久综合| 精品视频人人做人人爽| 九九爱精品视频在线观看| 国产亚洲一区二区精品| 在线观看国产h片| 日本-黄色视频高清免费观看| 一级毛片aaaaaa免费看小| 麻豆成人午夜福利视频| 丰满乱子伦码专区| 人妻夜夜爽99麻豆av| 蜜桃亚洲精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产免费一级a男人的天堂| 久热这里只有精品99| 国产乱来视频区| 天美传媒精品一区二区| 男女下面进入的视频免费午夜| 亚洲国产日韩一区二区| 99久久人妻综合| 亚洲精品久久午夜乱码| 亚洲第一区二区三区不卡| 亚洲精品一区蜜桃| 视频中文字幕在线观看| 成人国产麻豆网| 国产免费一级a男人的天堂| 少妇的逼水好多| 日韩一区二区三区影片| 我要看日韩黄色一级片| 久久99蜜桃精品久久| 久久精品国产亚洲av涩爱| 直男gayav资源| 大香蕉97超碰在线| 国产精品人妻久久久影院| 免费人妻精品一区二区三区视频| 久久久久久久久久成人| 亚洲av不卡在线观看| 午夜福利视频精品| 少妇的逼好多水| 精品久久久久久久久亚洲| 人妻制服诱惑在线中文字幕| 99热这里只有是精品在线观看| 七月丁香在线播放| 日韩欧美 国产精品| videos熟女内射| 欧美精品国产亚洲| 国产成人精品福利久久| 久久久久久久国产电影| 国产老妇伦熟女老妇高清| 国产国拍精品亚洲av在线观看| 2022亚洲国产成人精品| 干丝袜人妻中文字幕| 日韩中文字幕视频在线看片 | 99热这里只有是精品50| 水蜜桃什么品种好| 各种免费的搞黄视频| 欧美日韩一区二区视频在线观看视频在线| 如何舔出高潮| 亚洲成人手机| 亚洲精品久久午夜乱码| 亚洲av电影在线观看一区二区三区| 久久ye,这里只有精品| 精品一区在线观看国产| 有码 亚洲区| a级毛片免费高清观看在线播放| 2018国产大陆天天弄谢| 久久久久视频综合| 777米奇影视久久| 亚洲精品色激情综合| 最新中文字幕久久久久| 中文欧美无线码| 日本色播在线视频| 观看av在线不卡| 久久99蜜桃精品久久| 街头女战士在线观看网站| av免费观看日本| 国内揄拍国产精品人妻在线| 只有这里有精品99| freevideosex欧美| 久久精品久久久久久噜噜老黄| 欧美日韩精品成人综合77777| 亚洲熟女精品中文字幕| 亚洲美女黄色视频免费看| 亚洲精品自拍成人| 国产高潮美女av| 蜜臀久久99精品久久宅男| 亚洲成人中文字幕在线播放| 男女下面进入的视频免费午夜| 在线观看一区二区三区| 草草在线视频免费看| 少妇人妻 视频| 99久久中文字幕三级久久日本| 亚洲一级一片aⅴ在线观看| xxx大片免费视频| 国产男女内射视频| 九色成人免费人妻av| 我的女老师完整版在线观看| 黄片无遮挡物在线观看| 亚洲精品日韩av片在线观看| 日本色播在线视频| 日韩精品有码人妻一区| 久久久久久伊人网av| 国产精品秋霞免费鲁丝片| 亚洲自偷自拍三级| 97在线视频观看| 搡老乐熟女国产| 视频中文字幕在线观看| 啦啦啦视频在线资源免费观看| 国产综合精华液| 丰满迷人的少妇在线观看| 免费久久久久久久精品成人欧美视频 | 多毛熟女@视频| av又黄又爽大尺度在线免费看| 少妇的逼好多水| 亚洲精品国产成人久久av| 夫妻午夜视频| 久久影院123| 免费观看性生交大片5| 久久影院123| 日本爱情动作片www.在线观看| 亚洲高清免费不卡视频| 能在线免费看毛片的网站| 色婷婷久久久亚洲欧美| 在线 av 中文字幕| 97精品久久久久久久久久精品| 国产乱来视频区| 韩国av在线不卡| 欧美高清性xxxxhd video| 99热这里只有是精品50| 亚洲人成网站在线观看播放| 亚洲精品一二三| 欧美变态另类bdsm刘玥| 国产伦在线观看视频一区| 不卡视频在线观看欧美| kizo精华| 女人久久www免费人成看片| 波野结衣二区三区在线| 久久久久久九九精品二区国产| 国产爱豆传媒在线观看| 看十八女毛片水多多多| 国产精品99久久久久久久久| 日韩国内少妇激情av| 伦理电影大哥的女人| 一个人看的www免费观看视频| 国产欧美亚洲国产| 五月开心婷婷网| 久久久久国产网址| 美女脱内裤让男人舔精品视频| 身体一侧抽搐| 在线观看免费日韩欧美大片 | 国产老妇伦熟女老妇高清| 国产69精品久久久久777片| 乱码一卡2卡4卡精品| 色综合色国产| 日韩伦理黄色片| 亚洲精品国产色婷婷电影| 深爱激情五月婷婷| 青青草视频在线视频观看| 欧美日韩视频高清一区二区三区二| 嫩草影院新地址| 91精品伊人久久大香线蕉| 91在线精品国自产拍蜜月| 欧美成人一区二区免费高清观看| 能在线免费看毛片的网站| 国产淫片久久久久久久久| 欧美精品亚洲一区二区| 欧美高清性xxxxhd video| 成人午夜精彩视频在线观看| 看免费成人av毛片| 色网站视频免费| 2022亚洲国产成人精品| 久久精品国产自在天天线| 自拍欧美九色日韩亚洲蝌蚪91 | 精品久久久久久久久亚洲| 黑人高潮一二区| 日韩强制内射视频| 亚洲国产最新在线播放| 老司机影院成人| 如何舔出高潮| 久久久精品免费免费高清| 成年女人在线观看亚洲视频| 人人妻人人爽人人添夜夜欢视频 | 人妻少妇偷人精品九色| 婷婷色av中文字幕| 亚洲图色成人| 欧美97在线视频| 人人妻人人看人人澡| 性高湖久久久久久久久免费观看| av网站免费在线观看视频| 国产 一区精品| 亚洲av福利一区| 国产综合精华液| 夜夜骑夜夜射夜夜干| 少妇 在线观看| 妹子高潮喷水视频| 亚洲精品国产av蜜桃| 国产成人a区在线观看| 人人妻人人爽人人添夜夜欢视频 | 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 亚洲美女搞黄在线观看| 91精品一卡2卡3卡4卡| 大陆偷拍与自拍| 少妇人妻一区二区三区视频| 中国三级夫妇交换| 国产av国产精品国产| 在线 av 中文字幕| 久久精品国产鲁丝片午夜精品| 午夜免费男女啪啪视频观看| 国产探花极品一区二区| 免费观看在线日韩| 久久国产乱子免费精品| 五月玫瑰六月丁香| 亚洲精品久久午夜乱码| 国产精品一区www在线观看| 免费黄网站久久成人精品| 在线观看免费视频网站a站| 亚洲国产高清在线一区二区三| 精品久久久久久久久亚洲| 亚洲国产欧美在线一区| 青春草亚洲视频在线观看| 精品久久久精品久久久| 久久久久性生活片| 亚洲国产毛片av蜜桃av| 国产在线视频一区二区| 纵有疾风起免费观看全集完整版| 成人黄色视频免费在线看| 日本猛色少妇xxxxx猛交久久| 97热精品久久久久久| 亚洲精品第二区| 联通29元200g的流量卡| 全区人妻精品视频| 久久久午夜欧美精品| 久久久国产一区二区| 免费观看无遮挡的男女| 麻豆精品久久久久久蜜桃| 国产在线男女| 亚洲精品aⅴ在线观看| 爱豆传媒免费全集在线观看| 91在线精品国自产拍蜜月| 熟女人妻精品中文字幕| 乱码一卡2卡4卡精品| 免费看光身美女| 午夜日本视频在线| 国产精品欧美亚洲77777| 精品一区二区免费观看| 99热国产这里只有精品6| 丰满迷人的少妇在线观看| 97精品久久久久久久久久精品| 国产日韩欧美在线精品| 免费大片黄手机在线观看| 只有这里有精品99| 久久久国产一区二区| 毛片一级片免费看久久久久| 干丝袜人妻中文字幕| 国产伦精品一区二区三区四那| 欧美日韩综合久久久久久| 少妇丰满av| 综合色丁香网| 51国产日韩欧美| 又黄又爽又刺激的免费视频.| 成人高潮视频无遮挡免费网站| 日韩av不卡免费在线播放| 色哟哟·www| av不卡在线播放| 久久久久性生活片| 成年女人在线观看亚洲视频| 国产成人精品久久久久久| 国产伦精品一区二区三区视频9| 在线观看美女被高潮喷水网站| 在线免费观看不下载黄p国产| 成人综合一区亚洲| 色网站视频免费| 少妇丰满av| 最近中文字幕高清免费大全6| 建设人人有责人人尽责人人享有的 | 少妇熟女欧美另类| 国产av一区二区精品久久 | 亚洲国产精品专区欧美| 天堂8中文在线网| 午夜激情福利司机影院| 国产欧美日韩精品一区二区| 日本免费在线观看一区| 久久久久久伊人网av| 国精品久久久久久国模美| a级毛色黄片| 亚洲欧美成人精品一区二区| 亚洲精品自拍成人| 久久久精品94久久精品| 国产老妇伦熟女老妇高清| 国产大屁股一区二区在线视频| 欧美日韩综合久久久久久| 国产成人免费观看mmmm| 王馨瑶露胸无遮挡在线观看| 欧美成人午夜免费资源| 国产在线免费精品| 少妇被粗大猛烈的视频| 一级毛片久久久久久久久女| 秋霞在线观看毛片| 亚洲精华国产精华液的使用体验| 日韩一本色道免费dvd| 一边亲一边摸免费视频| 久久青草综合色| 国产精品蜜桃在线观看| 黄色一级大片看看| 亚洲欧洲国产日韩| 日日摸夜夜添夜夜爱| 新久久久久国产一级毛片| 高清午夜精品一区二区三区| 一级毛片 在线播放| 一区二区三区乱码不卡18| 中文在线观看免费www的网站| av福利片在线观看| 亚洲av.av天堂| 久久午夜福利片| 中文在线观看免费www的网站| 熟女电影av网| 最新中文字幕久久久久| 亚洲成人手机| 久久久a久久爽久久v久久| 国产女主播在线喷水免费视频网站| 日韩三级伦理在线观看| 国产亚洲精品久久久com| 97在线人人人人妻| 亚洲国产高清在线一区二区三| 国产精品人妻久久久影院| 五月天丁香电影| 亚洲av中文字字幕乱码综合| 日本-黄色视频高清免费观看| 国产一区亚洲一区在线观看| 丝袜脚勾引网站| 亚洲精华国产精华液的使用体验| 亚洲美女黄色视频免费看| 国产综合精华液| 18禁动态无遮挡网站| 人人妻人人看人人澡| 精品熟女少妇av免费看| 黑人高潮一二区| 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| 国产午夜精品久久久久久一区二区三区| 色视频在线一区二区三区| 成人二区视频| 国产探花极品一区二区| 日韩伦理黄色片| 性色avwww在线观看| 99热这里只有是精品50| 日韩欧美 国产精品| 伦理电影免费视频| 天堂俺去俺来也www色官网| 伦理电影大哥的女人| 最近最新中文字幕免费大全7| 五月天丁香电影| 国产免费又黄又爽又色| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 热re99久久精品国产66热6| 国产黄片美女视频| 亚洲av福利一区| 青春草国产在线视频| 国产欧美亚洲国产| 成人国产av品久久久| 国产伦在线观看视频一区| 3wmmmm亚洲av在线观看| 欧美zozozo另类| 中文在线观看免费www的网站| 亚洲电影在线观看av| 国产男人的电影天堂91| 久久久久国产精品人妻一区二区| 夫妻性生交免费视频一级片| 26uuu在线亚洲综合色| 精品久久久久久久末码| 国产 一区 欧美 日韩| 午夜福利网站1000一区二区三区| 国产亚洲最大av| 国产一级毛片在线| 国产在线视频一区二区| 九九久久精品国产亚洲av麻豆| 国内精品宾馆在线| 日韩在线高清观看一区二区三区| 精品久久久久久久久亚洲| 亚洲精品国产av成人精品| 久热这里只有精品99| 哪个播放器可以免费观看大片| 久久午夜福利片| 日韩电影二区| 少妇被粗大猛烈的视频| 国产精品嫩草影院av在线观看| 尾随美女入室| 亚洲国产精品专区欧美| 国产精品99久久99久久久不卡 | 欧美老熟妇乱子伦牲交| 最新中文字幕久久久久| 国产 精品1| 一个人看的www免费观看视频| 又粗又硬又长又爽又黄的视频| 妹子高潮喷水视频| 肉色欧美久久久久久久蜜桃| 男女国产视频网站| 免费黄网站久久成人精品| 国内少妇人妻偷人精品xxx网站| 午夜免费鲁丝| 国产大屁股一区二区在线视频| 亚洲激情五月婷婷啪啪| 久久韩国三级中文字幕| 99热这里只有是精品50| 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| 精品久久久噜噜| av在线观看视频网站免费| 精品久久久久久久末码| 国产在线男女| 在线观看一区二区三区| 麻豆成人午夜福利视频| 成人高潮视频无遮挡免费网站| 亚洲精品乱久久久久久| 色视频www国产| 欧美三级亚洲精品| 天堂8中文在线网| 97在线人人人人妻| 国产精品成人在线| 国产精品久久久久成人av| 91精品一卡2卡3卡4卡| 成人国产av品久久久| 中文资源天堂在线| 一区二区av电影网| 久久久久网色| 国产在线免费精品| av又黄又爽大尺度在线免费看| 下体分泌物呈黄色| 伦理电影大哥的女人| 大片电影免费在线观看免费| 极品教师在线视频| 亚洲精品aⅴ在线观看| 日韩成人av中文字幕在线观看| 高清在线视频一区二区三区| 2022亚洲国产成人精品| 亚洲婷婷狠狠爱综合网| 日韩电影二区| 欧美bdsm另类| 欧美xxxx性猛交bbbb| 老司机影院毛片| 狂野欧美激情性xxxx在线观看| 久久久久久久久久久丰满| 亚洲精品视频女| 国产精品国产三级国产专区5o| 在线亚洲精品国产二区图片欧美 | 午夜老司机福利剧场| 久久毛片免费看一区二区三区| 少妇丰满av| 青春草国产在线视频| 高清黄色对白视频在线免费看 | 狂野欧美激情性xxxx在线观看| 99久久人妻综合| freevideosex欧美| 一级毛片我不卡| 在线播放无遮挡| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦啦在线视频资源| 制服丝袜香蕉在线| 观看美女的网站| 日韩电影二区| 精品久久久久久电影网| 国产乱来视频区| 纵有疾风起免费观看全集完整版| 久久韩国三级中文字幕| 国产淫语在线视频| 日本wwww免费看| 超碰97精品在线观看| 男人舔奶头视频| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 国产精品爽爽va在线观看网站| 丝袜喷水一区| 精华霜和精华液先用哪个| 中文乱码字字幕精品一区二区三区| 亚洲色图av天堂| 一级毛片久久久久久久久女| 欧美97在线视频| 99热网站在线观看| 亚洲精品国产av蜜桃| 亚洲精品日韩在线中文字幕| 99久久精品国产国产毛片| 国产在线免费精品| 成人漫画全彩无遮挡| 在线观看免费视频网站a站| www.色视频.com| 国产爽快片一区二区三区| av在线观看视频网站免费| 国产 精品1| 精品亚洲成国产av| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av成人精品| 久久久久国产网址| 我要看日韩黄色一级片| 日韩电影二区| 最近最新中文字幕免费大全7| 亚洲精品国产av蜜桃| 成人国产麻豆网| 久久精品国产亚洲av天美| 男女下面进入的视频免费午夜| 国产精品蜜桃在线观看| 精华霜和精华液先用哪个| 婷婷色av中文字幕| 日韩av不卡免费在线播放| 男人和女人高潮做爰伦理| 99精国产麻豆久久婷婷| 91久久精品国产一区二区成人| 高清视频免费观看一区二区| 亚洲精品国产色婷婷电影| 亚洲av中文字字幕乱码综合| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂| 亚洲欧洲国产日韩| 少妇熟女欧美另类| 纵有疾风起免费观看全集完整版| 性色avwww在线观看| 亚洲精品一二三| 精品一区在线观看国产| 久久婷婷青草| 精品久久久久久久久av| 夜夜爽夜夜爽视频| 国产精品一及| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 春色校园在线视频观看| 精品国产一区二区三区久久久樱花 | 高清av免费在线| 男女无遮挡免费网站观看| 日韩大片免费观看网站| 国产深夜福利视频在线观看| 搡女人真爽免费视频火全软件| 亚洲精品国产av蜜桃| 亚洲av国产av综合av卡| 国产在视频线精品| 欧美区成人在线视频| 成人无遮挡网站| 黄色一级大片看看| 国精品久久久久久国模美| 免费看光身美女| 欧美一区二区亚洲| 国产av一区二区精品久久 | 美女内射精品一级片tv| 五月开心婷婷网| 青春草亚洲视频在线观看| 欧美老熟妇乱子伦牲交| 天美传媒精品一区二区| 亚洲精华国产精华液的使用体验| a级毛片免费高清观看在线播放| 99久久精品一区二区三区| av一本久久久久| 99久久精品一区二区三区| 国产精品三级大全| 久久这里有精品视频免费| 亚洲欧洲日产国产| 小蜜桃在线观看免费完整版高清| 一级a做视频免费观看| 一级毛片aaaaaa免费看小| 大片电影免费在线观看免费| 亚洲三级黄色毛片| 国产国拍精品亚洲av在线观看| 国产欧美日韩精品一区二区| 一级a做视频免费观看| 久久久精品免费免费高清| 男女国产视频网站| 另类亚洲欧美激情| 成人特级av手机在线观看| 国产又色又爽无遮挡免| 欧美一区二区亚洲| 不卡视频在线观看欧美| 亚洲,一卡二卡三卡| 亚洲色图av天堂| 99久久综合免费| 最近中文字幕2019免费版| 日韩免费高清中文字幕av| 欧美xxⅹ黑人| 亚洲精品成人av观看孕妇| 久久99蜜桃精品久久| 蜜桃亚洲精品一区二区三区| 亚洲精品,欧美精品| 亚洲av不卡在线观看| 一区二区av电影网| 在线观看人妻少妇| 久久久国产一区二区| 午夜免费男女啪啪视频观看| 国产精品爽爽va在线观看网站| 91狼人影院| 亚洲aⅴ乱码一区二区在线播放| .国产精品久久| av不卡在线播放| 这个男人来自地球电影免费观看 | 乱码一卡2卡4卡精品| 国产成人精品婷婷| kizo精华|