• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuities of Progressive and MixingAlgorithm for Surface Modeling and Editing

    2015-12-20 09:14:08LIUYukun劉玉坤
    關鍵詞:劉玉

    LIU Yukun(劉玉坤)

    1School of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China

    2Institute for Research of Applicable Computing,University of Bedfordshire,Luton LU1 3JU,UK

    Introduction

    The progressive and mixing algorithm (PAMA)is first presented in the author's thesis[1].The PAMA is a novel method of surface modeling and editing.

    In computer graphics,there are many researches involved,such as geometric algorithms of construction and edition of curves and surfaces,lighting,texturing,2Dand 3D rendering technologies, and human-computer interactions[2-6].The surface modeling and editing is one of the most active branches of researches in computer graphics.The algorithms of surface modeling and editing have been applied to other relevant fields,these being computer-aided design (CAD) and computer-aided geometric design(CAGD).They have played a very important role in industry designs of cars,ships,airplanes,etc.

    In the surface modeling and editing,one can use a variety of splines to fit varied shapes of curves and surfaces for design purposes.Among the splines,the fundamental and popular ones are Bézier-splines and B-splines.Béziersplines have many good geometric properties,for example,the convex hull property,variation-diminishing property,and convergence.

    A problem of Bézier-splines is that the degree of the Bézier curve or surface is dependent directly on the number of vertices of the Bézier polygon.This problem leads to the global characteristics of the Bézier control points,that is,each control point has an effect on the entire shape of the Bézier curve or surface.When a control point is moved,the entire shape of the Bézier curve or surface will be unexpectedly changed.

    To solve this problem,B-splines are used.B-splines are defined locally.That is,changes in one of control points affect the corresponding curve segment or surface patch locally without influences on other parts.This merit is very useful in practical designs,such as CAD and CAGD.However,it cannot meet the design needs only to change the positions of control points because these changes are limited.In real designs,one requires more control on shapes of curves and surfaces.For this reason,many more variants of splines,such as Beta-splines(orβ-splines),ν-splines,and τ-splines,are invented[7].They can improve the freedom of control on shapes of curves and surfaces and maintain the continuities of curvature or torsion of them.

    1 Related Studies

    For a curve,the basic idea of splines is to divide the given curve into smaller intervals, and form an approximating curve consisting of pieces of curve segments.As regards a surface,the similar idea is to split the given surface into smaller patches,and construct an approximating surface composed of pieces of surface patches.In this way,the splines curve or surface can replace the original curve or surface in a design.The former is usually easy to be modeled and changed for design purpose while the latter is not practical to be controlled for the same purpose.Since the global smoothness is necessary for the approximating curve or surface,the piecewise curve or surface must be concerned with continuities between two adjoined segments or patches.Let us first explore two types of continuities,parameter continuities and geometric continuities.

    1.1 Parameter continuities and geometric continuities

    Since splines are represented with spline functions,a curve or surface constructed with splines can be represented with parameter polynomials.A Bézier curve of degree nis written in a Bernstein polynomial form with one parameter as

    where uis the parameter and takes a value 0≤u≤1,biare the control points,and(u)are Bernstein polynomials and(u)=()n i ui(1-u)n-i.A Bézier surface of degree(m,n)is expressed in a Bernstein polynomial form with two parameters as

    where uand v are the parameters and take values 0≤u,v≤1;bi,jare the control points;(u)and(v)are Bernstein polynomials,(u)=( )m i ui(1-u)m-iand

    With parameter expressions,it is natural for piecewise curves and surfaces to have parameter continuities.Given two parameter curves,s(u),u ∈[u0,u1],and t(w),w∈[w0,w1],they meet at a common point P =s(u1)=t(w0).The conditions of k-order parametric continuities(Ck)at this common point are written as

    where u1=w0and i=0,1,…,k.This equation means that the k-order derivative of s(u)with respect to uat u1is equal to the k-order derivative of t(w)with repect to wat w0and u1=w0.

    According to studies of Hoschek and Lasser[7],and Farin[8],the zero-,the first-,and the second-order geometric continuities(G0,G1,and G2)are expressed as follows,

    and

    Compared with conditions of C0,C1and C2of Eq.(3)with i =0,1,and 2,conditions of G0,G1and G2of Eqs.(4),(5)and(6)are less restricted.Because conditions of parameter continuities are more constricted,some splines curves that do not meet these conditions can meet the conditions of the corresponding geometric continuities.Curves that meet the specific-order geometric continuity can provide a special visual smoothness,which can meet most design needs.For this reason,Beta-splines[9]are used to construct curves with two more degrees of shapemanipulation freedom by changing two shape parameters,β1andβ2,than Bézier-splines and B-splines.

    1.2 Beta-splines

    In Ref.[9],the authors use three conditions of Eqs.(4),(5)and(6)to join two neighboring curve segments to form a piecewise curve that meets the geometric continuities of G0,G1and G2.This curve is called Beta-splines curve.Its benefit is of adding two more degrees of freedom to shape changes than that of changing only positions of control points.In addition,two shape parameters,β1andβ2,of each control point can be changed independently,and they have distinct effects on the curve shape.By increasingβ1of a control point,the curve can bias along the arc direction at the control point.By increasingβ2of the control point,the curve can approach the control point.These merits equip designers with more tools to manipulate the curve shapes for their design purpose.

    1.3 Composite surfaces

    Like a piecewise curve that is formed with splines in different intervals and by joining them together with geometric continuity conditions,a composite surface can be constructed by joining splines patches with the conditions of geometric continuities on the common boundaries between different patches[7-8].An example of composite surfaces is a composite bi-cubic Bézier-splines surface.Each patch of the composite bi-cubic Bézier-splines surface is a tense product of two cubic Bézier-splines curves as follows

    where 0≤u,v ≤1,and bi,jare the control vertices.

    The tense product of two splines curves can,however,lead to a large amount of multiplication operations during the computing of algorithms for surface modeling and editing.This must be noticed because the applications of algorithms for surface modeling and editing must meet the needs of practical designs,such as CAD and CAGD,which cannot tolerate a slow processing caused by a large amount of multiplication computing.

    With the merits mentioned above,Beta-splines have been used to construct piecewise curves[9].A special case of Beta-splines curves is a piecewise cubic Bézier-splines curve,which is formed by joining two cubic Bézier-splines curve segments with meeting the G2conditions on the common points between any two neighboring segments[9-11].

    In Eq.(7),two parameterizations,u and v,are involved.Intuitively,a composite bi-cubic Bézier-splines surface with Beta-constraints should involve four shape parameters,two for each parameterization.They should be βu1andβu2for u parameterization andβv1andβv2for v parameterization.

    Beta-splines are also used to construct two special cases of composite surfaces by researchers[12-13].In Ref.[12],the authors take the same shape parameters in two parameterizations for each control point.In Ref.[13],one of the shape parameters(βu2)takes one for all control points so that the computing is decreased but the control on these parameters is no use.

    To retain the control of all four shape parameters with a limited amount of computing,the PAMA is presented for surface modeling and editing[1].To make it palpable,an introduction of the construction scheme of PAMA is presented in the next section and the continuities of PAMA will be discussed in section 3.

    2 Construction Scheme of PAMA

    Given a set of original control points P(i,j),a composite bi-cubic Bézier-splines surface can be constructed with the PAMA.The constructed mesh is composed of a set of vertices Q(l,k),which consists of four times vertices more than those of the set of P(i,j),as shown in Fig.1.Each patch is a bi-cubic Béziersplines patch with four original control points and sixteen constructed points.As shown in Fig.1,the patch of si,j(u,v)consists of four original control points[P(i,j),P(i+1,j),P(i+1,j+1),P(i,j+1)]and sixteen constructed points[Q(3i,3j),Q(3i+1,3j),Q(3i+2,3j),Q(3(i+1),3j),Q(3i,3j+1),Q(3i+1,3j+1),Q(3i+2,3j+1),Q(3(i+1),3j+1),Q(3i,3j+2),Q(3i+1,3j+2),Q(3i+2,3j+2),Q(3(i+1),3j+2),Q(3i,3(j+1)),Q(3i+1,3(j+1)),Q(3i+2,3(j+1)),Q(3(i+1),3(j+1))].

    Fig.1 A patch si,j(u,v)with original control points,P(i,j),and the constructed vertices,Q(l,k)(patches and vertices are identified at the points of the corresponding lower-left corners)

    To avoid the large computing cost of multiplication,the PAMA does not generate the constructed points Q(l,k)directly with a tense product of two Beta-splines.Instead,the PAMA generates points for each patch that is a bi-cubic Bézier-splines patch and joins these patches with constrains on their common boundaries.

    The PAMA adopts a scheme to generate different points of a patch(or mesh,say Q(l,k),as shown in Fig.1)from an original patch(say P(i,j),as shown in Fig.1)with different strategies.

    2.1 Points on common boundaries

    Common boundaries are along u or v direction,respectively,and isoparametric curves of a Bézier-splines surface,as shown in Fig.1.These curves can keep the second-order geometric continuities by setting the special conditions on their second-order partial derivatives.Along the u direction,they are

    and

    Along the v direction,they have the similar equations as Eqs.(8)-(10).With these equations,we can construct the points on the common boundaries as follows

    and

    2.2 Points on corners

    For points on corners,twists,the mixed partial derivativesare considered.Along with twists are twist vectors.Let us inspect Q(3i,3j)that is a corner point of four patches,si,j(u,v),si-1,j(u,v),si,j-1(u,v)and si-1,j-1(u,v),as shown in Fig.2.

    Fig.2 A point at the corner,Q(3i,3j),with relative patches and points

    Take si,j(u,v)as an example.According to Ref.[8],the twist vector at Q(3i,3j)is the deviation of the corner sub-quadrilateral formed with Q(3i,3j),Q(3i+1,3j),Q(3i+1,3j+1),and Q(3i,3j+1)from the tangent plane at this corner.Four adjoining patches meeting the condition of the first-order parametric continuity have the same twist at the corner[8].This condition is so restrictive to limit the shape changes around the corner.Therefore,the PAMA does not use this condition to construct the points at corners,but blends the effects of the control points along u and v directions into one equation with the linear interpolation as follows,

    where

    and

    2.3 Inside points

    As shown in Fig.1,four inside points in the patch si,j(u,v)are Q(3i+1,3j+1),Q(3i+2,3j+1),Q(3i+1,3j+2),and Q(3i+2,3j+2).To maintain the freedom of changing four shape parameters,βu1,βu2,βv1,andβv2,independently,the PAMA blends the variations of points along both uand v directions with the method presented in studies[9-11]and the bisection interpolation.The equations are written as follows

    3 Continuities of PAMA

    Through the construction process of PAMA discussed in section 2,we can summarize the continuities of PAMA.

    (1)Inside any bi-cubic Bézier-splines patch,si,j(u,v),it meets the C2conditions.

    (2)Along the common boundary curves between two neighboring patches,the C0(and G0)condition is met.

    (3)Along the u-and v-isoparametric curves in a composite surface constructed with PAMA, the G2conditions are met approximately.

    (4)The first partial derivatives agree along the common boundary curve between two neighboring patches.

    4 Conclusions

    The PAMA provides a new scheme for surface modeling and editing.It gives designers four more degrees of freedom to manipulate a 3Dobject for design purpose.In addition,the benefits from the PAMA can be listed as follows(details and more examples of applications can be referred to the thesis[1]).

    (1)Medium continuous conditions on the common boundaries are rewarded with more types of shapes.For example,a shape fold that cannot be generated under G2or G1is formed with PAMA,as shown in Fig.3.Figures 3(a)and 3(b)show the examples of G0while Figs.3(c)and 3(d)are the examples of G2.

    Fig.3 A clamshell box(a-b)and ashtray(c-d)constructed with PAMA:(a)the connection side marked with the black arrow is G0in the v direction;(b)the same box as(a)viewed in a different angle;(c)the dent marked with the black arrow is G2;and(d)the same ashtray as(c)viewed in a different angle

    (2)The effects of changing four shape parameters,βu1,βu2,βv1,andβv2,are distinguishable.

    (3)They retain the effects of the corresponding Betasplines curves[9].That is,changingβu1(i,j)orβv1(i,j)can make the surface bias locally around the P(i,j)point.Changingβu2(i,j)orβv2(i,j)can make the surface approach locally to the P(i,j)point.

    (4) The effects of shape parameters keep the orientation sense.Changingβu1orβu2makes shape changing along the u direction while varyingβv1orβv2makes shape changing along the v direction.

    [1]Liu Y K.A Novel Parallel Algorithm for Surface Editing and Its FPGA Implementation[D].Luton,the UK:University of Bedfordshire,2013:135-155.

    [2]Zhang J Q,Shi Z.Triangulation of Molecular Surfaces Based on Extracting Surface Atoms[J].Computers & Graphics,2014,38:291-299.

    [3]Wedel A,Badino H,Rabe C,et al.B-Spline Modeling of Road Surfaces with an Application to Free-Space Estimation[J].IEEE Transactions on Intelligent Transportation Systems,2009,10(4):572-583.

    [4]Kim K,Lepetit V,Woo W.Real-Time Interactive Modeling and Scalable Multiple Object Tracking for AR[J].Computers&Graphics,2012,36(8):945-954.

    [5]Park Y,Lepetit V,Woo W.Handling Motion-Blur in 3D Tracking and Rendering for Augmented Reality [J].IEEE Transactions on Visualization and Computer Graphics,2012,18(9):1449-1459.

    [6]Ben-Artzi A,Egan K,Durand F,et al.A Precomputed Polynomial Representation for Interactive BRDF Editing with Global Illumination[J].Transactions on Graphics,2008,27(2):Article No.13.

    [7]Hoschek J,Lasser D.Fundamentals of Computer Aided Geometric Design [M].Wellesley, Massachusetts:A K Peters,Ltd.,1993:217-243.

    [8]Farin G.Curves and Surfaces for Computer Aided Geometric Design,a Practical Guide[M].3rd ed.New York:Academic Press Inc.,1993:201-285.

    [9]Barsky B A, DeRose T D.Geometric Continuity of Parametric Curves: Constructions of Geometrically Continuous Splines [J].IEEE Computer Graphics and Applications,1990,10(1):60-68.

    [10]Farin G.Visually C2 Cubic Splines[J].Computer Aided Design,1982,14(3):137-139.

    [11]Boehm W.Curvature Continuous Curves and Surfaces[J].Computer Aided Geometric Design,1985,2(4):313-323.

    [12]Barsky B A,DeRose T D.The Beta2-Spline:a Special Case of the Beta-Spline Curve and Surface Representation[J].IEEE Computer Graphics and Applications,1985,5(9):46-58.

    [13]Joe B.Knot Insertion for Beta-Spline Curves and Surfaces[J].ACM Transactions on Graphics,1990,9(1):41-65.

    猜你喜歡
    劉玉
    基于隨機過程的三維粗糙表面接觸剛度研究
    表面技術(2022年9期)2022-09-27 12:43:28
    怎樣借助圖形來分析函數與不等式問題
    劉玉 李康楠作品
    大眾文藝(2022年10期)2022-06-08 02:33:28
    Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
    選修2—2期中考試預測卷(B卷)
    Influence of sulfur doping on the molecular fluorophore and synergistic effect for citric acid carbon dots?
    主持人按語
    劉玉坤:“三鐵公主”的奧運情
    小小微信幫大忙
    精彩從平凡中綻放
    ——首批全國崗位學雷鋒標兵劉玉的故事
    化工管理(2015年13期)2015-10-19 08:20:58
    欧美一级a爱片免费观看看| 哪里可以看免费的av片| 18禁国产床啪视频网站| 国产黄a三级三级三级人| 中文字幕av成人在线电影| 亚洲一区二区三区色噜噜| 国产极品精品免费视频能看的| 国产免费男女视频| 两性午夜刺激爽爽歪歪视频在线观看| 成人高潮视频无遮挡免费网站| 午夜两性在线视频| 国产亚洲精品久久久久久毛片| 日本黄色视频三级网站网址| 在线观看av片永久免费下载| 97人妻精品一区二区三区麻豆| 一级a爱片免费观看的视频| 日本 av在线| 色吧在线观看| 亚洲,欧美精品.| 中文字幕熟女人妻在线| 久久香蕉国产精品| 成人18禁在线播放| 麻豆成人午夜福利视频| 国产亚洲精品久久久com| 国产免费男女视频| 日日夜夜操网爽| 亚洲中文日韩欧美视频| 免费无遮挡裸体视频| 悠悠久久av| www.色视频.com| 制服丝袜大香蕉在线| 午夜精品久久久久久毛片777| 成熟少妇高潮喷水视频| 99热这里只有是精品50| 精品久久久久久久人妻蜜臀av| 亚洲一区二区三区不卡视频| 欧美激情久久久久久爽电影| 伊人久久精品亚洲午夜| 又黄又爽又免费观看的视频| 精品不卡国产一区二区三区| 欧美区成人在线视频| 熟妇人妻久久中文字幕3abv| 国产精品99久久久久久久久| 久久精品人妻少妇| 18禁国产床啪视频网站| 国产高清有码在线观看视频| 色播亚洲综合网| 老司机午夜十八禁免费视频| 精品久久久久久久久久免费视频| 在线十欧美十亚洲十日本专区| 12—13女人毛片做爰片一| www.色视频.com| 观看美女的网站| 午夜老司机福利剧场| 少妇人妻精品综合一区二区 | 亚洲欧美精品综合久久99| 成人av在线播放网站| av片东京热男人的天堂| 国产v大片淫在线免费观看| 欧美大码av| 免费一级毛片在线播放高清视频| 国产伦一二天堂av在线观看| 变态另类成人亚洲欧美熟女| 成人国产一区最新在线观看| 国产主播在线观看一区二区| 国产黄a三级三级三级人| 国产高清有码在线观看视频| 嫁个100分男人电影在线观看| 51国产日韩欧美| www.熟女人妻精品国产| 尤物成人国产欧美一区二区三区| 欧美黑人欧美精品刺激| 淫秽高清视频在线观看| 国产黄a三级三级三级人| 久久香蕉国产精品| 听说在线观看完整版免费高清| 有码 亚洲区| 国产欧美日韩精品亚洲av| 在线播放国产精品三级| 免费观看精品视频网站| 日本熟妇午夜| 国产午夜福利久久久久久| 每晚都被弄得嗷嗷叫到高潮| 日韩精品青青久久久久久| 九九久久精品国产亚洲av麻豆| 亚洲精品国产精品久久久不卡| 中文字幕人妻丝袜一区二区| 婷婷六月久久综合丁香| 在线视频色国产色| 欧美日本亚洲视频在线播放| 欧美av亚洲av综合av国产av| 国产成人系列免费观看| 国产午夜福利久久久久久| 成人特级黄色片久久久久久久| 国产爱豆传媒在线观看| 91字幕亚洲| av天堂中文字幕网| 在线a可以看的网站| 亚洲一区二区三区不卡视频| 国语自产精品视频在线第100页| 国产99白浆流出| 亚洲欧美日韩无卡精品| 国产不卡一卡二| 亚洲性夜色夜夜综合| 亚洲av免费高清在线观看| 99热6这里只有精品| 色尼玛亚洲综合影院| 在线看三级毛片| 国产亚洲欧美在线一区二区| 国产成人福利小说| 精品国产三级普通话版| 久久久久国产精品人妻aⅴ院| 熟女电影av网| 久久久久久人人人人人| 国产一区在线观看成人免费| 免费看美女性在线毛片视频| 黄色片一级片一级黄色片| 欧美最黄视频在线播放免费| 亚洲精品在线美女| 一进一出好大好爽视频| 99久久无色码亚洲精品果冻| 亚洲人与动物交配视频| 黄色丝袜av网址大全| 欧美日韩瑟瑟在线播放| 日本与韩国留学比较| 国产黄色小视频在线观看| 黄色片一级片一级黄色片| 蜜桃亚洲精品一区二区三区| 观看免费一级毛片| 高潮久久久久久久久久久不卡| 最新美女视频免费是黄的| 国产精品亚洲美女久久久| 免费在线观看影片大全网站| 美女免费视频网站| 90打野战视频偷拍视频| 欧美黑人巨大hd| 日本撒尿小便嘘嘘汇集6| 九色国产91popny在线| 成人高潮视频无遮挡免费网站| 国产三级中文精品| 岛国视频午夜一区免费看| 在线观看美女被高潮喷水网站 | 高清日韩中文字幕在线| 亚洲成a人片在线一区二区| 婷婷亚洲欧美| 午夜福利视频1000在线观看| 国产亚洲精品一区二区www| 亚洲美女黄片视频| 亚洲五月天丁香| 日本一本二区三区精品| 欧美av亚洲av综合av国产av| 真人一进一出gif抽搐免费| av专区在线播放| 亚洲精品日韩av片在线观看 | 国产伦精品一区二区三区四那| 99国产极品粉嫩在线观看| 国内毛片毛片毛片毛片毛片| 亚洲在线自拍视频| av国产免费在线观看| 久久久久九九精品影院| 人妻丰满熟妇av一区二区三区| 久久久久亚洲av毛片大全| 欧美成人性av电影在线观看| 国产在线精品亚洲第一网站| 日韩欧美精品v在线| 免费人成视频x8x8入口观看| 看黄色毛片网站| 最新中文字幕久久久久| 免费在线观看亚洲国产| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 中文在线观看免费www的网站| 大型黄色视频在线免费观看| 精品免费久久久久久久清纯| 99久久综合精品五月天人人| 国产精品野战在线观看| 日韩欧美 国产精品| 国产精品自产拍在线观看55亚洲| 法律面前人人平等表现在哪些方面| 国产免费一级a男人的天堂| av在线天堂中文字幕| 黄色丝袜av网址大全| 好男人电影高清在线观看| 天美传媒精品一区二区| 国产伦精品一区二区三区四那| 美女免费视频网站| 日韩亚洲欧美综合| 老熟妇乱子伦视频在线观看| 国产精品三级大全| 国产综合懂色| 在线观看一区二区三区| 青草久久国产| 国内精品一区二区在线观看| 国产精品爽爽va在线观看网站| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区三| 搡老岳熟女国产| av天堂在线播放| 久久精品夜夜夜夜夜久久蜜豆| av视频在线观看入口| 女人被狂操c到高潮| 国产午夜精品论理片| 999久久久精品免费观看国产| 男女做爰动态图高潮gif福利片| 亚洲五月天丁香| 最新美女视频免费是黄的| 亚洲精品在线美女| 一二三四社区在线视频社区8| 国产欧美日韩一区二区精品| 精品午夜福利视频在线观看一区| 日韩亚洲欧美综合| 啦啦啦韩国在线观看视频| 日韩免费av在线播放| 国产主播在线观看一区二区| 男女视频在线观看网站免费| 亚洲国产中文字幕在线视频| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 精品一区二区三区视频在线 | 国产野战对白在线观看| 欧美日韩乱码在线| 久久伊人香网站| 激情在线观看视频在线高清| 亚洲成人中文字幕在线播放| 91在线精品国自产拍蜜月 | 18禁黄网站禁片免费观看直播| 91麻豆精品激情在线观看国产| 香蕉丝袜av| 亚洲国产色片| 亚洲第一电影网av| 又紧又爽又黄一区二区| 日韩 欧美 亚洲 中文字幕| 日本 欧美在线| 男女那种视频在线观看| 欧美日韩综合久久久久久 | 男女之事视频高清在线观看| 老鸭窝网址在线观看| 国产亚洲av嫩草精品影院| 十八禁人妻一区二区| tocl精华| 男人和女人高潮做爰伦理| 91麻豆av在线| 成人高潮视频无遮挡免费网站| 久久人人精品亚洲av| 国内毛片毛片毛片毛片毛片| 99国产综合亚洲精品| 国产单亲对白刺激| 一本综合久久免费| 久久欧美精品欧美久久欧美| 欧美午夜高清在线| 99久久无色码亚洲精品果冻| 欧美中文日本在线观看视频| 精品99又大又爽又粗少妇毛片 | 色综合亚洲欧美另类图片| 久久6这里有精品| 日本 欧美在线| 嫁个100分男人电影在线观看| 久久久久国内视频| 国产淫片久久久久久久久 | 两个人视频免费观看高清| 最后的刺客免费高清国语| 高清在线国产一区| 老司机在亚洲福利影院| www.色视频.com| 十八禁人妻一区二区| 在线播放国产精品三级| 日韩精品中文字幕看吧| 中文字幕av成人在线电影| 午夜免费成人在线视频| 他把我摸到了高潮在线观看| 露出奶头的视频| 性色avwww在线观看| 最新在线观看一区二区三区| 亚洲第一电影网av| 成人永久免费在线观看视频| 亚洲国产高清在线一区二区三| 欧美av亚洲av综合av国产av| 亚洲av美国av| 狠狠狠狠99中文字幕| 一进一出抽搐动态| 国产aⅴ精品一区二区三区波| 99久久99久久久精品蜜桃| 老司机在亚洲福利影院| 欧美+亚洲+日韩+国产| 国产一区在线观看成人免费| 麻豆国产97在线/欧美| 我要搜黄色片| 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区| av天堂在线播放| 高清毛片免费观看视频网站| 99热精品在线国产| 亚洲国产精品999在线| 精品久久久久久久末码| 国产精品电影一区二区三区| 国产真实伦视频高清在线观看 | 麻豆久久精品国产亚洲av| 久久久久久久午夜电影| 老司机福利观看| 国产乱人伦免费视频| 日本精品一区二区三区蜜桃| 最后的刺客免费高清国语| 国产精品一区二区免费欧美| 亚洲一区二区三区色噜噜| 久久久久久大精品| 午夜精品在线福利| 可以在线观看毛片的网站| 亚洲成av人片在线播放无| 波野结衣二区三区在线 | 国产精品,欧美在线| 丰满乱子伦码专区| 少妇人妻精品综合一区二区 | 最近最新中文字幕大全免费视频| 中文字幕人妻熟人妻熟丝袜美 | av片东京热男人的天堂| 三级男女做爰猛烈吃奶摸视频| 国产国拍精品亚洲av在线观看 | 亚洲一区二区三区不卡视频| 日本成人三级电影网站| 又粗又爽又猛毛片免费看| 成人午夜高清在线视频| 美女 人体艺术 gogo| 国产亚洲精品一区二区www| 最新中文字幕久久久久| 一本久久中文字幕| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 高潮久久久久久久久久久不卡| 久久久久亚洲av毛片大全| 啪啪无遮挡十八禁网站| 免费观看精品视频网站| 色吧在线观看| 黑人欧美特级aaaaaa片| 亚洲av美国av| 看免费av毛片| 国产一区二区亚洲精品在线观看| 国产色婷婷99| 一二三四社区在线视频社区8| 国产高清三级在线| 亚洲精品美女久久久久99蜜臀| 叶爱在线成人免费视频播放| 又黄又粗又硬又大视频| 最近最新中文字幕大全免费视频| 搞女人的毛片| 亚洲欧美一区二区三区黑人| 激情在线观看视频在线高清| 日本 欧美在线| 一本综合久久免费| 制服丝袜大香蕉在线| 好看av亚洲va欧美ⅴa在| 亚洲av电影在线进入| 国产伦精品一区二区三区四那| 亚洲内射少妇av| 亚洲av成人精品一区久久| 日韩欧美三级三区| 看免费av毛片| 综合色av麻豆| 成人永久免费在线观看视频| а√天堂www在线а√下载| 日韩国内少妇激情av| 免费看美女性在线毛片视频| 在线十欧美十亚洲十日本专区| 亚洲欧美一区二区三区黑人| 精品福利观看| 国产成人影院久久av| 国产亚洲精品久久久久久毛片| 久久久久国内视频| 午夜福利在线观看免费完整高清在 | a级毛片a级免费在线| 啦啦啦观看免费观看视频高清| 波多野结衣高清作品| 男女那种视频在线观看| 变态另类丝袜制服| 在线国产一区二区在线| 欧美日韩乱码在线| 白带黄色成豆腐渣| 十八禁人妻一区二区| 全区人妻精品视频| 国产淫片久久久久久久久 | 亚洲国产精品sss在线观看| 久久精品国产99精品国产亚洲性色| 在线视频色国产色| 国产成人啪精品午夜网站| 九九久久精品国产亚洲av麻豆| 高清在线国产一区| 天堂动漫精品| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 国产午夜精品论理片| 精品免费久久久久久久清纯| 国产黄片美女视频| 久久性视频一级片| 12—13女人毛片做爰片一| 在线观看免费午夜福利视频| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 国内揄拍国产精品人妻在线| 久久国产精品人妻蜜桃| 久久精品影院6| 精品久久久久久久人妻蜜臀av| 亚洲av电影在线进入| 久久久久免费精品人妻一区二区| 久久久久久久精品吃奶| 亚洲成人免费电影在线观看| 在线观看免费午夜福利视频| 午夜影院日韩av| 婷婷丁香在线五月| 91麻豆精品激情在线观看国产| 国产成人a区在线观看| 国产黄a三级三级三级人| 中文字幕高清在线视频| 18禁美女被吸乳视频| 老熟妇乱子伦视频在线观看| 男人的好看免费观看在线视频| 亚洲一区二区三区色噜噜| 熟女人妻精品中文字幕| 亚洲精品一区av在线观看| 欧美黄色淫秽网站| 亚洲美女视频黄频| 人妻丰满熟妇av一区二区三区| 久久精品综合一区二区三区| 国产亚洲精品一区二区www| 亚洲欧美日韩卡通动漫| 夜夜看夜夜爽夜夜摸| 99精品久久久久人妻精品| 国产精品久久久久久亚洲av鲁大| 国产免费男女视频| 日日干狠狠操夜夜爽| 欧美最新免费一区二区三区 | 桃色一区二区三区在线观看| 亚洲片人在线观看| 高潮久久久久久久久久久不卡| 久久精品综合一区二区三区| 日韩国内少妇激情av| 最近最新免费中文字幕在线| 999久久久精品免费观看国产| 国产精品美女特级片免费视频播放器| 国产男靠女视频免费网站| 色综合欧美亚洲国产小说| 丰满的人妻完整版| 国产精品野战在线观看| 51午夜福利影视在线观看| 亚洲av二区三区四区| 青草久久国产| 国产av在哪里看| 亚洲av电影不卡..在线观看| 美女高潮喷水抽搐中文字幕| 国产亚洲精品综合一区在线观看| 日韩av在线大香蕉| 亚洲 欧美 日韩 在线 免费| 一级黄片播放器| 五月伊人婷婷丁香| 级片在线观看| 欧美一区二区国产精品久久精品| 成人高潮视频无遮挡免费网站| 日韩高清综合在线| 日韩精品青青久久久久久| 狂野欧美激情性xxxx| 丰满的人妻完整版| 免费在线观看日本一区| 制服丝袜大香蕉在线| 欧美最新免费一区二区三区 | 久99久视频精品免费| 亚洲一区二区三区色噜噜| 亚洲五月婷婷丁香| 亚洲 欧美 日韩 在线 免费| 午夜福利视频1000在线观看| 久久精品91蜜桃| 色精品久久人妻99蜜桃| 免费av不卡在线播放| 亚洲黑人精品在线| 又黄又爽又免费观看的视频| 久久6这里有精品| 欧美+日韩+精品| 欧美性猛交╳xxx乱大交人| 国产激情欧美一区二区| 国产av不卡久久| 精品一区二区三区av网在线观看| 久久中文看片网| 欧美极品一区二区三区四区| 国产不卡一卡二| 欧美成人免费av一区二区三区| 精品人妻1区二区| x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 麻豆成人午夜福利视频| 老熟妇仑乱视频hdxx| 亚洲国产色片| 亚洲专区中文字幕在线| 三级毛片av免费| 伊人久久大香线蕉亚洲五| 女警被强在线播放| 男人舔奶头视频| 午夜激情福利司机影院| 国产av在哪里看| 两人在一起打扑克的视频| 午夜免费成人在线视频| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 又爽又黄无遮挡网站| 国产av在哪里看| 两人在一起打扑克的视频| 免费看a级黄色片| 成年免费大片在线观看| 成人三级黄色视频| 亚洲精品456在线播放app | 亚洲国产欧美网| 欧美成人a在线观看| 欧美一区二区精品小视频在线| 老司机午夜福利在线观看视频| 国产精品免费一区二区三区在线| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 悠悠久久av| 国产v大片淫在线免费观看| 亚洲av美国av| 无限看片的www在线观看| 亚洲五月婷婷丁香| 色在线成人网| 亚洲av成人精品一区久久| a级毛片a级免费在线| 国产精品一区二区三区四区免费观看 | 国产熟女xx| 日韩欧美精品免费久久 | 又黄又爽又免费观看的视频| 1024手机看黄色片| 国产真人三级小视频在线观看| 国产 一区 欧美 日韩| 欧美性猛交╳xxx乱大交人| 女同久久另类99精品国产91| 99久久精品国产亚洲精品| 一进一出好大好爽视频| 在线观看舔阴道视频| 在线观看午夜福利视频| 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全电影3| 综合色av麻豆| 亚洲人成网站在线播放欧美日韩| 两人在一起打扑克的视频| 国产精品av视频在线免费观看| 脱女人内裤的视频| 亚洲国产精品成人综合色| 99久久久亚洲精品蜜臀av| 校园春色视频在线观看| 久久久久久久午夜电影| 久久国产精品影院| 亚洲成a人片在线一区二区| 国产精品免费一区二区三区在线| 国产伦一二天堂av在线观看| 亚洲精华国产精华精| 久久欧美精品欧美久久欧美| 精品人妻一区二区三区麻豆 | 成人欧美大片| 老鸭窝网址在线观看| 男人舔奶头视频| 午夜久久久久精精品| 亚洲狠狠婷婷综合久久图片| 夜夜看夜夜爽夜夜摸| 狂野欧美激情性xxxx| 天堂√8在线中文| 亚洲av五月六月丁香网| 黄色片一级片一级黄色片| www.色视频.com| 国产亚洲精品一区二区www| 国产亚洲精品久久久com| 一级a爱片免费观看的视频| 啦啦啦韩国在线观看视频| 一个人观看的视频www高清免费观看| 一区二区三区激情视频| 欧美一级毛片孕妇| 变态另类丝袜制服| 黄色成人免费大全| 色视频www国产| 亚洲av成人av| h日本视频在线播放| aaaaa片日本免费| 男女床上黄色一级片免费看| 日韩精品中文字幕看吧| 热99re8久久精品国产| 免费电影在线观看免费观看| 国产伦在线观看视频一区| 青草久久国产| 男女下面进入的视频免费午夜| 看黄色毛片网站| 午夜福利视频1000在线观看| 国产一区在线观看成人免费| 一级毛片高清免费大全| 男人的好看免费观看在线视频| 亚洲成人中文字幕在线播放| 免费一级毛片在线播放高清视频| 国模一区二区三区四区视频| 少妇人妻一区二区三区视频| 国产欧美日韩精品一区二区| 日韩欧美精品免费久久 | 99国产精品一区二区蜜桃av| 日韩精品青青久久久久久| 九色国产91popny在线| 亚洲av熟女| 国产精品影院久久| 夜夜躁狠狠躁天天躁| 老鸭窝网址在线观看| 国产三级在线视频| 成人一区二区视频在线观看| 中国美女看黄片| 丁香欧美五月| 成人精品一区二区免费| 成人无遮挡网站| 亚洲自拍偷在线| 啦啦啦观看免费观看视频高清| 色精品久久人妻99蜜桃| 在线视频色国产色|