• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Serial of Applications of Satellite Observations An Introduction to Hyper-spectral Infrared Sounders Onboard Polar-orbiting Meteorological Satellites

    2015-12-20 07:03:14YinMengtaoZouXiaoleiDepartmentofEarthOceanandAtmosphericScienceFloridaStateUniversityUSACenterofDataAssimilationforResearchandApplicationNanjingUniversityofInformationandScienceTechnologyNanjing0044
    關(guān)鍵詞:單位向量波束寬度經(jīng)度

    Yin Mengtao Zou Xiaolei,( Department of Earth, Ocean and Atmospheric Science, Florida State University, USA  Center of Data Assimilation for Research and Application, Nanjing University of Information and Science & Technology, Nanjing 0044)

    Serial of Applications of Satellite ObservationsAn Introduction to Hyper-spectral Infrared Sounders Onboard Polar-orbiting Meteorological Satellites

    Yin Mengtao1Zou Xiaolei1,2
    (1Department of Earth, Ocean and Atmospheric Science, Florida State University, USA 2Center of Data Assimilation for Research and Application, Nanjing University of Information and Science & Technology, Nanjing 210044)

    Polar-orbiting meteorological satellites circulate above the Earth at about 800-km altitude, completing 14 orbits daily. A single orbit takes about 100 minutes. Each polar-orbiting satellite provides observations on the so-called descending (ascending) node when moving from north (south) to south (north). The local time for all the descending nodes to cross the equator remains constant for a fixed polar-orbiting satellite, although their longitudes are different. The same is true of ascending nodes. Different from a geostationary satellite that provides temporally continuous observations within a limited spatial and spectral domain[1], a polar-orbiting meteorological satellite can provide global coverage in multiple visible, infrared and microwave bands twice daily. Observations from polar-orbiting meteorological satellites have played important roles in numerical weather prediction (NWP), climate study and product retrieval of meteorological variables.

    Polar-orbiting meteorological satellites with infrared sounders onboard are launched into early-morning, morning and afternoon orbits. The descending nodes of early-morning and morning orbits pass the equator at about 6:00 AM and 10:00 AM local equatorial crossing time (LECT), respectively. The LECT of ascending nodes of afternoon orbits is at about 1:00 PM local time①. National Oceanic and Atmospheric Administration (NOAA) started its Polar Orbiting Environmental Satellite (POES) series in 1978. NOAA-13 failed to operate in an afternoon orbit. NOAA-6/8/10/12/15 are earlymorning satellites. NOAA-17 is a morning satellite. The remaining NOAA POES, including NOAA-18/19 and Suomi NPP, are afternoon satellites. Other countries also operated polar-orbiting meteorological satellites. Other countries also operated polar-orbiting meteorological satellites. Two morning-orbiting satellites MetOp-A/ B has been launched by European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) since 2006. The Chinese Fengyun-3 (FY-3) polar-orbiting meteorological satellite series started from 2008 on. FY-3A/B are experimental meteorological satellites, and FY-3C is an operational meteorological satellite. FY-3A/C are morning satellites and were launched in May 2008 and September 2013, respectively. FY-3B is an afternoon satellite and was launched in November 2010. China plans to launch an early-morning-orbiting satellite, FY-3E, in 2018. By then, the FY-3 satellites will provide global observations with three different orbits, i.e., early-morning, morning and afternoon orbits. Table 1 provides a list of the current operational polar-orbiting meteorological satellites with their launch dates, infrared sounders, status and agencies.

    The first High-resolution Infrared Radiometer Sounder (HIRS) was onboard Nimbous-6 satellite, which was launched in 1975. HIRS had 16 infrared channels and one visible channel. The follow-up HIRS instruments, HIRS/2/3/4 onboard the NOAA-6 to 19 had 19 infrared and one visible channel. Table 2 lists the central wavenumbers and the bandwidth at each channel of the first HIRS and HIRS/2/3/4. It is seen that the 1219.51 cm-1channel of the first HIRS was removed from HIRS/2/3/4. Four new infrared channels were added to HIRS/2/3/4 with their central wavenumbers at801.92, 1029.87, 1364.26 and 2500.00 cm-1, respectively.

    Hyper-spectral infrared sounders, include Atmospheric Infrared Sounder (AIRS) onboard the National Aeronautics and Space Administration (NASA) Aqua satellite since 2002, Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp-A/B satellite, and Cross-track Infrared Sounder (CrIS) onboard Suomi NPP satellite since 2010, represent the advancement in infrared sounding technology. The spectral resolutions of AIRS, IASI and CrIS are much higher than HIRS instruments. AIRS has 2378 channels covering a spectral range from 650 to 2700 cm-1. IASI provides radiance measurements with 8461 channels that are located in a spectral range from 600 to 2800cm-1. CrIS provides radiance measurements at a total of 1305 channels, which are divided into longwave (650 to 1095 cm-1), midwave(1210 to 1750 cm-1) and shortwave (2155 to 2550 cm-1) bands②. HIRS/2/3/4 only provide radiance measurements at 19 channels from 650 to 2700 cm-1. The above three hyper-spectral infrared sounders have different spectral resolutions. The spectral resolution (Δν) of AIRS increases with increasing central wavenumber (ν) and is inversely proportional to a constant spectral resolving power (R)[2], i.e.:

    where R=1200. IASI has a constant spectral resolution of 0.25cm-1over its entire observing spectral range. CrIS has a constant spectral resolution at each of its three spectral bands. The spectral resolutions of longwave, midwave and shortwave bands are 0.625, 1.25and 2.5 cm-1, respectively. The full spectral resolution (FSR) mode allows CrIS to have a spectral resolution of 0.625 cm-1over the full spectral range of CrIS[3]. The spectral resolution of CrIS shortwave band is much coarser than that of the corresponding IASI band. It was found to be difficult to apply the absolute frequency calibration in the CrIS shortwave band by employing IASI shortwave observations during the post-launch period due to the differences of spectral resolutions between two instruments[4]. By utilizing the FSR mode, the absolute frequency calibration in the CrIS shortwave band becomes straightforward using IASI[5].

    CrIS is the newest hyper-spectral infrared sounder and will be taken as an example for further discussions. CrIS is a cross-track scanning instrument. A single scanline of CrIS consists of 30 fields of regard (FORs), with each FOR consisting of nine fields of view (FOVs). As the satellite Suomi NPP moves in the along-track direction from South to North, the hyper-spectra infrared sounder CrIS observed 30 FORs in the cross-track direction from West to East. The horizontal resolution of CrIS observations is determined mainly by the beam width. The scan angle and the altitude of satellite also have an impact on CrIS data resolution. The beam width for CrIS is 0.963°, corresponding to an FOV with a 14-km diameter at nadir. The sizes and distributions of FOVs and FORs along a single scanline of CrIS near the equator are shown in Figure 1. The footprints of the FOV and the FOR in the figure were calculated based on the center longitude and latitude of a particular FOV, the beam width as well as the zenith angle, the azimuth angle and the altitude of Suomi NPP satellite. A detailed description of the mathematical formula for the calculation of FOR and FOV sizes can be found in the appendix. From Figure 1 it is seen that the sizes of the FOV and the FOR increase with scan angle, confirming that the horizontal resolution of CrIS observations is the highest at nadir and decreases with an increasing scan angle.An overlap is found for CrIS FOVs with large scan angles in the cross-track direction. An enlarged view of the nine FOVs for FORs 1, 15 and 30 in Figure 1 are displayed in Figure 2. FOV 5 isthe center FOV, FOVs 1, 3, 7 and 9 arecorner FOVs, and the FOVs 2, 4, 6 and 8 areside FOVs[3].The corner and side FOVs rotate around the center FOV counter-clockwise from the west to the east for a single scanline. It is reminded that there is no overlap between neighboring FOVs within a single FOR.

    The cross-track and along-track diameters of the nine FOVs along the same scanline of CrIS in Figure 1 are provided in Figure 3. It is worth noticing that the crosstrack diameters of the nine FOVs increase with scan angle more greatly than the along-track diameters. The crosstrack diameters are slightly smaller than the along-track diameters at nadir due to a larger latitudinal distortion of the nine FOVs in the along-track direction. The latitudinal distortion is caused by the larger radius of the Earth at the equator (6378.1 km) than at the pole (6356.8 km). It leads to a higher altitude of the Suomi NPP satellite at higher latitudes than low latitudes such that the FOV observed by the CrIS instrument is larger at higher latitudes. At the largest scan angle, the minimum cross-track and maximum along-track diameter of the FOVs is about 39 and 25 km, respectively.

    Similar to CrIS, all HIRS series and AIRS are crosstrack scanning instruments. There are 42 FOVs and 56 FOVs along a single scanline of the first HIRS and HIRS/2/3/4, respectively. The total number of FOVs for a single scanline of AIRS is 90. It is worth noticing that the horizontal resolution of each generation of HIRS series is different. The horizontal resolution of the first HIRS and HIRS/2 at nadir is 25 and 17.7 km, respectively. The horizontal resolution of visible and infrared shortwave channels of HIRS/3 at nadir is 20.3 km, and that of infrared longwave channels of HIRS/3 is 18.9 km. The nadir resolution of HIRS/4 is 10 km, nearly twice as high as that of the other HIRS instruments. The nadir resolution of AIRS is 13.5 km. A comparison of sizes and distributions of FOVs among AIRS, CrIS and infrared longwave channels of HIRS/3 near nadir is provided in Figure 4. At the same scan angle, the FOV size is the largest for the infrared longwave channels of HIRS/3, the smallest for AIRS, and moderate for CrIS. Differences in FOV sizes of the infrared longwave channels among HIRS/3, AIRS and CrIS arise mainly from differences in the beam widths of the three instruments as well as the altitudes of the corresponding satellite platforms. The beam widths for HIRS/3, AIRS and CrIS are 1.3, 1.1 and0.963°. The altitude of Aqua satellite with AIRS onboard is 705 km, while the altitude of Suomi NPP satellite with CrIS onboard is 834 km. Although the beam width for AIRS is larger than that for CrIS, the FOV size for AIRS is smaller than that for CrIS due to a lower altitude of Aqua than that of Suomi NPP. Near nadir, no overlaps occur between neighboring FOVs for the three instruments in both cross-track and along-track directions. A large space between neighboring FOVs for the infrared longwave channels of HIRS/3 exists in both the cross-track and alongtrack directions. A small space between neighboring FOVs is observed in cross-track directions for AIRS and both cross-track and along-track directions for CrIS.

    Under clear-sky conditions, the measured infrared radiance comes from a specific volume of the atmosphere, which is determined by the beam width, the weighting function, and the observing time period. A single CrIS FOR consisting of nine FOVs takes about 0.2 s to observe[3]. As is mentioned above, CrIS provide radiance observations at 1305 channels in the spectral range of 655-2550 cm-1. The radiance observations may come from different atmospheric volumes with significant overlaps. Hence, the radiance observations of CrIS full spectral range contain significantly redundant and thus correlated information. In NWP, a channel selection becomes necessary for CrIS data assimilation in order to avoid error correlations between different channels and to reduce the computational expense. The channel selection for CrIS has two main principles: select channels with high sensitivity to a certain atmospheric species and high vertical resolution. The former is to effectively reduce the redundancy between different channels and the latter is to maximize the vertical resolution of the retrieval product[6]. The vertical resolution of CrIS observations is determined by the weighting function of each channel. The narrower the weighting function is, the higher the vertical resolution is for a specific channel. The atmosphere at the altitude of weighting function peak contributes most to the radiance observed by that channel[7]. The weighting functions of different channels reach the maximum at different altitudes, which is the basis for retrieving the vertical profiles of atmospheric species. In addition, the vertical observing range of channels is also considered in the channel selection for CrIS. Gambacorta et al.[6]select a total of 399 CrIS channels for applications in NWP data assimilation system. This subset of CrIS channels includes 24 surface temperature, 87 temperature, 62 water vapor, 53 ozone, 27 carbon monoxide, 54 methane, 52 carbon dioxide, 24 N2O, 28 HNO3and 24 SO2sounding channels. Figure 5 presents the weighting function profiles of CrIS longwave infrared, shortwave infrared, water vapor and surface temperature channels calculated by the Community Radiative Transfer Model (CRTM)[8]under the US standard atmosphere. The infrared longwave, midwave and shortwave channels are indicated in blue, green and red colors, respectively. Figure 6 provides the distributions of altitudes of weighting function peaks for the 399 CrIS channels. It is seen that temperature channels are distributed in longwave and shortwave bands. The infrared longwave temperature channels (660 to 750 cm-1) are arranged compactly from 1000 to 10 hPa, providing the vertical profile of atmospheric temperature with high vertical resolution. The infrared shortwave temperature channels (2200 to 2420 cm-1) are arranged in a similar pattern to infrared longwave temperature channels but more compactly in the vertical range of 60 to 10 hPa, which can provide more information about the upper atmospheric temperature. Ozone channels are distributed over the spectral range of 990 to 1070 cm-1. The strong vibrational absorption band of ozone is near1041.67 cm-1. About 90% ozone is concentrated in the stratosphere within the altitude range from 10 to 50 km, and the remaining 10% ozone is concentrated near the Earth’s surface③. Water vapor channels are distributed over the following two spectral ranges: 780-1210 cm-1and 1310-1750 cm-1. The longwave water vapor channels (780 to 1210 cm-1) can provide the water vapor information near the surface. The midwave water vapor channels (1310 to 1750 cm-1) are arranged compactly in the vertical range from 800to 200 hPa, enabling the vertical profiling of the atmospheric water vapor. Surface temperature channels are distributed over two spectral ranges of 770-1095 cm-1and 2460-2540 cm-1. It is worth mentioning that the infrared shortwave surface temperature channels (2460 to 2540 cm-1) are not used in the National Centers for Environmental Prediction (NCEP) NWP systems due to a potential contamination of sun glint[9].

    Hurricane Sandy made landfall at Cuba at 0600 UTC October 25, 2012. The sea level pressure and sea surface temperature of NCEP Final (FNL) global analysis at the same time is presented in Figure 7a. The observed brightness temperature of CrIS infrared longwave surface temperature channel 79 from the descending node of Suomi NPP at the same time is provided in Figure 7b and 7c. It is found that Hurricane Sandy is located over a warm sea surface with a low-pressure center of less than 998 hPa (Figure 7a). Compared to microwave, the wavelength of infrared is shorter, implying that the infrared radiance is attenuated in clouds more quickly. If the cloud has a large optical depth, the radiance measuredby CrIS channel 79 mainly comes from the cloud top, otherwise from the Earth surface.The brightness temperatures over cloudy areas are as low as 195 K, while those over clear-sky areas can reach up to 295 K (Figure 7b). A warm anomaly is observed near the Sandy center. The brightness temperatures in Hurricane Sandy’s eye are as high as 260 K, in a great contrast to those in the neighboring environment of lower than 200 K. It reflects a typical warm core structure in the hurricane center with thick clouds within and outside the eye wall. Figure 8a presents the weighting function distributions of 11 CrIS infrared longwave temperature channels. The cross section of brightness temperatures for these 11 CrIS infrared longwave temperature channels through the hurricane center in the along-track direction from the ascending node of Suomi NPP at 0600 UTC October 25, 2012 is provided in Figure 8b. It is seen that the brightness temperature reaches the maximum at the surface within the eye. The brightness temperature difference between the hurricane center and the nearby environment is as high as 60 K. The horizontal and vertical structures of Hurricane Sandy are well captured by CrIS infrared longwave temperature channels.

    The prior hyper-spectral infrared sounders including AIRS and IASI have been widely used in NWP data assimilation system. McNally et al.[10]designed two experiments to explore the impact of AIRS data assimilation using only clear-sky observations. One experiment was to assimilate the clear-sky radiance from a single instrument (AIRS, HIRS and AMSU-A) in the ECMWF four-dimensional variational data assimilation system. AIRS data assimilation was found to outperform the assimilation of data from other two instruments with lower spectral resolutions (HIRS and AMSU-A).Another experiment was to add AIRS clear-sky observations into the ECMWF operational data assimilation system. It was found that AIRS had a positive impact on ECMWF operational forecasts. Guidard et al.[11]studied the impact of IASI data assimilation using both clear-sky and cloudy observations. The IASI clear-sky measurements were found to improve the model forecasts, while the IASI cloudy measurements had a neutral influence on the model forecasts due to the shortage of an effective method which can retrieve cloud parameters of high precision. The applications of the newest hyper-spectral infrared sounder (CrIS) in NWP have not yet to be demonstrated. On the other hand, all three hyper-spectral infrared sounders have been applied in the retrieval of meteorological variables and climate research. The AIRS/Advanced Microwave Sounding Unit (AMSU) retrieval product processing system has been running since 2002. IASI, AMSU and Microwave Humidity Sounder (MHS) have constituted the trace gas product processing system since 2008. The CrIS/Advanced Technology Microwave Sounder (ATMS) processing system has been operational since 2013. Gambacorta et al.[12]compared the accuracy of retrieval products from AIRS/AMSU, IASI/AMSU/MHS and CrIS/ATMS systems using NOAA Center for Satellite Applications and Research (STAR) Operational Hyper Spectral Retrieval Algorithm. Their results showed that the CrIS/ATMS system could provide vertical profiles of atmospheric temperature and water vapor with the same accuracy as those from the other two retrieval systems, except for the temperature in the lower troposphere and the water vapor in the middle troposphere. Under the FSR mode, which enables high spectral resolution of 0.625 cm-1across the full spectral range of CrIS, the vertical profile of carbon monoxide provided by CrIS/ATMS system is comparable in accuracy to the existing carbon monoxide retrievals from AIRS/AMSU and IASI/AMSU/MHS systems. In summary, the CrIS/ATMS processing system already satisfies the requirements for meteorological product retrieval and climate research. The values of CrIS hyper-spectral infrared radiance measurements and their retrieval products in NWP and climate research could be fully realized only when significant improvements in bias correction, quality control and cloud detection and retrieval algorithm for CrIS measurements are made.

    注釋

    ① http://nsmc.cma.gov.cn/NewSite/NSMC/Channels/100351.html

    ② http://www.wmo-sat.info/oscar/instruments/view/93

    ③ http://www.ozonelayer.noaa.gov/science/basics.htm

    ④http://www.nasa.gov/mission_pages/hurricanes/archives/2012/ h2012_Sandy.html#4

    [1]達(dá)成, 鄒曉蕾. GOES成像儀資料簡介. 氣象科技進(jìn)展, 2014, 4(4): 52-61.

    [2]Aumann H H, Chahine M T, Gautier C, et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens, 2003, 41: 253-264.

    [3]Han Y, Revercomb H, Cromp M, et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J Geophys Res Atmos, 2013, 118: 12734-12748.

    [4]Strow L L,Motteler H,Tobin D, et al. Spectral calibration and validation of the Cross-track Infrared Sounder (CrIS) on the Suomi NPP satellite. J Geophys Res Atmos, 2013, 118: 12486-12496.

    [5]Esplin M, Strow L L, Bingham G, et al. CrIS full spectral resolution test results. 92nd AMS Annual Meeting, New Orleans, LA, January 2012.

    [6]Gambacorta A, Barnet C D. Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-Track Infrared Sounder (CrIS). IEEE Trans Geosci Remote Sens, 2013, 51: 3207-3216.

    [7]Petty G W. A First Course in Atmospheric Radiation. Madison,Wisconsin: Sundog Publishing, 2006.

    [8]Weng F. Advances in radiative transfer modeling in support of satellite data assimilation. J Atmos Sci, 2007, 64: 3799-3807.

    [9]Chen Y, Han Y, Delst P V, et al. Assessment of shortwave infrared sea surface reflection and nonlocal thermodynamic equilibrium effects in the community radiative transfer model using IASI data. J Atmos Oceanic Technol, 2013, 30: 2152-2160.

    [10]McNally A P, Watts P D, Smith J A, et al. The assimilation of AIRS radiance data at ECMWF. Q J R Meteorol Soc, 2006, 132: 935-957.

    [11]Guidard V, Fourrié N, Brousseau P, et al. Impact of IASI assimilation at global and convective scales and challenges for the assimilation of cloudy scenes. Q J R Meteorol Soc, 2011, 137: 1975-1987.

    [12]Gambacorta A, Barnet C D, Wolf W, et al. The NOAA Operational Hyper Spectral Retrieval Algorithm: A crosscomparison among the CrIS, IASI and AIRS processing systems. International TOVS Study Conference. Jeju Island, Korea, March 2014.

    附錄

    已知CrIS瞬時(shí)視場中心(P)的經(jīng)度λP、緯度φP、儀器波束寬度ω及Suomi NPP衛(wèi)星(S)天頂角μs、方位角φs、與地球之間的距離h。將φP轉(zhuǎn)換為地心緯度(geocentric latitude)γP:

    式中,α是地球的扁率,它與地球赤道半徑(ra)和極地半徑(rb)的關(guān)系為:

    地球中心由O表示,已知γP,可求出O與P之間的距離(dOP):

    進(jìn)一步利用λP可求出P點(diǎn)在笛卡爾坐標(biāo)系里的三維坐標(biāo)即向量OP:

    已知dOP、γP、μs、h,可利用正弦定理求出S與P之間的距離(dPS):

    rOP為向量OP的單位向量,還已知μs、φs,利用旋轉(zhuǎn)矩陣可求出單位向量rPS:

    已知向量OS、OP,可求出向量SP和單位向量rSP,還已知ω,利用旋轉(zhuǎn)矩陣可求出單位向量rSF1,F(xiàn)1為瞬時(shí)視場軌跡上一點(diǎn):

    S點(diǎn)與F1點(diǎn)的距離為dSF1,則:

    F1點(diǎn)在地球表面,滿足橢球體公式:

    整理(11),可得:

    式(12)為dSF1的一元二次方程。若方程有兩個(gè)不同實(shí)數(shù)解,取較小值;若方程有兩個(gè)相同實(shí)數(shù)解,取該值;若方程無解,則向量OF1不與地球表面相交。進(jìn)一步可求出F1的緯度φF1和經(jīng)度λF1。利用旋轉(zhuǎn)矩陣將rSF1繞SP逆時(shí)針旋轉(zhuǎn)度=10i,i=1,2,3,…,36)可求出單位向量rSFi:

    再根據(jù)式(9)-(12)可算出dSFi,進(jìn)一步可求出Fi的緯度φFi和經(jīng)度λFi。

    每9個(gè)CrIS瞬時(shí)視場組成一個(gè)CrIS能視場。每個(gè)能視場內(nèi),瞬時(shí)視場5被稱為中心瞬時(shí)視場,瞬時(shí)視場1、3、7、9被稱為對角瞬時(shí)視場。已知OS、OP、OPj(j=1,3,7,9),可求出SP5和SPj,進(jìn)一步可求出能視場對應(yīng)的波束寬度θ:

    已知SP5和θ,可求出單位向量rSP5,再根據(jù)式(7)-(12)可求出能視場軌跡的緯度和經(jīng)度

    猜你喜歡
    單位向量波束寬度經(jīng)度
    巧用四步法 妙解地方時(shí)
    巧用四步法 妙解地方時(shí)
    聚焦單位向量的常見題型
    毫米波信道中波束成形矢量的波束寬度
    CINRAD/SA雷達(dá)天饋系統(tǒng)關(guān)鍵參數(shù)測量方法研究
    單位向量用途大
    可編程超聲波測距系統(tǒng)的設(shè)計(jì)
    科技視界(2018年9期)2018-07-27 11:28:30
    基于調(diào)度間隔與波束寬度良好匹配的最優(yōu)V2V毫米波通信
    汽車文摘(2017年9期)2017-12-06 05:09:19
    不容忽視的基本概念—單位向量
    平分集與球面的交集的連通性及其應(yīng)用
    晚上一个人看的免费电影| 国产在线视频一区二区| 日日爽夜夜爽网站| 桃花免费在线播放| 在线观看av片永久免费下载| 国产在线视频一区二区| 80岁老熟妇乱子伦牲交| av专区在线播放| 一级爰片在线观看| 国产一区有黄有色的免费视频| 简卡轻食公司| 国产黄片视频在线免费观看| 久久久国产一区二区| 亚洲精品乱久久久久久| 日韩伦理黄色片| 一区二区av电影网| 久久99精品国语久久久| 男的添女的下面高潮视频| 国产极品天堂在线| 日产精品乱码卡一卡2卡三| 日本-黄色视频高清免费观看| 黄色配什么色好看| 精品99又大又爽又粗少妇毛片| 热re99久久国产66热| 在线观看三级黄色| 五月伊人婷婷丁香| 日韩一本色道免费dvd| 日本-黄色视频高清免费观看| 高清午夜精品一区二区三区| 国产白丝娇喘喷水9色精品| 日韩精品免费视频一区二区三区 | av女优亚洲男人天堂| 男男h啪啪无遮挡| 欧美日韩视频高清一区二区三区二| 日日撸夜夜添| 日韩伦理黄色片| 天堂中文最新版在线下载| 国产成人freesex在线| 亚洲精品一二三| 久久久a久久爽久久v久久| 免费黄频网站在线观看国产| 国产精品蜜桃在线观看| 欧美日韩av久久| 日韩欧美精品免费久久| 日日爽夜夜爽网站| 亚洲欧美成人综合另类久久久| 五月伊人婷婷丁香| 亚洲怡红院男人天堂| 国产精品一区二区性色av| 肉色欧美久久久久久久蜜桃| 看免费成人av毛片| 亚洲国产精品999| 久久久国产欧美日韩av| 亚洲精品456在线播放app| 五月天丁香电影| 在线 av 中文字幕| 在现免费观看毛片| 亚洲国产最新在线播放| 女人精品久久久久毛片| h日本视频在线播放| 少妇熟女欧美另类| 国产精品一二三区在线看| 少妇人妻精品综合一区二区| 另类精品久久| 欧美成人午夜免费资源| 中文在线观看免费www的网站| 18禁动态无遮挡网站| 免费观看的影片在线观看| 亚洲人与动物交配视频| 麻豆精品久久久久久蜜桃| 久久99热6这里只有精品| 三级国产精品片| 国产中年淑女户外野战色| 秋霞在线观看毛片| av不卡在线播放| 2021少妇久久久久久久久久久| av女优亚洲男人天堂| 在线观看www视频免费| 日本91视频免费播放| 亚洲丝袜综合中文字幕| 大香蕉久久网| 亚洲av欧美aⅴ国产| 少妇人妻久久综合中文| 9色porny在线观看| 国产精品久久久久成人av| 国产精品伦人一区二区| 中文在线观看免费www的网站| 另类亚洲欧美激情| 人人妻人人澡人人爽人人夜夜| 国产白丝娇喘喷水9色精品| 亚洲国产欧美日韩在线播放 | 日本黄大片高清| 日本av免费视频播放| av又黄又爽大尺度在线免费看| 久久青草综合色| 女性被躁到高潮视频| 女的被弄到高潮叫床怎么办| 秋霞伦理黄片| 99视频精品全部免费 在线| 深夜a级毛片| 国产亚洲午夜精品一区二区久久| 啦啦啦中文免费视频观看日本| 啦啦啦视频在线资源免费观看| 亚洲欧美精品专区久久| 久久精品久久久久久噜噜老黄| 国产一区二区在线观看日韩| 久久久久精品久久久久真实原创| 精品国产一区二区久久| 免费av中文字幕在线| videossex国产| 一本大道久久a久久精品| 建设人人有责人人尽责人人享有的| 观看免费一级毛片| 亚洲欧美日韩东京热| 晚上一个人看的免费电影| 亚洲国产色片| 久久久久久久国产电影| av视频免费观看在线观看| 国产毛片在线视频| 精品国产露脸久久av麻豆| 亚洲欧美成人综合另类久久久| 99九九线精品视频在线观看视频| 久久国内精品自在自线图片| 韩国高清视频一区二区三区| 日韩欧美一区视频在线观看 | 午夜久久久在线观看| 美女内射精品一级片tv| 久久久久久久大尺度免费视频| 精品一区二区三卡| 午夜福利网站1000一区二区三区| xxx大片免费视频| 美女福利国产在线| 欧美 亚洲 国产 日韩一| 在线亚洲精品国产二区图片欧美 | 女性生殖器流出的白浆| 国产精品无大码| 91久久精品国产一区二区三区| 精品久久久精品久久久| 亚洲精品国产av蜜桃| 日韩电影二区| 久久鲁丝午夜福利片| a级毛片在线看网站| 久久精品国产自在天天线| 我要看日韩黄色一级片| 水蜜桃什么品种好| 国产色爽女视频免费观看| 女性生殖器流出的白浆| 少妇人妻一区二区三区视频| 欧美国产精品一级二级三级 | 人体艺术视频欧美日本| 最新中文字幕久久久久| 偷拍熟女少妇极品色| 亚洲欧美日韩另类电影网站| 少妇精品久久久久久久| 99精国产麻豆久久婷婷| 日韩精品有码人妻一区| 天堂8中文在线网| 国产日韩欧美视频二区| 精品一品国产午夜福利视频| 午夜福利网站1000一区二区三区| 美女福利国产在线| 18+在线观看网站| 看非洲黑人一级黄片| 夜夜骑夜夜射夜夜干| 日韩欧美一区视频在线观看 | 久久久国产欧美日韩av| 中文欧美无线码| 午夜老司机福利剧场| 国产欧美日韩精品一区二区| 亚洲av成人精品一二三区| 国产精品熟女久久久久浪| 午夜福利,免费看| www.色视频.com| 精品人妻熟女av久视频| 国产在线男女| 91午夜精品亚洲一区二区三区| 精品久久久久久久久av| 婷婷色综合www| 精品亚洲成国产av| 九九在线视频观看精品| 国产精品人妻久久久影院| 亚洲四区av| 男女无遮挡免费网站观看| 色网站视频免费| 视频区图区小说| 国产高清有码在线观看视频| 国产亚洲一区二区精品| a级一级毛片免费在线观看| 国产永久视频网站| 九色成人免费人妻av| 亚洲欧美一区二区三区国产| 少妇被粗大的猛进出69影院 | 亚洲精品一二三| 男人舔奶头视频| 街头女战士在线观看网站| 黑人高潮一二区| 人妻人人澡人人爽人人| 成年女人在线观看亚洲视频| www.av在线官网国产| 午夜av观看不卡| 日本av手机在线免费观看| 香蕉精品网在线| 一级毛片aaaaaa免费看小| 亚洲欧美一区二区三区黑人 | 国产亚洲一区二区精品| 欧美人与善性xxx| 日本av免费视频播放| 免费观看性生交大片5| 中文字幕免费在线视频6| 色94色欧美一区二区| 日本vs欧美在线观看视频 | 成人免费观看视频高清| 少妇人妻一区二区三区视频| 国产亚洲精品久久久com| 国产毛片在线视频| 国产欧美另类精品又又久久亚洲欧美| 午夜精品国产一区二区电影| 日产精品乱码卡一卡2卡三| 18禁在线无遮挡免费观看视频| 国产在线男女| 777米奇影视久久| 中文字幕制服av| 国产女主播在线喷水免费视频网站| 啦啦啦中文免费视频观看日本| 精品一区二区三卡| 女人精品久久久久毛片| 香蕉精品网在线| 男的添女的下面高潮视频| 少妇猛男粗大的猛烈进出视频| 国产av一区二区精品久久| 精品一区二区免费观看| 久久久久久久大尺度免费视频| 久久久久久久久久久久大奶| 亚洲四区av| 久久鲁丝午夜福利片| √禁漫天堂资源中文www| 内地一区二区视频在线| 哪个播放器可以免费观看大片| 日韩亚洲欧美综合| 国产熟女欧美一区二区| 卡戴珊不雅视频在线播放| 久久国产精品男人的天堂亚洲 | 国产黄频视频在线观看| 热99国产精品久久久久久7| 成年人免费黄色播放视频 | 老女人水多毛片| 免费观看a级毛片全部| 精品人妻熟女av久视频| 在线看a的网站| 少妇猛男粗大的猛烈进出视频| 国产午夜精品一二区理论片| 在线观看三级黄色| 91成人精品电影| 免费观看a级毛片全部| 欧美精品亚洲一区二区| 日本-黄色视频高清免费观看| 亚洲色图综合在线观看| 欧美人与善性xxx| 精品久久久久久久久av| 免费少妇av软件| 看非洲黑人一级黄片| 亚洲精品第二区| 大陆偷拍与自拍| 黄色怎么调成土黄色| 国产淫语在线视频| 亚洲精品乱久久久久久| 成年av动漫网址| 国产亚洲5aaaaa淫片| 五月天丁香电影| 夫妻性生交免费视频一级片| 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| 多毛熟女@视频| 精品人妻一区二区三区麻豆| 国产精品秋霞免费鲁丝片| 天堂俺去俺来也www色官网| 亚洲欧美一区二区三区黑人 | 日韩av不卡免费在线播放| 能在线免费看毛片的网站| 国产在线视频一区二区| 人人妻人人添人人爽欧美一区卜| 97超碰精品成人国产| 国产成人精品婷婷| 丝袜喷水一区| 女人精品久久久久毛片| 十八禁高潮呻吟视频 | 观看免费一级毛片| 七月丁香在线播放| 又爽又黄a免费视频| 久久国产乱子免费精品| 国产精品久久久久久精品古装| 久久免费观看电影| 亚洲欧美中文字幕日韩二区| 久久99一区二区三区| 美女内射精品一级片tv| 久久女婷五月综合色啪小说| 久久国产亚洲av麻豆专区| 91精品一卡2卡3卡4卡| 一级片'在线观看视频| av在线app专区| 五月伊人婷婷丁香| 国产精品蜜桃在线观看| 婷婷色综合大香蕉| 美女视频免费永久观看网站| 哪个播放器可以免费观看大片| 久久久久精品性色| 色5月婷婷丁香| 亚洲综合色惰| 国产精品一区www在线观看| 久久婷婷青草| 五月伊人婷婷丁香| 七月丁香在线播放| 亚洲熟女精品中文字幕| 黑人猛操日本美女一级片| 99热这里只有是精品在线观看| 成年人免费黄色播放视频 | 国产高清有码在线观看视频| 国产高清三级在线| 国产真实伦视频高清在线观看| 91精品伊人久久大香线蕉| 日韩视频在线欧美| 成人黄色视频免费在线看| 亚洲成人手机| 午夜免费观看性视频| 69精品国产乱码久久久| 国产精品熟女久久久久浪| 97超碰精品成人国产| 最黄视频免费看| 在线 av 中文字幕| 欧美人与善性xxx| 少妇人妻 视频| 老司机亚洲免费影院| 免费看不卡的av| 最黄视频免费看| 下体分泌物呈黄色| 国产精品一区二区在线观看99| 国产亚洲午夜精品一区二区久久| 日本黄色片子视频| 插逼视频在线观看| 亚洲av电影在线观看一区二区三区| av线在线观看网站| 久久免费观看电影| 91精品伊人久久大香线蕉| 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 国产免费一区二区三区四区乱码| 国产深夜福利视频在线观看| 国产精品久久久久久久电影| 久久久精品94久久精品| 99热这里只有精品一区| 欧美精品人与动牲交sv欧美| 久久 成人 亚洲| 午夜免费观看性视频| 亚洲欧洲国产日韩| 成年人午夜在线观看视频| 看免费成人av毛片| 亚洲欧洲日产国产| av线在线观看网站| 你懂的网址亚洲精品在线观看| 欧美少妇被猛烈插入视频| 久久精品国产鲁丝片午夜精品| 2022亚洲国产成人精品| 一区二区三区乱码不卡18| 高清视频免费观看一区二区| 国产亚洲91精品色在线| 亚洲人成网站在线播| 中文天堂在线官网| 日日摸夜夜添夜夜爱| 我要看日韩黄色一级片| 精品人妻熟女av久视频| 在线播放无遮挡| 日韩中字成人| 99久国产av精品国产电影| 国产探花极品一区二区| 在线观看三级黄色| 纯流量卡能插随身wifi吗| 亚洲激情五月婷婷啪啪| 亚洲婷婷狠狠爱综合网| 亚洲精华国产精华液的使用体验| 国产成人免费观看mmmm| 天堂俺去俺来也www色官网| av.在线天堂| av国产精品久久久久影院| 日韩电影二区| 精品久久久久久电影网| 日本黄色片子视频| 日本黄大片高清| 午夜福利视频精品| 尾随美女入室| 大码成人一级视频| 成年女人在线观看亚洲视频| 国产精品一区二区在线不卡| 日本黄色日本黄色录像| 久久6这里有精品| 成年女人在线观看亚洲视频| 欧美精品人与动牲交sv欧美| 99视频精品全部免费 在线| 久久久久久伊人网av| 99热6这里只有精品| 人体艺术视频欧美日本| 久久人人爽av亚洲精品天堂| 免费人成在线观看视频色| 亚洲av.av天堂| 青春草国产在线视频| 美女脱内裤让男人舔精品视频| 久久综合国产亚洲精品| 一个人免费看片子| 看非洲黑人一级黄片| 黄色视频在线播放观看不卡| 国产精品.久久久| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲 | 在线观看www视频免费| 制服丝袜香蕉在线| 青春草亚洲视频在线观看| 国产成人精品一,二区| 观看av在线不卡| 亚洲欧美中文字幕日韩二区| 免费av不卡在线播放| 狂野欧美激情性xxxx在线观看| 在线观看一区二区三区激情| 亚洲av成人精品一二三区| 热re99久久精品国产66热6| 午夜福利网站1000一区二区三区| 18禁在线无遮挡免费观看视频| 久久av网站| 多毛熟女@视频| 欧美精品高潮呻吟av久久| 人人妻人人澡人人看| 99热全是精品| 成人毛片60女人毛片免费| 国产精品久久久久久av不卡| 中文资源天堂在线| 男女边吃奶边做爰视频| 中文字幕人妻熟人妻熟丝袜美| 国产极品粉嫩免费观看在线 | 一本久久精品| 免费大片黄手机在线观看| 中文字幕av电影在线播放| 欧美区成人在线视频| 国产片特级美女逼逼视频| 国产黄色免费在线视频| 亚洲国产成人一精品久久久| 免费不卡的大黄色大毛片视频在线观看| 一级毛片aaaaaa免费看小| 亚洲av电影在线观看一区二区三区| 亚洲国产日韩一区二区| 国语对白做爰xxxⅹ性视频网站| 两个人的视频大全免费| 国产69精品久久久久777片| 国内揄拍国产精品人妻在线| 国产免费又黄又爽又色| 欧美少妇被猛烈插入视频| 99国产精品免费福利视频| 美女内射精品一级片tv| 91久久精品电影网| 成人二区视频| 最近最新中文字幕免费大全7| 亚洲丝袜综合中文字幕| 久久久久久久精品精品| 全区人妻精品视频| 97精品久久久久久久久久精品| 欧美日韩在线观看h| 老熟女久久久| 精品久久国产蜜桃| 国产一区二区三区综合在线观看 | 国精品久久久久久国模美| 精品国产露脸久久av麻豆| 女性被躁到高潮视频| 国产亚洲5aaaaa淫片| 亚洲人成网站在线播| 国产一区亚洲一区在线观看| 久久久欧美国产精品| 日本av免费视频播放| 美女视频免费永久观看网站| 丰满人妻一区二区三区视频av| a级一级毛片免费在线观看| 黄色怎么调成土黄色| 最近中文字幕2019免费版| a 毛片基地| 少妇人妻一区二区三区视频| 观看免费一级毛片| 久久影院123| 精品酒店卫生间| 国产精品嫩草影院av在线观看| av在线观看视频网站免费| 中文字幕免费在线视频6| 亚洲精品色激情综合| 在线播放无遮挡| 亚洲成人手机| 国产永久视频网站| 纯流量卡能插随身wifi吗| 国产一区亚洲一区在线观看| 麻豆成人av视频| 大片免费播放器 马上看| 边亲边吃奶的免费视频| 18禁动态无遮挡网站| 国产精品人妻久久久影院| 欧美老熟妇乱子伦牲交| 丰满少妇做爰视频| 男女啪啪激烈高潮av片| 亚洲精品乱码久久久v下载方式| 国产亚洲欧美精品永久| 国产一区二区三区综合在线观看 | 女性被躁到高潮视频| 免费看光身美女| 偷拍熟女少妇极品色| 亚洲精品一二三| 欧美少妇被猛烈插入视频| 亚洲丝袜综合中文字幕| 精品久久久久久久久av| 国产av一区二区精品久久| 成人特级av手机在线观看| 少妇的逼水好多| 伦理电影免费视频| 国产精品不卡视频一区二区| 中国国产av一级| 久久99热这里只频精品6学生| 亚洲无线观看免费| av天堂久久9| 国产精品嫩草影院av在线观看| 少妇高潮的动态图| 精品少妇内射三级| 午夜福利在线观看免费完整高清在| 国产成人aa在线观看| 国产精品偷伦视频观看了| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 丝袜喷水一区| 一级a做视频免费观看| 色5月婷婷丁香| 99久久综合免费| 日本-黄色视频高清免费观看| 亚洲国产色片| 久久久亚洲精品成人影院| 三级国产精品片| 亚洲欧美精品专区久久| 中文字幕制服av| 七月丁香在线播放| av专区在线播放| 黄色怎么调成土黄色| 久久久久久久久久人人人人人人| 女性被躁到高潮视频| 在线观看免费日韩欧美大片 | 另类精品久久| 亚洲精品自拍成人| 亚洲精品中文字幕在线视频 | 一二三四中文在线观看免费高清| 人体艺术视频欧美日本| 男人爽女人下面视频在线观看| freevideosex欧美| 国产精品久久久久久久久免| 欧美日韩在线观看h| 99热这里只有精品一区| 成人国产av品久久久| 日韩av不卡免费在线播放| 99热这里只有是精品在线观看| 精华霜和精华液先用哪个| 免费看av在线观看网站| 国产精品福利在线免费观看| 亚洲av综合色区一区| 少妇人妻一区二区三区视频| 久久久久久久大尺度免费视频| 国产伦精品一区二区三区视频9| 日本91视频免费播放| 九色成人免费人妻av| 国产精品不卡视频一区二区| 久久久久久久精品精品| 亚洲经典国产精华液单| 日韩欧美精品免费久久| 国产精品一区二区性色av| 97精品久久久久久久久久精品| 中文欧美无线码| 内地一区二区视频在线| 免费不卡的大黄色大毛片视频在线观看| 国产淫语在线视频| 久久午夜综合久久蜜桃| 人妻制服诱惑在线中文字幕| 亚洲国产最新在线播放| 交换朋友夫妻互换小说| 99热这里只有是精品在线观看| 久久精品国产自在天天线| 精品亚洲成国产av| 免费av中文字幕在线| 十八禁网站网址无遮挡 | av福利片在线观看| 女性被躁到高潮视频| 久久精品久久久久久噜噜老黄| 国产又色又爽无遮挡免| 春色校园在线视频观看| 国产一区二区在线观看日韩| 国产成人午夜福利电影在线观看| 99久久精品国产国产毛片| 少妇被粗大猛烈的视频| 国产精品人妻久久久久久| av不卡在线播放| 亚洲欧美成人综合另类久久久| 久久亚洲国产成人精品v| 五月天丁香电影| 国产伦精品一区二区三区视频9| 亚洲国产精品999| 亚洲国产精品成人久久小说| 日本wwww免费看| 欧美激情国产日韩精品一区| 国产老妇伦熟女老妇高清| 精品国产一区二区久久| 亚洲欧美成人精品一区二区| 色婷婷久久久亚洲欧美| 99久久精品热视频| 久久久久久久久久成人| 日韩 亚洲 欧美在线| 亚州av有码| 亚洲av二区三区四区| 免费看av在线观看网站| 免费av中文字幕在线|