• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CFD Computation of Added Resistance for KVLCC2 Model in Head Short Waves

    2015-12-13 09:15:46WUChengshengYANDaijunQIUGengyaoNIYang
    船舶力學(xué) 2015年3期

    WU Cheng-sheng,YAN Dai-jun,QIU Geng-yao,NI Yang

    (National Key Laboratory of Science and Technology on Hydrodynamics,China Ship Scientific Research Center,Wuxi 214082,China)

    0 Introduction

    In the last decade,a lot of legislations about the effect of shipping trade on global environment were introduced by many international organizations,e.g.IMO,UN,etc.So many efforts have been focused on the study of the performance of ships operating in seaway.

    The prediction of added resistance of a ship in waves is essential to evaluate the ship performance in seaway.One of the first attempts to obtain the added resistance value of a ship was carried out by Havelock(1942).The next relevant significant contribution to the analytical calculation of the added resistance is developed by Maruo(1957)with a potential flow solution.From then on,a lot of research work has been done for added resistance based on potential flow theory[1].

    According to the classical sea-keeping theories,the energy dissipated of a ship in waves can be attributed to three different components.These three components are:

    (1)The first component obtained from the interference between incident waves which are diffracted when encountering ship hull,and the radiated waves produced by ship motions,es-pecially those caused by heave and pitch.This component is called drifting force.

    (2)The incident waves are also reflected on ship hull,and also interact with the ship radiated waves.This second component is called diffraction effect.

    (3)A‘viscous’effect due to the damping of the vertical motions.

    Traditional calculations and measurements indicate that the drifting force,caused by the ship motions radiated waves,would make the largest contribution to the added resistance,whereas diffraction effects would be the least significant,which is more important for short waves.

    Nowadays,some of the modern ships are very large,for example,a VLCC(Very Large Crude-oil Carrier)will exceed 320 m in length.That means when the VLCC travelling in normal sea states,most of the encountering waves can be considered as short waves.So the prediction of added resistance for ships in short waves is now a hot topic.

    For ships in short waves,diffraction effect is rather important to the added resistance,whereas considered as the least significant and cannot be well modeled(or even neglected)in traditional calculating method based on potential flow theory.On the contrary,ship motion responses in short waves are usually very small,which means the added resistance caused by the ship motions radiated waves will be insignificant.So the traditional potential flow theory based methods will not work well on the prediction of added resistance for very large ships[2].

    CFD method based on the solution of RANSE(Reynolds Averaged Navier-Stokes Equations)may overcome the limitation of the potential flow theory based method with respect to the effects of water viscosity,wave dispersion,nonlinearity and wave breaking.Consequently,the application of RANSE based CFD method in the ship industry is increasing.

    Prediction of flow field around ship hulls using RANSE based CFD method started in the 1980s,and the majority of the studies were initially devoted to ship resistance and flow field prediction in steady state.In the late 1990s,a few sea-keeping computations with CFD had been performed[3].From then on,some efforts have focused on CFD prediction of sea-keeping performance of ships,including ship motions and added resistance[4-7].

    However,there are few published papers on CFD computation of added resistance in short waves.One of the most challenges in the CFD computation is the simulation of short waves with high quality.As we know,waves with high steepness are unstable and short waves with low steepness will be subjected to more time and spatial variation than long waves.Furthermore,short waves will decay excessively in CFD computation due to numerical dissipation,and the additional damping caused by ill-suited meshes and settings will even make the condition worse.

    The research work in this paper focused on the added resistance in short waves.CFD computations of added resistance for KVLCC2 model advancing in regular head short waves were carried out by RANSE based numerical wave tank technology.The computed results were compared with experimental data and showed quite good agreement.The added resistance at different parts was also investigated,and the results indicated that the added resistance is primarily concentrated at the fore-segment,whereas the mid-and aft-segments contribute little to added resistance.

    1 Ship geometry and test cases

    The KVLCC2 model with scale of 44.444 is adopted for the CFD computations.Main particulars of the ships are given in Tab.1.Fig.1 shows the hull geometry of KVLCC2.The depth of the model hull is increased to 0.785 m to avoid water on deck.The model hull is divided into 3 segments for the investigation of added resistance at different parts.Fig.2 shows the segmented hull form.The resistance on each segment was monitored in CFD computations.

    Tab.1 Main particulars of KVLCC2

    Fig.1 Hull geometry of KVLCC2

    Fig.2 Segmented hull form

    The waves used for the computations are given in Tab.2.The CFD computations only cover the range of short waves(λ/LPP=0.20~0.60).The advancing speeds of the model are 0.772 m/s(Fr=0.092)and 1.196 m/s(Fr=0.142),the corresponding full scale ship speeds are 10.0 kns and 15.5 kns,respectively.

    Many experimental studies on added resistance in waves for KVLCC2 have been done by some groups with different scaled models.The majority of the studies covered the range of intermediate and long waves,whereas few studies focused on short waves.Thus Guo and Steen’s experimental study on added resistance of KVLCC2 in short waves[8-9]is quite valuable.In this paper,the experimental data used for the validation of computed results in short waves is referred to Guo and Steen’s study.

    Tab.2 Waves used for computations

    2 Computation method

    2.1 Mathematical model and numerical method

    The CFD computations are performed by solving RANS equations,RNG k-ε two-equation model is employed for the enclosure of the governing equations.The VOF(volume of fluid method)method is adopted for the treatment of nonlinear free surface.The detailed descriptions about the governing equations can be referred to Refs.[6-7].

    The governing equations are discretized by Finite Volume Method(FVM),the secondorder upwind difference scheme was adopted for the convection term and the centric difference scheme for the dissipation term.Multi-grid acceleration and SIMPLE(Semi-Implicit Method for Pressure Linked Equations)algorithms are used for solving the difference equation system.

    The incident waves are generated from the inflow boundary by prescribing a wavy velocity profile.The outgoing waves are dissipated inside an artificial damping zone located at the rear part of the computational domain.It can also be referred to Refs.[6-7]for the details of wave generation and absorption in numerical simulations.

    2.2 Computational domain and boundary conditions

    The origin of the coordinate system for the computational domain locates on the intersection of calm water surface,symmetric plane and vertical-transverse mid-plane of the hull.The computational domain’s extents are:-1.7LPP~3.0LPPin x-direction including damping zones with length of about 1.5LPP,-1.2LPP~1.2LPPin y-direction and-1.2LPP~0.4LPPin z-direction.Only half of the ship hull is used in the computation,thus a‘symmetry’boundary condition is adopted at the center plane of the domain.

    The boundary of the computational domain is composed of inlet boundary,outlet boundary,wall boundary(hull surface),and outer boundary(include bottom,proof and side of the domain).On the inlet boundary,a velocity profile resembling flexible flap wave-maker motions and volume fraction are prescribed.On the outlet boundary,the free surface here is assumed to be calm after the waves pass through the artificial damping zone and the hydrostatic pressure is set.On the surface of ship hulls,the standard wall function is introduced.On the outer boundary,zero stress is specified.

    The computational domain is discretized by H-O type multi-block structural mesh.There are at least 30 cells per wave length in x-direction for the shortest waves,10~20 cells within the region of wave height.The mesh near the bow and stern and around the ship hull is refined locally in order to well solve the complex flow around the hull,while the mesh becomes coarser towards the outer and outlet boundary.The y+is about 50 in general except some areas of bow and stern.Fig.3 shows the computational domain and mesh.

    As ship motion responses in short waves are usually insignificant,the added resistance caused by the ship motions can be neglected.So in CFD computations,the hull is fixed and without motion responses to the incoming waves.

    Fig.3 Computational domain and mesh

    3 Computational results

    3.1 Simulation of short waves

    As mentioned before,one of the most challenges in the CFD computation is the simulation of short waves with high quality.So the simulation results of short waves will be presented firstly.

    The wave patterns of KVLCC2 advancing in regular head waves with wave lengths of 0.2LPP(left)and 0.3LPP(right)are presented in Fig.4.As can be seen from the figure,for wave with λ/LPP=0.20,the wave decays a little when propagating from the inlet boundary to the ship stern,while within the range from ship bow to stern,the wave maintains quite stable and the decay is insignificant.For wave with λ/LPP=0.30,the wave is very stable when propagating from the inlet boundary to the ship stern and the decay can be neglected.Waves will decay quickly after propagating into the damping zone.

    Fig.4 Wave patterns for KVLCC2 advancing in head waves

    The wave in the region occupied by the ship is more important to added resistance than in the whole computational domain.Fig.5 gives the wave profile for wave with λ/LPP=0.20 within the range from ship bow and stern.From the figure we can see that the decay of the wave is insignificant and can be neglected.For longer waves,the decay will be even less.

    Fig.5 Wave profile for wave with λ/LPP=0.20

    The simulation results indicate that the quality of the simulated short waves is quite satisfactory for the computation of added resistance.

    3.2 Added resistance

    The non-dimensional added resistance could be expressed as,

    The added resistance for KVLCC2 in head short waves at Fr=0.092(left)and Fr=0.142(right)computed by CFD method are depicted in Fig.6(solid square points).The experimental data are also plotted in the figure(hollow circular points).

    It can be seen from the figure that the computed results agree with the experimental data quite well.The ship motion responses are insignificant in short waves and hence their contribution to added resistance is negligible.So the added resistance in short waves computed by CFD method is quite accurate even when the model hull is fixed and without motion responses to incoming waves.

    Fig.6 Added resistance computed by CFD method

    Because more and more attentions are paid on the performance of ship operating in seaway,the objective of hull form optimization is turning to improving powering performance in waves now.The primary way to achieve this goal is to minimize the added resistance in waves.

    The added resistance at different parts of the model hull is investigated to provide some guidance to hull form optimization in waves.The computed added resistance for different segments of the hull at Fr=0.092(left)and Fr=0.142(right)is shown in Fig.7(solid points).The experimental data are also presented in the figures(hollow points).

    The figures indicate that the added resistance is primarily concentrated at the fore-segment,whereas the added resistance at the aft-segment is rather small,while the contribution from the mid-segment can be neglected.

    Fig.7 Added resistance at different hull segments

    Fig.8 shows the wave pattern for the KVLCC2 model advancing in head short wave(λ/LPP=0.20).As can be seen from the figure,some strong nonlinear phenomena,such as wave rolling up and wave break near the ship bow can be captured by CFD simulation.

    Fig.8 Wave pattern for KVLCC2 advancing in head wave—bow view(λ/LPP=0.20)

    4 Conclusions

    CFD computations of added resistance for KVLCC2 model advancing in head short waves with different speeds were carried out in this paper.Added resistance at different parts of the ship hull was also investigated by dividing the hull into three segments and monitoring the resistance of each segment in CFD computations.Some conclusions can be drawn according to the analysis of computed results:

    (1)CFD computation can predict added resistance of ship heading in short waves quite accurately even while the model hull is fixed and without motion responses to the incoming waves.

    (2)Added resistance of ship heading in waves is primarily concentrated at the fore-segment,whereas the aft-segment contributes a little to the added resistance,while the contribution from the mid-segment can be neglected.

    (3)Some strong nonlinear phenomena,such as wave rolling up and wave break near the ship bow can also be captured by CFD simulation.

    The research work in this paper indicates that CFD can be an effective tool for the investigation and prediction of added resistance in short waves.

    [1]Pérez Arribas F.Some methods to obtain the added resistance of a ship advancing in waves[J].Ocean Engineering,2007,34:946-955.

    [2]Wu Chengsheng,Lu Jiang,Yan Daijun Bu Shuxia,Qiu Gengyao.A combined viscous and potential method for the computation of added resistance in head waves[C]//Proceeding of the 11th International Conference on Hydrodynamics.Singapore,2014.

    [3]Wilson R,Paterson E,Stern F.Unsteady RANS CFD for naval combatants in waves[C]//Proceedings of the 22nd Symposium on Naval Hydrodynamics.Washington D.C.,USA,1998.

    [4]Hochbaum A C,Vogt M.Towards the simulation of seakeeping and manoeuvring based on the computation of the free surface viscous ship flow[C]//Proceedings of the 24th Symposium on Naval Hydrodynamics.Fukuoka,Japan,2002.

    [5]Luquet R,Gentaz L,Ferrant P,Alessandrini B.Viscous flow simulation past a ship in waves using the SWENSE approach[C]//Proceedings of the 25th Symposium on Naval Hydrodynamics.St.John’s,Newfoundland and Labrador,Canada,2004.

    [6]Wu Chengsheng,Zhu Dexiang,Gu Min.Computation of hydrodynamic forces for a ship in regular heading waves by a viscous numerical wave tank[J].Journal of Ship Mechanics,2008,12(2):168-179.

    [7]Wu Chengsheng,Zhu Dexiang,Gu Min.Development of a viscous numerical wave tank and simulation of wave induced motions for a ship in regular head waves[C]//Proceeding of the 8th International Conference on Hydrodynamics.Nantes,France,2008.

    [8]Guo B J,Steen S.Experiment on added resistance of a ship moving in short waves[C]//Proceedings of the 28th Symposium on Naval Hydrodynamics.California,USA,2010.

    [9]Guo B J,Steen S.Evaluation of added resistance of KVLCC2 in short waves[J].Journal of Hydrodynamics,2011,23:709-722.

    欧美人与性动交α欧美软件| 一二三四社区在线视频社区8| 在线观看免费高清a一片| h视频一区二区三区| 天天躁日日躁夜夜躁夜夜| 99riav亚洲国产免费| 大香蕉久久网| 欧美 日韩 精品 国产| 人人妻人人添人人爽欧美一区卜| 最近最新免费中文字幕在线| 精品国产一区二区三区四区第35| 国产精品电影一区二区三区 | 日本vs欧美在线观看视频| 搡老乐熟女国产| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 无人区码免费观看不卡 | 亚洲伊人色综图| 精品一区二区三区四区五区乱码| 日韩中文字幕欧美一区二区| 十分钟在线观看高清视频www| 欧美日本中文国产一区发布| 曰老女人黄片| 777米奇影视久久| 天天操日日干夜夜撸| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品香港三级国产av潘金莲| 9色porny在线观看| 久久中文字幕一级| 国产老妇伦熟女老妇高清| 亚洲伊人久久精品综合| 日韩视频一区二区在线观看| 丝瓜视频免费看黄片| 两个人看的免费小视频| 男女边摸边吃奶| 日韩精品免费视频一区二区三区| 欧美日韩精品网址| 中文字幕最新亚洲高清| 国产精品成人在线| 欧美午夜高清在线| 99久久人妻综合| 岛国在线观看网站| 最新在线观看一区二区三区| 国产主播在线观看一区二区| 国产黄频视频在线观看| 一本—道久久a久久精品蜜桃钙片| 飞空精品影院首页| 免费av中文字幕在线| 美女高潮到喷水免费观看| 丝袜在线中文字幕| 国产精品欧美亚洲77777| 久久性视频一级片| 欧美激情高清一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产精品1区2区在线观看. | 中文字幕高清在线视频| 日韩中文字幕视频在线看片| 欧美乱妇无乱码| 亚洲一码二码三码区别大吗| 欧美黄色片欧美黄色片| 在线亚洲精品国产二区图片欧美| 欧美国产精品一级二级三级| 亚洲一区二区三区欧美精品| 捣出白浆h1v1| 97人妻天天添夜夜摸| 高清在线国产一区| 国产成人精品无人区| 老司机靠b影院| 热re99久久国产66热| 嫁个100分男人电影在线观看| 国产av一区二区精品久久| 国产精品免费一区二区三区在线 | www.999成人在线观看| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区在线臀色熟女 | 国产精品熟女久久久久浪| 一进一出抽搐动态| 大香蕉久久网| 精品国产超薄肉色丝袜足j| 国产麻豆69| 亚洲成av片中文字幕在线观看| 超碰成人久久| 亚洲国产av新网站| 一个人免费在线观看的高清视频| 999久久久精品免费观看国产| 国产精品亚洲av一区麻豆| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频| 不卡av一区二区三区| 中文字幕人妻熟女乱码| 中文字幕人妻丝袜一区二区| 婷婷成人精品国产| 国产在视频线精品| 丰满迷人的少妇在线观看| 色婷婷av一区二区三区视频| 少妇裸体淫交视频免费看高清 | 国产精品影院久久| 99久久99久久久精品蜜桃| 2018国产大陆天天弄谢| 中亚洲国语对白在线视频| 欧美黑人欧美精品刺激| 一区二区三区激情视频| 午夜日韩欧美国产| 无人区码免费观看不卡 | 亚洲天堂av无毛| 欧美日本中文国产一区发布| 精品一品国产午夜福利视频| 亚洲伊人色综图| 亚洲精品av麻豆狂野| 成人国语在线视频| 这个男人来自地球电影免费观看| 免费女性裸体啪啪无遮挡网站| 日韩欧美三级三区| 成人av一区二区三区在线看| 啦啦啦视频在线资源免费观看| av又黄又爽大尺度在线免费看| 日韩大码丰满熟妇| 精品亚洲乱码少妇综合久久| 9热在线视频观看99| av电影中文网址| 天天躁日日躁夜夜躁夜夜| 婷婷丁香在线五月| 国产区一区二久久| 精品一品国产午夜福利视频| 少妇 在线观看| 99精品在免费线老司机午夜| 中亚洲国语对白在线视频| 露出奶头的视频| 精品视频人人做人人爽| 一边摸一边抽搐一进一出视频| 欧美精品av麻豆av| 日韩大码丰满熟妇| 国产精品久久久av美女十八| 国产一区二区三区视频了| 国产1区2区3区精品| 超色免费av| 一本一本久久a久久精品综合妖精| 麻豆成人av在线观看| 精品国内亚洲2022精品成人 | 国产成人精品无人区| 国产淫语在线视频| 久久久久久久大尺度免费视频| 丰满饥渴人妻一区二区三| 亚洲视频免费观看视频| 欧美国产精品va在线观看不卡| 黄片播放在线免费| 国产麻豆69| 男人操女人黄网站| 欧美精品人与动牲交sv欧美| 日本黄色日本黄色录像| kizo精华| 午夜福利乱码中文字幕| 日韩视频在线欧美| 欧美精品高潮呻吟av久久| 少妇 在线观看| 黄色视频在线播放观看不卡| 一级毛片精品| 老司机午夜福利在线观看视频 | 一级,二级,三级黄色视频| 日韩欧美三级三区| 考比视频在线观看| 精品一品国产午夜福利视频| 日韩免费av在线播放| 99国产精品99久久久久| √禁漫天堂资源中文www| 久久久精品国产亚洲av高清涩受| 国产精品美女特级片免费视频播放器 | 亚洲精品一二三| 日韩 欧美 亚洲 中文字幕| 丁香六月天网| 国产xxxxx性猛交| 成年动漫av网址| 搡老岳熟女国产| tube8黄色片| 巨乳人妻的诱惑在线观看| 精品亚洲成国产av| 97在线人人人人妻| 91成人精品电影| 天天躁夜夜躁狠狠躁躁| 亚洲全国av大片| 91字幕亚洲| 欧美 日韩 精品 国产| 伊人久久大香线蕉亚洲五| 日韩欧美国产一区二区入口| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩一区二区三区在线| 婷婷成人精品国产| 午夜视频精品福利| 黄色 视频免费看| 欧美+亚洲+日韩+国产| 极品少妇高潮喷水抽搐| 日本欧美视频一区| 午夜福利一区二区在线看| avwww免费| 国产欧美日韩精品亚洲av| 成在线人永久免费视频| 国产精品av久久久久免费| 国产福利在线免费观看视频| 亚洲精品自拍成人| 久久午夜亚洲精品久久| 亚洲成a人片在线一区二区| 午夜成年电影在线免费观看| 高清在线国产一区| 久久99热这里只频精品6学生| 久久精品亚洲熟妇少妇任你| 黑人巨大精品欧美一区二区mp4| 侵犯人妻中文字幕一二三四区| 蜜桃国产av成人99| 亚洲全国av大片| 欧美在线黄色| 少妇被粗大的猛进出69影院| 日本精品一区二区三区蜜桃| 女人久久www免费人成看片| 狠狠婷婷综合久久久久久88av| 久久久久久久精品吃奶| 十八禁人妻一区二区| 国产精品 国内视频| 国产真人三级小视频在线观看| av线在线观看网站| 久久久精品94久久精品| 18禁黄网站禁片午夜丰满| 精品国产乱码久久久久久男人| 亚洲九九香蕉| 国产成人精品无人区| 99香蕉大伊视频| 热99re8久久精品国产| 亚洲国产中文字幕在线视频| 日日爽夜夜爽网站| 美女国产高潮福利片在线看| 久久久久久久大尺度免费视频| 久久国产精品男人的天堂亚洲| 亚洲精品美女久久av网站| 久久中文字幕一级| 1024视频免费在线观看| 国产一区二区在线观看av| 国产成人啪精品午夜网站| 丰满迷人的少妇在线观看| 欧美 亚洲 国产 日韩一| 中文亚洲av片在线观看爽 | 欧美成人午夜精品| 亚洲 国产 在线| 国产主播在线观看一区二区| 91成年电影在线观看| 欧美精品人与动牲交sv欧美| 日韩一卡2卡3卡4卡2021年| 高清在线国产一区| 99九九在线精品视频| 亚洲精品国产区一区二| 97在线人人人人妻| 亚洲成av片中文字幕在线观看| 丝袜美腿诱惑在线| 最近最新免费中文字幕在线| 国产精品美女特级片免费视频播放器 | 国产国语露脸激情在线看| 国产区一区二久久| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情极品国产一区二区三区| 人人妻人人爽人人添夜夜欢视频| 日韩熟女老妇一区二区性免费视频| 深夜精品福利| 免费高清在线观看日韩| 天天添夜夜摸| 99riav亚洲国产免费| 亚洲免费av在线视频| 欧美精品av麻豆av| 国产亚洲精品一区二区www | 久久99热这里只频精品6学生| 高清欧美精品videossex| 伦理电影免费视频| 国产一区二区 视频在线| 免费在线观看日本一区| 免费在线观看视频国产中文字幕亚洲| 免费少妇av软件| 一区二区三区国产精品乱码| 国产精品 欧美亚洲| 黑丝袜美女国产一区| 精品福利永久在线观看| 最黄视频免费看| 亚洲第一青青草原| 极品教师在线免费播放| 日韩大码丰满熟妇| 老司机午夜十八禁免费视频| 最新美女视频免费是黄的| 亚洲午夜理论影院| 精品国产亚洲在线| tube8黄色片| 岛国毛片在线播放| 波多野结衣一区麻豆| 最黄视频免费看| 中文字幕av电影在线播放| 黄色视频在线播放观看不卡| 精品人妻在线不人妻| 中文字幕另类日韩欧美亚洲嫩草| 久久性视频一级片| 777米奇影视久久| 热re99久久国产66热| 亚洲欧美激情在线| 免费少妇av软件| 欧美日韩中文字幕国产精品一区二区三区 | 日本av手机在线免费观看| 国产精品一区二区精品视频观看| 亚洲少妇的诱惑av| 91精品三级在线观看| 免费观看人在逋| 久久性视频一级片| 伦理电影免费视频| 欧美 亚洲 国产 日韩一| 国产深夜福利视频在线观看| 丁香欧美五月| 久久国产精品大桥未久av| 如日韩欧美国产精品一区二区三区| 日韩中文字幕视频在线看片| 免费一级毛片在线播放高清视频 | 动漫黄色视频在线观看| 久久毛片免费看一区二区三区| 俄罗斯特黄特色一大片| 欧美日韩视频精品一区| 制服人妻中文乱码| 亚洲欧美精品综合一区二区三区| 亚洲成人免费av在线播放| 国产av精品麻豆| 国产精品美女特级片免费视频播放器 | 亚洲五月色婷婷综合| 美女午夜性视频免费| 男女之事视频高清在线观看| 色婷婷av一区二区三区视频| 亚洲情色 制服丝袜| 国产精品一区二区精品视频观看| 亚洲第一av免费看| 丝袜美腿诱惑在线| e午夜精品久久久久久久| 亚洲av片天天在线观看| 欧美日韩亚洲高清精品| 亚洲精品美女久久久久99蜜臀| 电影成人av| 2018国产大陆天天弄谢| 一边摸一边抽搐一进一出视频| 国产一区有黄有色的免费视频| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人看| 丁香六月欧美| 午夜精品国产一区二区电影| 亚洲av美国av| 黑人巨大精品欧美一区二区蜜桃| 热99久久久久精品小说推荐| 视频在线观看一区二区三区| 精品午夜福利视频在线观看一区 | 真人做人爱边吃奶动态| 亚洲五月色婷婷综合| 热99久久久久精品小说推荐| 亚洲国产欧美一区二区综合| 成年女人毛片免费观看观看9 | 免费高清在线观看日韩| 欧美日韩视频精品一区| 色尼玛亚洲综合影院| 在线十欧美十亚洲十日本专区| 国产日韩欧美亚洲二区| 国产精品二区激情视频| 国产亚洲精品久久久久5区| 中文欧美无线码| 两个人看的免费小视频| 国产精品99久久99久久久不卡| av在线播放免费不卡| 久久中文字幕一级| 精品久久久久久电影网| 国产免费视频播放在线视频| 欧美亚洲日本最大视频资源| 热99久久久久精品小说推荐| 电影成人av| 多毛熟女@视频| 精品福利观看| av免费在线观看网站| av线在线观看网站| 精品一区二区三卡| 国产成人精品在线电影| 最黄视频免费看| 少妇猛男粗大的猛烈进出视频| 亚洲av成人不卡在线观看播放网| 老司机影院毛片| 十分钟在线观看高清视频www| 王馨瑶露胸无遮挡在线观看| 亚洲精品在线观看二区| 久久国产精品大桥未久av| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美一区二区三区久久| 色在线成人网| 在线看a的网站| 午夜成年电影在线免费观看| 国产视频一区二区在线看| 国产av一区二区精品久久| 丝袜人妻中文字幕| 国产在线精品亚洲第一网站| 欧美激情久久久久久爽电影 | 久久狼人影院| 久久久久久久精品吃奶| 国产男女内射视频| 一二三四在线观看免费中文在| 午夜福利一区二区在线看| 亚洲人成电影观看| 国产成人av激情在线播放| 蜜桃国产av成人99| 国产成人精品在线电影| 日韩大片免费观看网站| 曰老女人黄片| 亚洲第一青青草原| 别揉我奶头~嗯~啊~动态视频| 中文字幕高清在线视频| www.自偷自拍.com| 狠狠婷婷综合久久久久久88av| 亚洲国产中文字幕在线视频| 亚洲欧美精品综合一区二区三区| 国产精品久久久人人做人人爽| 成人手机av| 国产成人精品久久二区二区免费| 亚洲av成人不卡在线观看播放网| 51午夜福利影视在线观看| 成年女人毛片免费观看观看9 | 美女主播在线视频| 美国免费a级毛片| 久久狼人影院| 久久精品亚洲av国产电影网| 亚洲中文日韩欧美视频| 国产淫语在线视频| 18在线观看网站| 一级毛片精品| 国产有黄有色有爽视频| 两人在一起打扑克的视频| 国产精品熟女久久久久浪| cao死你这个sao货| 99热国产这里只有精品6| 在线观看舔阴道视频| 欧美黑人精品巨大| 成人黄色视频免费在线看| 成人精品一区二区免费| 国产一区有黄有色的免费视频| 99riav亚洲国产免费| 精品少妇内射三级| 黑人巨大精品欧美一区二区蜜桃| 大香蕉久久网| 汤姆久久久久久久影院中文字幕| 精品熟女少妇八av免费久了| 人人妻人人澡人人看| 午夜久久久在线观看| 一级毛片电影观看| 国产高清videossex| 每晚都被弄得嗷嗷叫到高潮| 天堂中文最新版在线下载| 首页视频小说图片口味搜索| 国产1区2区3区精品| www.自偷自拍.com| 夜夜爽天天搞| 99精品在免费线老司机午夜| 天天影视国产精品| 亚洲一区二区三区欧美精品| 青青草视频在线视频观看| 国产精品久久久久久精品古装| 中文字幕人妻丝袜制服| 欧美国产精品一级二级三级| 亚洲熟女毛片儿| 成人亚洲精品一区在线观看| 国产97色在线日韩免费| 亚洲欧美激情在线| 国产精品一区二区在线观看99| 老司机福利观看| 免费在线观看影片大全网站| 天堂中文最新版在线下载| av天堂久久9| 精品亚洲乱码少妇综合久久| 最近最新免费中文字幕在线| xxxhd国产人妻xxx| 一个人免费看片子| 又大又爽又粗| 99精品在免费线老司机午夜| 国产又色又爽无遮挡免费看| 香蕉国产在线看| 亚洲午夜理论影院| 美女高潮喷水抽搐中文字幕| 国产单亲对白刺激| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲日产国产| 亚洲全国av大片| 天天添夜夜摸| 亚洲情色 制服丝袜| 精品亚洲乱码少妇综合久久| 精品福利永久在线观看| 日本av手机在线免费观看| 精品国产一区二区三区四区第35| 男人操女人黄网站| 亚洲自偷自拍图片 自拍| 天堂动漫精品| 国产激情久久老熟女| 丝袜在线中文字幕| 免费观看av网站的网址| 正在播放国产对白刺激| 国产精品影院久久| 欧美日韩成人在线一区二区| 高清欧美精品videossex| 亚洲精品美女久久av网站| 777米奇影视久久| 精品一区二区三区视频在线观看免费 | 久久人人97超碰香蕉20202| 18禁美女被吸乳视频| 日日摸夜夜添夜夜添小说| 一区二区日韩欧美中文字幕| av福利片在线| 国产亚洲av高清不卡| 午夜福利在线免费观看网站| 黄色a级毛片大全视频| 久久精品熟女亚洲av麻豆精品| 人人妻人人澡人人看| 在线观看www视频免费| 69av精品久久久久久 | 国产精品二区激情视频| 国产男女内射视频| 国产淫语在线视频| 精品久久久久久电影网| 不卡一级毛片| 久久精品人人爽人人爽视色| 欧美精品av麻豆av| 国产成人系列免费观看| 国产精品秋霞免费鲁丝片| 亚洲精品一卡2卡三卡4卡5卡| 99国产综合亚洲精品| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 免费不卡黄色视频| 蜜桃国产av成人99| 久久天躁狠狠躁夜夜2o2o| 欧美性长视频在线观看| av有码第一页| xxxhd国产人妻xxx| 另类亚洲欧美激情| 亚洲成a人片在线一区二区| 999精品在线视频| 最新的欧美精品一区二区| 老司机亚洲免费影院| 欧美日本中文国产一区发布| 国产人伦9x9x在线观看| avwww免费| 成年女人毛片免费观看观看9 | 精品第一国产精品| 日韩欧美一区视频在线观看| 老司机午夜福利在线观看视频 | 国产精品免费一区二区三区在线 | 久久中文字幕一级| 少妇猛男粗大的猛烈进出视频| 国产精品免费一区二区三区在线 | 久久中文字幕一级| 亚洲国产欧美网| 19禁男女啪啪无遮挡网站| 国产片内射在线| 男女无遮挡免费网站观看| 欧美黄色淫秽网站| 成人国产一区最新在线观看| 欧美乱妇无乱码| 亚洲精品在线美女| 国产成人影院久久av| 久久国产精品影院| 亚洲七黄色美女视频| 成人永久免费在线观看视频 | 人人妻人人添人人爽欧美一区卜| 另类亚洲欧美激情| 黑人猛操日本美女一级片| 久久狼人影院| 国产男女内射视频| 国产又爽黄色视频| 老司机福利观看| av在线播放免费不卡| 欧美中文综合在线视频| 精品视频人人做人人爽| 亚洲avbb在线观看| 国产高清激情床上av| 免费av中文字幕在线| 久久精品国产亚洲av香蕉五月 | 女人精品久久久久毛片| av天堂在线播放| 国产一区二区在线观看av| 午夜免费成人在线视频| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 亚洲伊人久久精品综合| 99久久人妻综合| 久久久精品国产亚洲av高清涩受| 亚洲精品在线观看二区| 国产精品亚洲av一区麻豆| 精品亚洲成a人片在线观看| 国产精品秋霞免费鲁丝片| 国产男靠女视频免费网站| 操美女的视频在线观看| 色在线成人网| 久久久久国产一级毛片高清牌| 日本欧美视频一区| 亚洲综合色网址| 欧美黑人精品巨大| 亚洲欧洲精品一区二区精品久久久| 1024香蕉在线观看| 黄色a级毛片大全视频| 国产精品国产av在线观看| 午夜成年电影在线免费观看| 另类亚洲欧美激情| 欧美久久黑人一区二区| 亚洲成av片中文字幕在线观看| 脱女人内裤的视频| 亚洲精品国产精品久久久不卡| 国产99久久九九免费精品| 91成年电影在线观看| 亚洲五月婷婷丁香| 亚洲欧美激情在线| 日本av免费视频播放| 亚洲 国产 在线| 人人妻人人澡人人看| 亚洲美女黄片视频| 亚洲国产中文字幕在线视频| 欧美午夜高清在线|