• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification Method for Exciting Force Source Inside Underwater Structure Based on PSO_GA

    2015-12-12 08:52:08XIAOYanSHANGDejiang
    船舶力學(xué) 2015年3期

    XIAO Yan,SHANG De-jiang

    (a.Acoustic Science and Technology Laboratory;b.College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China)

    0 Introduction

    In the underwater acoustic domain,there are many noise source identification methods,such as method based on the multiple input/output model[1-2],adaptive noise cancellation method[3],power flow analysis[4],system identification method based on state space[5],and blind signal processing technology[6-8].In addition,sound intensity measurement method[9]and acoustic holography technology[10-12]are also widely applied to underwater structure noise source identification.The two methods are valid to identify the underwater sound noise.But the measurement requirements are relatively high,and the effects of the sound field boundary condition on the identification accuracy and stability are very huge[12].Most important is that these two noise source identification technologies are only based on the surface source strength of the structure but not the internal exciting force sources inside the structure.Other identification methods for the exciting force sources are most based on measurement results of the force sources signals which are hardly to be obtained accurately.In view of the identification method for underwater elastic structure exciting force source,a new matched field processing(MFP)method is proposed.

    As an acoustic signal processing method,MFP technology is always the research hotspot.In recent years,the MFP technology is widely used in underwater target detection,passive positioning,the marine environment acoustic parameter inversion and other application aspects[13].When MFP technology is used for underwater structure noise source identification,the actual sound field measurement results and the model predicted results are matched processing.And the predict result which is closest to the actual result is regarded as the estimated value of the actual sound field.Then,the location,contribution and other information are obtained to identify the exciting force sources inside the underwater structure.Comparing with the NAH technology or the sound intensity measurement method,the selection for measurement points is more flexible.The design and the manufacture of the measuring array are more easily.And more,the purpose of this MFP identification method for exciting force source is to sort the contribution for the sound field of each exciting force sources inside the structure,but not the surface source strength of the structure.

    1 The basic principle of exciting force source identification by MFP

    In the MFP identification for underwater elastic structure exciting force source,the underwater structure and acoustic field are considered as a‘channel’,the spectrum characteristics of the exciting force source are seemed as‘input’.The surface vibration characteristics or the sound radiation characteristics of the underwater structure can be seemed as‘output’[14].The identification process can be mainly divided into two parts:the generalized copy field prediction and matched search.The sound pressures,vibrations,sound radiation power,or the acoustic radiation efficiency can be used as the quantities to be matched.They are collectively referred to generalized copy field.The generalized copy field is established by the numerical calculated result of the transfer function.Taken the sound pressure copy field as example,the specific identification method is as follows:

    Step1:Building the structure numerical model

    According to the actual underwater elastic structure,a finite element model is built.It is assumed that there are n exciting force sources inside the model,and there are m(m≥n)measurement points in the sound field.The unit frequency response function of i-th exciting force source is marked as Fi(1≤i≤n),the sound pressure of j-th(1≤j≤m)measurement point is marked as Pj,and the sound pressure transfer function from i-th unit exciting force source to j-th measurement point is marked as Hij.So Pjcould be calculated by the following equation:

    where Δiis the source strength of the i-th exciting force source.

    Step 2:Calculating the copy field of sound pressure transfer function

    The sound pressure transfer function Hijis numerical calculated,and then the total sound pressure transfer function at the j-th measurement point Hican be expressed as follows:

    where δiis the source strength proportion coefficient of the i-th source,0≤δi≤1.

    From equation(1)and equation(2),it can be seen that the relationship of δiand Δiis as follows:

    The copy field is constituted by all the total transfer functions:

    Step 3:Constructing the objective function

    When the copy field is matched with sound pressure measurement result,the measurement result and copy field are nearly in phase.Thus,the objective function for matching processing is constructed as follows:

    Step 4:Searching for the optimal source strength

    The optimal total sound pressure transfer function Hjis determined by optimal searching result ofwhich makes the corresponding FPjis most closed to zero.Then the source strength Δiis calculated by equation(3).Both the working condition and the source strength of each source can be determined.

    The flow chart of the matched processing is shown in Fig.1.

    Fig.1 The flowchart of exciting force source identification by MFP

    2 The principle of the particle swarm optimization_genetic algorithm

    Particle swarm optimization algorithm(PSO)was put forward by Dr.Eberhart and Dr.Kennedy.The algorithm is an evolutionary computation technique based on the swarm intelligence method[15].The system is initialized to a group of random solutions,and then the optimal value is searched by iterative method.The searching is simply following the optimal particles in the solution space.The advantage of the algorithm is that it can be easily implemented and with an intelligence background.Therefore,the algorithm is suitable for scientific research and especially for engineering application.

    PSO algorithm is a well global optimization algorithm.It is mainly used for optimizing complex nonlinear functions,and can also be used to solve combinatorial optimization problems.Searching the extreme value of the objective function as formula(5)is actually an extreme value optimization problem for nonlinear function.Thus,the PSO algorithm is used to match searching the exciting force source strengths.In the optimization process,as the particle swarm is closer to the optimal particle,its speed is smaller.So the particle swarm has a strong homoplasy,and it is easily fallen into local minimum point[16].In order to enhance the global search ability,the PSO algorithm is combined with the genetic algorithm in this paper[17-19].

    The matching search process is as follows:

    ①Take the weights of the response function δ1,δ2,…,δnas particles,so the dimension of each particle is as same as the number of the exciting force sources.The variables are defined as follows:

    x:the current positions of the particles;?x:the particles fitness at the current positions;xbest:the optimum positions of the particles in current iteration process;?xbest:the particles fitness at the optimum positions in current iteration process;gbest:the global optimum positions of the particles;?gbest:the particles fitness at the global optimum positions.

    ②Initialize the positions of the particles x0,and then calculate the fitness ?x0.The fitness of each particleis calculated by the following formula:

    where M is the number of the particles in the particle swarm.FPjis as formula(5).

    ④Update the particles velocities and the positions by the equations as follows:

    where k=1,2,…,N,N is the total iteration numbers.is the d-th dimension position component of particles i in k-th iteration process.is the d-th dimension velocity component of particles i in k-th iteration process.η1and η2are two random numbers inc1is the self acceleration constant of the particles,and c2is the global acceleration constant of the particles.is the d-th dimension component of the optimum positions in the k-1-th iteration process.is the d-th dimension component of the global optimum positions.w is the inertia weight,the coefficient to maintain the original particle velocity.Because the linear adjusting strategy for the inertia weight is simple and intuitive,the inertia weight is calculated by the linear gradient strategy:

    where max w is the maximum value of inertia weight,min w is the minimum value of inertia weight.

    ⑥Estimate that whether the algorithm is fell into the local extreme value,the judgment formula is as follows:

    If the algorithm is fell into the local extreme value,choose a positionwhich fitness sort is in front,two optional positionsandAnd then the crossover mutation is operated as the following formula:

    After the variation,repeat step(5)until that the algorithm is not fell into local extreme value.

    ⑦Estimate that whether the algorithm could achieve the specified number of iterations or achieved the specified fitness value.If yes,the search process is over,the optimal positions and the corresponding fitness value are output.Otherwise,return to step④until achieve the maximum iteration number,or meet the requirements of fitness value.

    3 Simulation analysis results

    In order to verify the effectiveness of the PSO_GA for structure exciting force source identification,the algorithm is simulated in different conditions.A multi-excitation underwater single cylinder shell is established as the physical model.The finite element method(FEM)and boundary element method(BEM)are used in this paper to forecast acoustic radiation in the sound field and establish the generalized copy field of sound pressure transfer function.The interior medium of the structure is air and exterior medium is the infinite water.

    The length of the shell is 1 m,the radius is 0.08 m,the thickness is 3mm,and the thickness of both end covers are 12 mm.The material parameters:Young’s modulus E=2.06×1011N/m2,Poisson’s ratio σ=0.3,density ρ=7 800 kg/m3.The fluid density ρ0=1 000 kg/m3,sound velocity v=1 500 m/s.

    Take the model geometric center as the origin of coordinate,and the length direction as z axis.Calculate the sound pressure transfer functions from the exciting force source to the sound field point in the case that the source strength is 1 N and the force direction is radial outward.The research field points are distributed on a cylindrical surface which geometric center is consistent with the model.The radius of the cylindrical surface is 0.3 m,and the length of the cylindrical surface is 1.5 m.The copy field{}H for exciting force source matching analysis is consisted of the transfer functions at all the chosen research points.

    Marked the algorithm threshold value as tc,so the algorithm terminates condition is:

    The simulation conditions are as follows:

    tc=0.000 1°,M=10,N=800,c1=1.49,c2=1.49,maxw=0.94,minw=0.4,fk=1.2,ζ=50%,and R=1.

    It is supposed that there are four exciting force sources in the shell.The source strengths are separately marked as Δ1,Δ2,Δ3,and Δ4.The locations of the four sources areThe matched searching for the source strengths is carried out in different exciting force combination conditions.The number of the particles in one swarm M is 10,the number of iterations N is 800.The simulation results in different SNR(noise is additive)conditions are shown in Tab.1.

    Tab.1 Simulation results of matched processing for the exciting force source

    Continue Tab.1

    As seen from Tab.1,the proportion coefficient of each exciting force source can be accurately searched by PSO_GA.The errors of source strength identification results are much less than 1%.As the SNR increasing,the accuracy is improving.When the SNR is larger than 40 dB,the search results are almost consistent with the default theoretical values.

    The searing accuracy and times are analyzed in different threshold value conditions.The SNR is set as 40 dB.The default theoretical source strengths are Δ1=0.15,Δ2=0.25,Δ3=0.30,and Δ4=0.30.The algorithm threshold value tcis from 0.1°×10-2to 0.1°×10-5.The mean errors of the repeated 5 times simulations are shown in Fig.2,and the searing times are shown in Fig.3.

    Fig.2 The searching accuracy in different threshold value conditions

    Fig.3 The searching times in different threshold value conditions

    As shown in the figures,the searching accuracy of the algorithm is improving and the searching time of the algorithm is increasing as the algorithm threshold value tcdecreasing.When tc<0.1°×10-3,the search results are almost consistent with the default theoretical values,and the searching times are tended to be stable.Therefore,the algorithm threshold value tcshould be considered with the actual problem.

    4 The experiment results analysis

    In order to verify the efficiency of the identification technology by MFP,the radiation sound pressures of a cylinder shell have been measured in an anechoic tank.The parameters of the measurement model are as the same as the numerical simulation model.The length of the elastic cylinder shell is 1 m,and the diameter is 0.08 m.There are two composite longitudinal vibrators inside the shell used for exciting force sources.The locations of the sources are as follows:

    Fig.4 The scheme of the exciting force sources inside the shell

    The shell is installed on the slewing arrangement in the anechoic tank,vertically put into the water.The geometric center of the shell is located at 2 m subsurface.The hydrophone array is vertically put into the water too.The array is composed of 12 hydrophones,the length of the array is 1.65 m,and the distance between the adjacent hydrophones is 0.15 m.The sound absorption materials could not be placed on the water surface above the shell and the hydrophone array,so the influence of the surface interference could not be ignored.

    In order to ensure that difference of the direct sound pressure and the surface reflect sound pressure are more than 15 dB,the path difference of the direct sound and the reflect sound is approximately 6.Therefore,the distance form the array to the shell geometric center is 0.5 m,and the distance between the top hydrophone and the water surface is 1.25 m.

    Using the two signal channels of the signal generation system to control the exciting force sources respectively,the two signals are switched in two power amplifiers in same type.The enlargement factors of the two power amplifiers are consistent during the measurement process.And it is must be sure that the SNR is more than 30 dB.The shell is rotated 15°every time,and the number of the times is 24.Then the sound pressures on a cylindrical surface whose radius is 0.5 m are measured.The sound pressure transfer function copy field is consisted of the measurement results when the two force sources are exciting separately.

    The source strengths are searched by PSO_GA.The number of particles in one swarm M=10,and the max iteration number N=500.The algorithm terminates threshold value tc=0.01.The other conditions are as the same as the simulation condition.

    The measurement results are matched processing with the copy field to obtain the source strength proportion coefficient.Then,the sound field is forecasted by the matched searching resultsThe partial searched results are shown in Tab.2.

    Tab.2 Searched results of the source strength proportion coefficient

    Continue Tab.2

    The measurement points on the circles at different depths parallel to xoy plane are taken as the research points.The radiation sound pressures forecasted results at frequency 7 000 Hz are compared with the measurement results as Fig.5.

    Fig.5 The comparison results at the condition that f=7 000 Hz

    As it can be seen from Fig.5,the forecasted results are close to the measurement results,but there are still prediction errors which can not be ignored.Therefore,the radiation sound power of the model is analyzed,the results is as follows.

    From the Fig.6,the radiation sound power measurement results are almost the same with the forecasted results.Therefore,this method is very effective to identify and analyze the exciting force source strength inside the underwater structure.

    Fig.6 The comparison results of the sound power

    However,it must be clear that,the copy field used in the matched searching process is actually the radiation sound field measurement results when each exciting force source is working separately.If the copy field is consisted of the numerical simulation results,the higher numerical forecasting accuracy of the structure vibration and the radiation sound field are required.

    5 Conclusions

    The particle swarm optimization algorithm based on the mutation law of genetic algorithm is applied for searching the optimization force source strengths.The simulation analysis is taken in different conditions.And more,the feasibility of this algorithm is verified by the analysis results of measurement data.Both the simulation results and the experiment results show that:if both SNR and the algorithm terminate conditions are meet the requirements,the accuracy and efficiency are very high.And the sound field can be well forecasted by the matched searching results.Because the measurement requirements are not very strictly,this identification technology proposed in this paper will have very good prospects.

    [1]Zhang Baocheng,Xu Xuexian.Method of analysis for quantitative estimation of contribution of submarine noise sources[J].Journal of Ship Mechanic,1997,1(1):57-66.

    [2]Chakravorty P k.Identification of self noise sources in a ship[J].Naval Engineers Journal,1990,102:67-69.

    [3]Jiang Guojian,Ren Keming,Ma Jie,Wang Huaiying.Estimating and rejecting the main self-noise of sonar-position by noise canceling method[J].ACTA ACUSTICA,1996,21:289-296.

    [4]Li Tianyun,Liu Li,Liu Shiguang.Energy flow analysis method of identification of structure borne sound source[J].Chinese Journal of Mechanical Engineering,1999,35:29-33.

    [5]Cho Yongman.Noise source and transmission path identification via state-space system identification[J].Control Eng.Practice,1997,5:1243-1251.

    [6]Briolle F,Wan Chunru,Chee Hongtat,et a1.Blind separation of underwater sources in shallow water[J].Underwater Defence Technology Proceeding,1997,24:186-190.

    [7]Peter WT Yuen.Enhancement of detection efficiency for minute signals embedded in large background using non-stantionarity[C].Underwater Defence Technology Proceeding,05-00-UDT-150,2000.

    [8]Fay J,Menhta S K,Kirsteins I P.Application of principle component based face recognition methods to classify underwater signals[C].Underwater Defence Technology Proceeding.05-00-UDT-163,2000.

    [9]Shi Shengguo,Yang Desen.An underwater sound intensity measurement system and its application to radiation noise measurement of underwater structure in the near-field[J].Journal of Test and Measurement Technology,2002,16:475-480.

    [10]Williams E G.Continuation of acoustic near-fields[J].JASA,2003,113:1273-1281.

    [11]Shang D,Liu Y.The investigation on sound source identification in semi-space by NAH[M].Acoustic 08 Paris.2008:749-754.

    [12]Yang Diange,Zheng Sifa,Li Bing,Li Keqiang,Lian Xianmin.Video visualization for moving sound sources based on binoculars stereo and acoustical holography[J].ACTA ACUSTICA,2010,35:20-25.

    [13]Baggeroer A B,Kuperman W A.An overview of matched field methods in ocean acoustics[J].IEEE Journal of Oceanic Enigeeing,1993,18:425-427.

    [14]Dong Shumin,Liu Hongbo,Zhao bo,Liang Guolong.Study on method of parallel computing in match field localization[J].Application Research of Computers,2012,29(2):514-517.

    [15]Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//IEEE International Conference on Neural Networks.Piscataway,New Jersey,1995:1942-1948.

    [16]Greengard L,Vladimir R.A fast algorithm for particle simulations[J].Journal of Computational Physics,1987,73(2):325-348.

    [17]Shi Y,Eberhar t R.Fuzzy adaptive particle swarm optimization[C]//IEEE World Congress on Evolutionary Computation.Seoul,2001:101-106.

    [18]Liu Chengyang,Yan Changqi,Wang Jianjun,Liu Zhenhai.Particle swarm genetic algorithm and its application[J].Nuclear Power Engineering,2012,33(4):29-33.

    [19]Wang Xuemei,Wang Yihe.The combination of simulated annealing and genetic algorithms[J].Chinese J Computers,1997,20(4):381-384.

    午夜激情欧美在线| 精华霜和精华液先用哪个| 亚洲人与动物交配视频| 亚洲中文字幕一区二区三区有码在线看| а√天堂www在线а√下载| 国产成人一区二区在线| 亚洲国产欧美人成| 日韩视频在线欧美| 亚洲国产欧洲综合997久久,| 亚洲人成网站高清观看| 99热网站在线观看| 尤物成人国产欧美一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 国内揄拍国产精品人妻在线| 亚洲av电影不卡..在线观看| 久久精品久久久久久噜噜老黄 | 国产成人影院久久av| 高清午夜精品一区二区三区 | 久久精品国产自在天天线| 日韩欧美一区二区三区在线观看| ponron亚洲| 免费看光身美女| 中文在线观看免费www的网站| 国产淫片久久久久久久久| 中文精品一卡2卡3卡4更新| 可以在线观看毛片的网站| 舔av片在线| 黄色配什么色好看| 六月丁香七月| 亚洲第一区二区三区不卡| 国产真实乱freesex| 神马国产精品三级电影在线观看| 久久精品久久久久久久性| 丰满的人妻完整版| 国产蜜桃级精品一区二区三区| 亚洲欧美精品自产自拍| 97超碰精品成人国产| 欧洲精品卡2卡3卡4卡5卡区| 精品欧美国产一区二区三| 国产亚洲av嫩草精品影院| 91午夜精品亚洲一区二区三区| 干丝袜人妻中文字幕| 日日撸夜夜添| 成人午夜精彩视频在线观看| 免费看美女性在线毛片视频| 99久久九九国产精品国产免费| 亚洲欧美清纯卡通| 久久精品人妻少妇| 蜜桃亚洲精品一区二区三区| 九九久久精品国产亚洲av麻豆| 黄色欧美视频在线观看| 亚洲最大成人av| 人妻制服诱惑在线中文字幕| 日韩欧美精品免费久久| 边亲边吃奶的免费视频| 夜夜夜夜夜久久久久| 久久亚洲精品不卡| 亚洲av成人精品一区久久| 变态另类丝袜制服| 日本-黄色视频高清免费观看| 国产精品久久久久久av不卡| 国产午夜福利久久久久久| 在线免费观看不下载黄p国产| 少妇人妻一区二区三区视频| 99久久成人亚洲精品观看| 99在线人妻在线中文字幕| 亚洲成av人片在线播放无| av视频在线观看入口| 三级男女做爰猛烈吃奶摸视频| 久久午夜亚洲精品久久| 日产精品乱码卡一卡2卡三| 中文字幕免费在线视频6| 亚洲国产欧洲综合997久久,| 伦精品一区二区三区| 国产精华一区二区三区| 村上凉子中文字幕在线| 高清在线视频一区二区三区 | 日韩在线高清观看一区二区三区| 91久久精品国产一区二区成人| 永久网站在线| 91精品国产九色| 亚洲自偷自拍三级| 久久精品国产亚洲av涩爱 | 国产成人一区二区在线| 春色校园在线视频观看| 人人妻人人澡欧美一区二区| 国内久久婷婷六月综合欲色啪| 国产一区二区亚洲精品在线观看| 亚洲国产精品合色在线| 1024手机看黄色片| 欧美日韩精品成人综合77777| 成人一区二区视频在线观看| 女人十人毛片免费观看3o分钟| 日本免费一区二区三区高清不卡| 欧美成人精品欧美一级黄| 亚州av有码| www.av在线官网国产| 国产精品一区www在线观看| 男人舔女人下体高潮全视频| 免费人成在线观看视频色| 男女视频在线观看网站免费| 日韩av不卡免费在线播放| 亚洲国产精品久久男人天堂| a级毛片免费高清观看在线播放| 一个人看的www免费观看视频| 日韩 亚洲 欧美在线| 精品一区二区免费观看| 联通29元200g的流量卡| 亚洲av熟女| 91午夜精品亚洲一区二区三区| 国内久久婷婷六月综合欲色啪| 国产视频首页在线观看| 波野结衣二区三区在线| 国产精品一二三区在线看| 久久久久久久久久黄片| 伊人久久精品亚洲午夜| av专区在线播放| 成人午夜精彩视频在线观看| 国产 一区 欧美 日韩| 欧美成人免费av一区二区三区| 欧美日韩乱码在线| 国产精品,欧美在线| 老熟妇乱子伦视频在线观看| 日本av手机在线免费观看| 人人妻人人看人人澡| 国产精品嫩草影院av在线观看| 久久精品久久久久久噜噜老黄 | 人妻久久中文字幕网| 成人漫画全彩无遮挡| 国产精品一区二区性色av| 成人综合一区亚洲| 国产亚洲欧美98| 亚洲天堂国产精品一区在线| 亚洲欧美成人精品一区二区| 成人一区二区视频在线观看| 最近最新中文字幕大全电影3| 99热这里只有精品一区| 久久精品国产亚洲网站| 久久久色成人| 久久人人爽人人片av| 亚洲精品国产成人久久av| 精品人妻偷拍中文字幕| 99热精品在线国产| 国产精品久久久久久av不卡| 精品人妻视频免费看| a级一级毛片免费在线观看| 1024手机看黄色片| 国产精品免费一区二区三区在线| 看免费成人av毛片| 免费看日本二区| 亚洲av一区综合| 亚洲自拍偷在线| 欧美日本视频| 简卡轻食公司| 国产精品,欧美在线| 欧美区成人在线视频| 欧洲精品卡2卡3卡4卡5卡区| 免费大片18禁| 国产真实伦视频高清在线观看| 国产探花在线观看一区二区| 18禁裸乳无遮挡免费网站照片| 黄片wwwwww| 一个人看视频在线观看www免费| 成年免费大片在线观看| 色综合站精品国产| 一区二区三区高清视频在线| 国产综合懂色| 高清毛片免费观看视频网站| 国产精品一及| 亚洲电影在线观看av| 国产成人a区在线观看| 日本一二三区视频观看| 国产精品免费一区二区三区在线| 亚洲中文字幕日韩| 丝袜喷水一区| 久久久久网色| 九色成人免费人妻av| 国内精品美女久久久久久| 成人欧美大片| 午夜激情欧美在线| 欧美一区二区亚洲| 97人妻精品一区二区三区麻豆| 少妇熟女aⅴ在线视频| 女的被弄到高潮叫床怎么办| 最近中文字幕高清免费大全6| 免费观看a级毛片全部| 看免费成人av毛片| 高清毛片免费看| 性插视频无遮挡在线免费观看| 九九久久精品国产亚洲av麻豆| 夫妻性生交免费视频一级片| 又爽又黄a免费视频| 成人无遮挡网站| 高清日韩中文字幕在线| 国产熟女欧美一区二区| 99热精品在线国产| 亚洲人与动物交配视频| 中国国产av一级| 哪个播放器可以免费观看大片| 久久久久免费精品人妻一区二区| 啦啦啦啦在线视频资源| 最近中文字幕高清免费大全6| 国产一区二区在线观看日韩| av天堂中文字幕网| 亚洲av成人精品一区久久| 精品人妻熟女av久视频| 男女视频在线观看网站免费| 国产91av在线免费观看| 国产成人freesex在线| 国产真实伦视频高清在线观看| 综合色av麻豆| 久久99热这里只有精品18| 午夜福利在线观看免费完整高清在 | 麻豆久久精品国产亚洲av| 日韩一区二区视频免费看| 99热全是精品| 夜夜爽天天搞| 亚洲自偷自拍三级| av天堂在线播放| 欧美不卡视频在线免费观看| 久久久a久久爽久久v久久| 国产中年淑女户外野战色| 亚洲七黄色美女视频| 美女国产视频在线观看| 男的添女的下面高潮视频| 伦精品一区二区三区| 久久精品国产鲁丝片午夜精品| av女优亚洲男人天堂| 欧美性感艳星| 99久久精品热视频| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件| 噜噜噜噜噜久久久久久91| 18禁在线播放成人免费| 最近中文字幕高清免费大全6| 97热精品久久久久久| 国产淫片久久久久久久久| 最近2019中文字幕mv第一页| 免费人成视频x8x8入口观看| 国产精品三级大全| 国产蜜桃级精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 麻豆国产97在线/欧美| 成人性生交大片免费视频hd| 午夜久久久久精精品| 在线a可以看的网站| 日韩欧美在线乱码| 国产乱人偷精品视频| 人妻系列 视频| 禁无遮挡网站| 搡老妇女老女人老熟妇| 欧美精品国产亚洲| 日韩精品有码人妻一区| 国产成人91sexporn| 国产黄色小视频在线观看| 18禁在线无遮挡免费观看视频| 亚洲国产精品成人久久小说 | 亚洲成人久久性| 只有这里有精品99| 亚洲综合色惰| 久久精品国产清高在天天线| 午夜福利在线观看免费完整高清在 | 国产av麻豆久久久久久久| 亚洲人成网站在线播| 久久99热6这里只有精品| 国产精品嫩草影院av在线观看| 亚洲av第一区精品v没综合| 精品一区二区免费观看| 国产av在哪里看| 国产女主播在线喷水免费视频网站 | 欧美日韩国产亚洲二区| 亚洲三级黄色毛片| 色尼玛亚洲综合影院| 国产单亲对白刺激| 国产黄色视频一区二区在线观看 | 九九热线精品视视频播放| 爱豆传媒免费全集在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久人人精品亚洲av| 国产爱豆传媒在线观看| 熟女电影av网| 三级经典国产精品| 内射极品少妇av片p| 午夜视频国产福利| 99热这里只有是精品50| 国产精品永久免费网站| 亚洲精品456在线播放app| 国产日本99.免费观看| 国产精华一区二区三区| 69av精品久久久久久| a级毛片a级免费在线| 久久中文看片网| 亚洲美女视频黄频| 3wmmmm亚洲av在线观看| 国产午夜精品久久久久久一区二区三区| 蜜臀久久99精品久久宅男| 国产真实伦视频高清在线观看| 亚洲av中文av极速乱| 身体一侧抽搐| 高清午夜精品一区二区三区 | 亚洲内射少妇av| 日本av手机在线免费观看| 国产精品综合久久久久久久免费| 国产综合懂色| 国产精品久久视频播放| 国产真实伦视频高清在线观看| 少妇的逼水好多| 精品人妻熟女av久视频| av又黄又爽大尺度在线免费看 | 国产一区二区三区av在线 | 12—13女人毛片做爰片一| 观看免费一级毛片| 午夜福利在线观看吧| 欧美日韩精品成人综合77777| 国产成人一区二区在线| 人人妻人人看人人澡| 啦啦啦韩国在线观看视频| 国产日韩欧美在线精品| 免费观看在线日韩| 国产女主播在线喷水免费视频网站 | 欧美日韩国产亚洲二区| 日韩在线高清观看一区二区三区| 啦啦啦韩国在线观看视频| 久久久久久久亚洲中文字幕| 老司机福利观看| 欧美3d第一页| 干丝袜人妻中文字幕| 欧美丝袜亚洲另类| 精品一区二区三区视频在线| 老司机影院成人| 精品欧美国产一区二区三| 久久九九热精品免费| 国产精华一区二区三区| 禁无遮挡网站| 好男人在线观看高清免费视频| 精品欧美国产一区二区三| 国产精品嫩草影院av在线观看| 国产又黄又爽又无遮挡在线| 国产亚洲av片在线观看秒播厂 | 直男gayav资源| 天堂影院成人在线观看| 久久人妻av系列| 中文字幕人妻熟人妻熟丝袜美| 国产 一区 欧美 日韩| 欧美一级a爱片免费观看看| 亚洲人成网站高清观看| 欧美最黄视频在线播放免费| 国产激情偷乱视频一区二区| 久久久久久久久中文| 国产成人一区二区在线| 日韩国内少妇激情av| 少妇熟女aⅴ在线视频| 国语自产精品视频在线第100页| 一区二区三区高清视频在线| 欧美日韩乱码在线| 国产91av在线免费观看| 亚洲无线观看免费| 日韩人妻高清精品专区| 少妇的逼好多水| 国产老妇伦熟女老妇高清| 级片在线观看| 大型黄色视频在线免费观看| 欧美日本亚洲视频在线播放| 热99在线观看视频| 亚洲av成人av| 我要看日韩黄色一级片| 欧美zozozo另类| 美女cb高潮喷水在线观看| 亚洲国产精品成人久久小说 | 女同久久另类99精品国产91| 亚洲在久久综合| 十八禁国产超污无遮挡网站| 日韩 亚洲 欧美在线| 国产高清有码在线观看视频| av免费在线看不卡| 男人舔奶头视频| 亚洲精品色激情综合| 男女视频在线观看网站免费| 国内精品宾馆在线| 国产人妻一区二区三区在| 国产精品一二三区在线看| 国产v大片淫在线免费观看| 精品日产1卡2卡| 中文字幕人妻熟人妻熟丝袜美| 国产欧美日韩精品一区二区| 久久久久国产网址| 国产女主播在线喷水免费视频网站 | 国产蜜桃级精品一区二区三区| 长腿黑丝高跟| 国产黄片视频在线免费观看| 最近手机中文字幕大全| 99热6这里只有精品| 成人亚洲精品av一区二区| 亚洲三级黄色毛片| 一个人看视频在线观看www免费| 插逼视频在线观看| 久久欧美精品欧美久久欧美| 成人国产麻豆网| 淫秽高清视频在线观看| 亚洲国产精品成人综合色| 1024手机看黄色片| 亚洲欧美精品综合久久99| 亚洲三级黄色毛片| 国产成人freesex在线| 成人特级黄色片久久久久久久| 国产午夜精品久久久久久一区二区三区| 日韩欧美一区二区三区在线观看| 床上黄色一级片| 免费人成视频x8x8入口观看| 国产精品久久久久久精品电影小说 | 国产精品嫩草影院av在线观看| 国产69精品久久久久777片| 十八禁国产超污无遮挡网站| 国产成人一区二区在线| 三级国产精品欧美在线观看| 亚洲欧美日韩无卡精品| 中文字幕熟女人妻在线| 99久久无色码亚洲精品果冻| 美女 人体艺术 gogo| 99热这里只有精品一区| 麻豆一二三区av精品| 亚洲成人av在线免费| 国产精品福利在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 国产成年人精品一区二区| 亚洲最大成人av| 毛片女人毛片| 亚洲av电影不卡..在线观看| 国产伦精品一区二区三区四那| 欧美最新免费一区二区三区| av天堂在线播放| 国产精品一区二区三区四区久久| 久久6这里有精品| 国产亚洲欧美98| 联通29元200g的流量卡| h日本视频在线播放| 男人舔奶头视频| 久久精品影院6| 美女内射精品一级片tv| 人妻系列 视频| 国产欧美日韩精品一区二区| 一级黄色大片毛片| 国产 一区精品| 久久久久久大精品| 久久久国产成人免费| 国产综合懂色| av福利片在线观看| 26uuu在线亚洲综合色| 18禁在线播放成人免费| 国产成人aa在线观看| 久久久精品大字幕| 国产老妇女一区| 男女做爰动态图高潮gif福利片| 免费看美女性在线毛片视频| 99热6这里只有精品| 赤兔流量卡办理| 精品人妻偷拍中文字幕| 长腿黑丝高跟| 亚洲av免费高清在线观看| 国产大屁股一区二区在线视频| 少妇高潮的动态图| 黄片无遮挡物在线观看| 我要看日韩黄色一级片| 熟女人妻精品中文字幕| 黄色欧美视频在线观看| 国产熟女欧美一区二区| 久久精品国产亚洲av香蕉五月| 日本免费a在线| 国产视频内射| 亚洲av中文字字幕乱码综合| 日韩成人伦理影院| 九九在线视频观看精品| 美女国产视频在线观看| 夜夜爽天天搞| 美女大奶头视频| 99九九线精品视频在线观看视频| 秋霞在线观看毛片| 亚洲欧美成人精品一区二区| 天天躁夜夜躁狠狠久久av| 长腿黑丝高跟| 久久午夜亚洲精品久久| 国产综合懂色| 国产一级毛片七仙女欲春2| 国产成人91sexporn| av卡一久久| 中文字幕久久专区| 亚洲一区二区三区色噜噜| 久久久久久久久久黄片| 禁无遮挡网站| av在线老鸭窝| 久久精品91蜜桃| 国产精品免费一区二区三区在线| 男人的好看免费观看在线视频| 国产综合懂色| 亚洲第一区二区三区不卡| 欧美成人a在线观看| 国产精品乱码一区二三区的特点| 国产成人福利小说| 亚洲不卡免费看| 精品人妻偷拍中文字幕| 91久久精品国产一区二区成人| 一级毛片aaaaaa免费看小| www日本黄色视频网| 乱系列少妇在线播放| 国产精品1区2区在线观看.| 久久久成人免费电影| 老司机影院成人| 成人午夜精彩视频在线观看| 国产极品天堂在线| 精品免费久久久久久久清纯| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人爽人人夜夜 | 男女做爰动态图高潮gif福利片| 美女内射精品一级片tv| 十八禁国产超污无遮挡网站| 色哟哟哟哟哟哟| or卡值多少钱| 如何舔出高潮| 小说图片视频综合网站| 国产国拍精品亚洲av在线观看| 国产麻豆成人av免费视频| 欧美三级亚洲精品| 日韩高清综合在线| 久久鲁丝午夜福利片| 噜噜噜噜噜久久久久久91| 久久久a久久爽久久v久久| 久久国产乱子免费精品| 乱系列少妇在线播放| 夫妻性生交免费视频一级片| 欧美一区二区亚洲| 国产探花在线观看一区二区| 久久精品国产亚洲av香蕉五月| 校园春色视频在线观看| 精品国产三级普通话版| 国产精品嫩草影院av在线观看| 亚洲成av人片在线播放无| 97人妻精品一区二区三区麻豆| 一级毛片我不卡| 国产精品电影一区二区三区| 国产精品福利在线免费观看| 嫩草影院入口| a级一级毛片免费在线观看| 欧美日韩在线观看h| 好男人视频免费观看在线| 国产av麻豆久久久久久久| 国产 一区精品| 亚洲va在线va天堂va国产| 亚洲成av人片在线播放无| 亚洲欧洲国产日韩| 麻豆国产av国片精品| 国产精品乱码一区二三区的特点| 久久久久久久久大av| 少妇人妻精品综合一区二区 | 久久精品91蜜桃| 听说在线观看完整版免费高清| 国产91av在线免费观看| 精品一区二区三区人妻视频| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆| 一进一出抽搐gif免费好疼| 99国产精品一区二区蜜桃av| 男女那种视频在线观看| 日日啪夜夜撸| 亚洲精品久久国产高清桃花| 国产精品不卡视频一区二区| 国产蜜桃级精品一区二区三区| 亚洲成人久久爱视频| 国产精品一区二区在线观看99 | 亚洲精品国产成人久久av| 九九爱精品视频在线观看| 边亲边吃奶的免费视频| 欧美在线一区亚洲| 国产av麻豆久久久久久久| avwww免费| 国产视频内射| 日本-黄色视频高清免费观看| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| 日韩中字成人| 免费在线观看成人毛片| 小说图片视频综合网站| 欧美性猛交╳xxx乱大交人| 又爽又黄a免费视频| 黄片无遮挡物在线观看| 99久国产av精品国产电影| 99久久九九国产精品国产免费| 97在线视频观看| 国产大屁股一区二区在线视频| 免费观看a级毛片全部| 亚洲成人久久爱视频| 你懂的网址亚洲精品在线观看 | 99热网站在线观看| 青春草国产在线视频 | 国产精品福利在线免费观看| 麻豆国产av国片精品| 亚洲经典国产精华液单| 中文字幕熟女人妻在线| 联通29元200g的流量卡| 久久99热这里只有精品18| 嘟嘟电影网在线观看| 久久精品人妻少妇| 99久久精品国产国产毛片| 久久久久久久久久久免费av| 中国国产av一级| 亚洲av中文字字幕乱码综合| 91麻豆精品激情在线观看国产| 久久草成人影院| 国产亚洲5aaaaa淫片| 好男人在线观看高清免费视频| 国语自产精品视频在线第100页| 观看美女的网站| 赤兔流量卡办理| 一边亲一边摸免费视频| 级片在线观看| 国内揄拍国产精品人妻在线|