• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flexoelectricity in Solid Dielectrics:From Theory to Applications

    2015-12-12 11:58:11JianfengLuXuLiang2andShulingHu
    Computers Materials&Continua 2015年3期

    Jianfeng Lu,Xu Liang,2and Shuling Hu,2

    Flexoelectricity in Solid Dielectrics:From Theory to Applications

    Jianfeng Lu1,Xu Liang1,2and Shuling Hu1,2

    Flexoelectricity phenomenologically describes the universal electromechanical coupling effect between electric polarization and strain gradient,and electric field gradient and elastic strain.In contrast to piezoelectricity which is invalid in materials with inversion symmetry, flexoelectricity exists,commonly,in all solid dielectrics.In this paper,a summary of the research on flexoelectricity is presented to illustrate the development of this topic.Flexoelectricity still have many open questions and unresolved issues in the developing field,although it has attracted a surge of attention recently.Here we review the theoretical investigations and experimental studies on flexoelectricity,and the aim of the current paper is to look into the potential applications of this electromechanical coupling effect.

    Flexoelectricity,Strain gradient,Electric field gradient,Electromechanical coupling.

    1 Introduction

    The development of nanotechnology,such as high performance electronics,integrated circuit,microelectromechanical systems and nanoelectromechanical systems,has the deepest effect on our daily life[Craighead(2000);Ekinci and Roukes(2005)].The conversion between mechanical energy and electrical energy has attracted a surge of attention,such as field effect transistors[Nishi(1978);Javeyet al.(2003)],self-powered nanogenerators[Wang(2008);Xuet al.(2010);Fanet al.(2012)],sensors and actuators[Park and Gao(2006)].A novel application is proposed to harvest the mechanical energy in the ambient based on the classical piezoelectricity[Sodanoet al.(2004);Hong and Moon(2005);Friswell and Adhikari(2010)].However,piezoelectric effect is commonly allowed in noncentrosymmetric media.The presence of non-uniform strain field such as strain gradient can locally break the inversion symmetry and induces electric polarization in solid dielectrics,which has been termed as flexoelectric effect.Conversely,mechanical stress can be generated by an electric field gradient[Tagantsev(1987);Tagantsev(1991);Ma(2010);Lee and Noh(2012);Nguyenet al.(2013)].Flexoelectricity phenomenologically describes the coupling between polarization and strain gradient,and electric field gradient and stress.In contrast to piezoelectricity which is invalid in materials with inversion symmetry, flexoelectricity exists in all solid dielectrics,even in soft membranes[Petrov(2002);Denget al.(2014)]and biological tissues[Fu(2010)].Flexoelectricity also manifests as a size-dependent electromechanical coupling effect due to the including of strain gradient and electric field gradient.Moreover, flexoelectricity hold the promising applications in nanoelectronics where strong strain gradients often be presented[Majdoubet al.(2009a);Fuet al.(2011);Leeet al.(2012)].

    In this paper,a summary of research on flexoelectricity is presented to illustrate the development of such topic.The effect of flexoelectricity on the electromechanical coupling response of nanostructures,the modified electrostatic potential generated in a bent piezoelectric nanowires and piezoelectric semiconductor nanowires has been discussed.Especially,the authors focus on the experimental study on the flexoelectricity in solid materials,the experimental methods and results are discussed in this paper.The aim of this paper is to look into the potential applications of this electromechanical coupling effect in engineering.

    2 Fundamental of flexoelectricity

    Flexoelectric effect is a fundamental physical property of dielectrics which can be de fined as the linear coupling between strain gradient and electric polarization,and linear coupling between stress and electric field gradient.Although flexoelectric effect is a universal electromechanical coupling effect, flexoelectricity has been ignored for a long time.Recently,it was realized that the flexoelectric effect may explain various physical phenomena in solids,such as the intrinsic “dead-layer”in ferroelectric capacitors[Majdoubet al.(2009a);Marangantiet al.(2009)],the size-dependent electromechanical coupling response of nanostructures[Liang and Shen(2013);Yan and Jiang(2013a);Yan and Jiang(2013b);Lianget al.(2014)],the rotation of electric polarization in ferroelectrics[Catalanet al.(2011)].By introducing the flexoelectricity,Liuet al.[Liuet al.(2012)]analytically solved the electrostatic potential generated in a bent piezoelectric nanowire and Xu[Xuet al.(2013)]discussed the interaction between flexoelectric effect and semiconductor properties.

    The fundamental physical formulation for the theory of flexoelectricity can be found in many literatures,Hu and Shen[Hu and Shen(2009)]developed a the-ory for nano-dielectrics with electric field gradient effect,surface and electrostatic force,Shen and Hu[Shen and Hu(2010)]developed a theory for solid dielectrics with flexoelectric effect,surface effect and electrostatic force.These works provided the fundamental physical and mathematical description of the flexoelectricity.Based on these theories,the effect of flexoelectric can be expressed as[Hu and Shen(2009);Lianget al.(2014)]:

    wherecijis the elastic modulus,ekijis the piezoelectric constants,ε0is the dielectric constant of vacuum,χijis the relative susceptibility and μijklis the flexoelectric coefficients.εijandEkare the strain and electric field,σijandPkare the Cauchy stress and electric polarization,respectively.The third terms in the right hand of Eq.(1)describe the direct and converse flexoelectric effect.

    It is worth mentioning that in the case of small gradients(such as mechanical bending),Eq.(1)is suitable,and however,in the case of strong gradients the following expressions are suggested[Shen and Hu(2010);Yudin and Tagantsev(2013)]:

    whereeklijandfklijare the converse and direct flexocoupling coefficients,respectively.Eq.(1)and Eq.(2)give the completely full coupled description of flexoelectricity.Based on these phenomenological descriptions,a series of theoretical works have been done to investigate the flexoelectric effect in solid dielectrics,i.e.,Yang[Yang and Shen(2014)]solved the embedded inclusion problem by the generalized Green’s function method,in which the flexoelectricity is taken into consideration.Although there are some review papers on such topic[Marangantiet al.(2006);Majdoubet al.(2008a);Yudin and Tagantsev(2013);Zubkoet al.(2013)], flexoelectricity still have many open questions in the developing field.Especially,review on experimental studies of flexoelectricity has not been done so far,that is the focus of this paper.

    Flexoelectric effect has been discovered in the middle twentieth century,however,it has been ignored for a long time by the researchers because this effect is quite small at macroscopic level.With the development of new techniques and nanotechnology, flexoelectricity has attracted an increasing amount of attention.Typically,flexoelectricity has been found in presence of strong electromechanical coupling in nano scaled materials and structures.In this section,we give a brie fly summary of the development of flexoelectricity.

    Kogan(1964)developed the phenomenological description for electric polarization due to strain gradient in solid crystals while Meyer(1969)discussed the contribution of electric quadrupole to flexoelectricity.Indenbom(1981)suggested the flexoelectricity for such phenomenon as was discussed in liquid crystals.In the 1980s,Tagantsev(1985,1986)gave a more extensively study on the flexoelectric effect,and systematically studied four contributions to this effect,i.e.the bulk static flexoelectric effect,the bulk dynamic flexoelectric effect,the surface flexoelectric effect,and the surface piezoelectric effect.Based on the lattice dynamics theory,an explicit expression for the flexoelectric coefficients is[Tagantsev(1986);Fuet al.(2006)]:

    whereχ is the dielectric susceptibility,γ is the material parameter constant,eis the electron charge andathe lattice parameter.

    Inspired by the Tagantsev’s theory and lattice dynamics theory’s prediction,there spring up numerous investigation on flexoelectricity.Marvan et al(1994)proposed the parallel chains of harmonic oscillator model combined with surface force rather than strain gradient to understand the physical reason of flexoelectric effect.Klicet al.(2004)used the potential double-well model to derive the formulation of flexoelectric coefficient which is compatible with Tagantsev’s expression. Maranganti(2006)developed the fundamental solutions for spherical and cylindrical inclusion problems from the framework of flexoelectricity. After that,Majdoub(2008b,2009b)employed molecular dynamics to interpret the flexoelectric effect,and investigated the size-dependent piezoelectric and elastic behavior by combining atomistic and theoretical approaches. Deng(2014)developed a nonlinear theoretical framework for flexoelectricity in soft material,and proposed a concept of designing soft piezoelectric composite without using piezoelectric materials.

    Variational principle has been regarded as the bases of the computational for electromechanical coupling problems for a long time.Hu and Shen(2009,2010),Shen and Hu(2010)proposed a variational principle based on electric enthalpy for nanosized dielectrics concerning the effects of flexoelectricity,surface and electrostatic force.This works provide the physical fundamentals and computational method for flexoelectricity.Based on this work,the size-dependent piezoelectricity and elasticity due to strain gradient-electric field coupling has been studied based on a modified Bernoulli-Euler beam model[Liang and Shen(2013)],the effect of flexoelectricity on the electrostatic potential in bent ZnO and piezoelectric semi-conductive nanowire has been investigated and discussed[Liuet al.(2012);Xuet al.(2013)].The flexoelectric effect on elastic wave propagating in periodically layered nanostructure has also been performed using the transfer matrix method[Liuet al.(2014)].There are a series of theoretical works considering the flexoelectric effect in nanoscale dielectrics,however,the flexoelectric coefficients have not be experimentally measured.The difficulties in measuring flexoelectric coefficients of dielectrics are in measuring tiny electric signals generated in bulk dielectrics or the need of new detection techniques for nano scaled dielectrics.

    3 Development of experiments on flexoelectricity

    3.1 Experimental measurement of flexoelectric coefficients of ferroelectrics

    Although lattice dynamics predict a much small magnitudes of the flexoelectric coefficients,theoretical analysis have shown that flexoelectricity plays an important role in enhancing the electromechanical coupling effect,especially in where strong strain gradients is presented[Marangantiet al.(2006);Majdoubet al.(2008a);Majdoubet al.(2008b);Majdoubet al.(2009a)].To understand the flexoelectricity better,it is very necessary to measure the flexoelectric coefficients of dielectrics,typically for dielectrics with high dielectric constants (high dielectric susceptibility)as suggested by the lattice dynamic theory.For cubic crystals,there are only three independent non-zero components of the flexoelectric coefficients[Ma and Cross(2001b);Ma(2007);Shuet al.(2011)].By stretching or compressing a truncated pyramid specimen,the flexoelectric coefficient μ11has been measured[Fuet al.(2006)].By bending a cantilever beam specimen,the flexoelectric coefficient μ12for a series of un-poled ferroelectrics has been measured[Ma and Cross(2001b,a);Ma and Cross(2002);Ma and Cross(2005,2006)].Four point bending method is also employed to measure the flexoelectric coefficient μ12[Ma and Cross(2003)].In these works,giant flexoelectric coefficients which are 4-5 order larger than the predictions of lattice dynamics have been observed.

    In the last decades,experiments on a series of ferroelectrics have been performed inspired by the intrinsic property of flexoelectricity. Crosset al.studied the flexoelectric effect in various perovskite ceramics,such as ferroelectric and paraelectric Barium Titanate[Ma and Cross(2006)],Barium Strontium Titanate(BST)[Ma and Cross(2002)],Lead Magnesium Niobate(PMN)[Ma and Cross(2001b)],Lead ZirconateTitanate(PZT)[Ma and Cross(2003)].In their analysis of experimental,the quasi-static or low frequency dynamic techniques as well as four point bending con figuration were employed to measure the flexoelectric coefficients.It is found that the flexoelectric coefficient can come up to 100μC/m,4-5 orders larger than the lattice dynamic predictions(~10-10C/m).The temperature dependence of flexoelectric coefficients has also been investigated in perovskite ceramics,and it is found that flexoelectric coefficient approaches its peak at the phase transition point[Ma and Cross(2006)].

    By bending beam methods,the flexoelectric coefficientμ12has been measured for various ceramics.Figure 1 illustrated the bending method for measuring flexoelectric coefficient.The wire connects to electrodes on the surface of the specimen for current detection,and the displacement of the specimen is monitored.The electric charge can be calculated from the measured electric current in the external electrical circuit byPi=i?2πfA,whereiis the measured electrical current,fis the driving frequency of the applied load andAis the area of the electrodes on the top and bottom surface[Cross(2006)].The flexoelectric effect of the specimen can be simplified as

    whereμ12is the transverse flexoelectric coefficient.

    Figure 1:Schematic for experiments measurement of flexoelectric coefficients by bending mothed.a:cantilever bending method;b:four point bending method.

    By stretching or compressing truncated pyramid specimens,the flexoelectric coefficient μ11for various ceramics has also been measured.Figure 2 gives the schematic for the experiments set up.This special geometrical shape of the specimen was designed to generate strain gradient when elastic stress is applied.The average strain gradient in the truncated pyramid can be calculated from

    The electric charge can be calculated from the measured electric current in the external electrical circuit bywhereiis the measured electrical current,fis the driving frequency of the applied load andAis the area of the electrodes on the top and bottom surface[Cross(2006)].The definition of the direct flexoelectric effect holds

    whereμ11is longitudinal flexoelectric coefficient.

    After measured the electric current and calculated the average strain gradient,the flexoelectric coefficient can be calculated

    and effective piezoelectric stress constant[Cross(2006)]can be de fined from the experiments as

    Eq.(6)indicates that flexoelectric effect can perform as piezoelectric effect,however,the effective piezoelectric stress constant related to the geometric parameters of the specimen.

    The flexoelectric coefficients and the material parameters for different ceramics are listed in Table 1.These works proved the flexoelectric effect by experiments,in addition it is found that the flexoelectric coefficient for high-K ceramics are 4-5 orders larger than the prediction by the lattice dynamic theory.It is also found that the flexoelectric coefficients in ceramics have been enhanced by the high dielectric susceptibility,which agrees well with the predictions of lattice dynamic theory.

    Inspired by Cross’s works and the lattice dynamic prediction,ferroelectric composites with high dielectric susceptibility were fabricated.Giant flexoelectric coefficients in these composites are observed[Liet al.(2013);Shuet al.(2013);Kwonet al.(2014);Liet al.(2014);Shuet al.(2014a);Shuet al.(2014b)].Although there are many attempts on measuring the flexoelectric coefficient of ferroelectrics,no works are made on measuring the flexoelectricμ44of ceramics.

    Figure 2:Schematic for measuring flexoelectric coefficientμ11by compressing a truncated pyramid specimen.

    Table 1: flexoelectric coefficient of various materials at room temperature(24?C).

    3.2 Measurement of flexoelectric effect in polyvinylidene fluoride films(PVDF)

    Besides ferroelectrics, flexoelectric coefficients in some thermoplastic polymers such as PVDF have been measured.Fuet al.[Fuet al.(2006);Fuet al.(2007);Baskaranetal.(2011a);Baskaranetal.(2011b);Baskaranetal.(2011c);Baskaranet al.(2012);Heet al.(2012)]observed giant flexoelectric effect in polyvinylidene fluoride(PVDF) films.Different shapes of no stretched and poled PVDF films were measured via lock-in detection setup to verify the flexoelectric effect[Baskaranet al.(2011a)].

    The polarization in the film includes the residual piezoelectricity effect and the flexoelectric effect.The generated electric polarization in PVDF films can be written as:

    Theoretically,the flexoelectric effect in polymers such as PVDF is similar to that in liquid crystals.Therefore the flexoelectric effect in polymers is more complicated than that in solid crystals.However,the mechanism of flexoelectric effect in polymers has not been adequately understood so far.

    4 Development of numerical methods of flexoelectricity

    Strain gradient and electric field gradient are included in the theory of flexoelectricity.Analytical solutions for the electromechanical coupled problems with flexoelectricity can be obtained for simple models such as beams,plates and so on.For the case where the shapes and boundary conditions are complex,the numerical methods are needed and urgent.

    At the atomic level,Hong(2013)used the first-principles to calculate the flexoelectric coefficient for cubic insulating materials.Mbarki(2014)used the molecular dynamics(MD)approach with specially tailored interatomic force- field to verify flexoelectric effect of BST/STO and its temperature dependence.Atomic and MD simulations,however,are expensive and restricted by the hardware conditions.

    At the macroscopic level,numerical methods can be used to solve the complicated electromechanical coupling problems with flexoelectricity. Classical finite element methods cannot solve the higher order theories which including the gradients of strain and electric field.The mixed finite element methods or the meshless methods might be the appropriate methods to solve the electromechanical coupling problems with flexoelectricity.There are also some attempts on solving such electromechanical coupling problems.Ariaset al.(2014,2015)introduced the smooth meshfree basis function to deal with the higher-order partial differential equations which could be convenient when handle the general geometries and boundary conditions.Darrallet al.(2015)provided the variational formulation and used the mixed finite element method to solve the size-dependent problem.Several examples were bringing out to illustrate the size-dependent characteristics.Some other researchers also conducted numerical study on flexoelectricity[Fanget al.(2013);Yurkov(2015)].

    5 Potential applications of flexoelectricity

    There are also some applications based on the flexoelectric effect,such as curvature detection by flexoelectric sensors[Kwonet al.(2013);Yanet al.(2013a);Yanet al.(2013b)]and flexoelectric actuators[Huet al.(2011)].Among these structural health monitoring(SHM)in mechanical,civil,shipbuilding,transportation and aircraft structures may be the key point.The system defects such as cracks could cause a catastrophic failure.The present detection technology involves time consuming,expensive and low accuracy,so the researchers and enterprise are always hunting for the high efficiency with low cost structure health monitoring systems.Strain gradient distribution changes abruptly in the vicinity of a crack due to the stress concentration.Strain gradient in the vicinity of a crack can be measured based on flexoelectric effect,and precautionary measures can be carried out based on the estimation of loading parameter to avoid accident.A novel technique has been proposed[Huanget al.(2012);Kwonet al.(2013);Yanet al.(2013b);Huanget al.(2014a,b)]for structural health monitoring and crack detection based on the flexoelectric effect.The strain gradient sensors were attached in the neighboring of crack and hole with varied tension stress,the charge generated by flexoelectric effect was measured to predict the position of crack.In the centrosymmetric crystals,the flexoelectricity can be written as[Huanget al.(2014a,b)]:

    Another novel application for flexoelectric effect is to fabricate piezoelectric composite but without any piezoelectric constituents.Cross[Fouseket al.(1999)]analyzed the piezoelectric response of 0-3 composite made of non-piezoelectric constituent.Then they presented a flexure mode multilayer composite in which giant piezoelectric effect was observed[Chuet al.(2009)].Zhuet al.(2006)devised the pyramid array structure based on the enhanced flexoelectric effect.

    The flexoelectric coefficients of ceramics are affected by the grain size,temperature and loading frequency.Systematic investigations are needed to analyze these factors.The flexoelectric effect in polymers is more complex,the mechanism has not been fully understood so far.There is still a long way to go from theory to engineering applications,in view of the difficulties in theoretical and experimental works.

    6 Conclusion

    As a universal electromechanical coupling effect, flexoelectricity attracted an increasing of attention.Flexoelectricity phenomenologically describes the coupling between electric polarization and strain gradient,and electric field gradient and stress.Flexoelectricity plays an important role in determining the electro-elastic response of nanoscaled structures.In the last decades,a lot of experimental works have been done to measure the flexoelectric coefficients of non-poled ferroelectrics and thermoplastic polymers.The experimental methods and experimental results are summarized and discussed in this paper.The potential applications such as flexoelectric sensors,actuators,structural health monitoring and crack detection have also been briefly summarized.

    Acknowledgement:The support from NSFC(Grants No.11372238)is appreciated.

    Abdollahi,A.;Millán,D.;Peco,C.;Arroyo,M.;Arias,I.(2015):Revisiting pyramid compression to quantify flexoelectricity:A three-dimensional simulation study.Physical Review B,vol.91,no.10,104103.

    Abdollahi,A.;Peco,C.;Millán,D.;Arroyo,M.;Arias,I.(2014):Computational evaluation of the flexoelectric effect in dielectric solids.Journal of Applied Physics,vol.116,no.9,093502.

    Baskaran,S.;He,X.;Chen,Q.;Fu,J.Y.(2011a):Experimental studies on the direct flexoelectric effect in alpha-phase polyvinylidene fluoride films.Applied Physics Letters,vol.98,no.24,2901.

    Baskaran,S.;He,X.;Fu,J.Y.(2011b):Gradient scaling phenomenon of piezoelectricity in non-piezoelectric polyvinylidene fluoride films.Materials Science.

    Baskaran,S.;He,X.;Wang,Y.;Fu,J.Y.(2012):Strain gradient induced electric polarization in α-phase polyvinylidene fluoride films under bending conditions.Journal of Applied Physics,vol.111,no.1,014109.

    Baskaran,S.;Ramachandran,N.;He,X.;Thiruvannamalai,S.;Lee,H.J.;Heo,H.;Chen,Q.;Fu,J.Y.(2011c):Giant flexoelectricity in polyvinylidene fluoride films.Physics Letters A,vol.375,no.20,pp.2082-2084.

    Catalan,G.;Lubk,A.;Vlooswijk,A.;Snoeck,E.;Magen,C.;Janssens,A.;Rispens,G.;Rijnders,G.;Blank,D.;Noheda,B.(2011):Flexoelectric rotation of polarization in ferroelectric thin films.Nature materials,vol.10,no.12,pp.963-967.

    Chu,B.;Zhu,W.;Li,N.;Eric Cross,L.(2009):Flexure mode flexoelectric piezoelectric composites.Journal of Applied Physics,vol.106,no.10,4109.

    Craighead,H.G.(2000):Nanoelectromechanical systems.Science,vol.290,no.5496,pp.1532-1535.

    Cross,L.E.(2006):Flexoelectric effects:Charge separation in insulating solids subjected to elastic strain gradients.Journal of Materials Science,vol.41,no.1,pp.53-63.

    Darrall,B.T.;Hadjesfandiari,A.R.;Dargush,G.F.(2015):Size-dependent piezoelectricity:A 2D finite element formulation for electric field-mean curvature coupling in dielectrics.European Journal of Mechanics-A/Solids,vol.49,pp.308-320.

    Deng,Q.;Liu,L.;Sharma,P.(2014):Flexoelectricity in soft materials and biological membranes.Journal of the Mechanics and Physics of Solids,vol.62,pp.209-227.

    Ekinci,K.;Roukes,M.(2005):Nanoelectromechanical systems.Review of scienti fic instruments,vol.76,no.6,061101.

    Fan,F.-R.;Lin,L.;Zhu,G.;Wu,W.;Zhang,R.;Wang,Z.L.(2012):Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films.Nano letters,vol.12,no.6,pp.3109-3114.

    Fang,D.;Li,F.;Liu,B.;Zhang,Y.;Hong,J.;Guo,X.(2013):Advances in Developing Electromechanically Coupled Computational Methods for Piezoelectrics/Ferroelectrics at Multiscale.Applied Mechanics Reviews,vol.65,no.6,060802.

    Fousek,J.;Cross,L.;Litvin,D.(1999):Possible piezoelectric composites based on the flexoelectric effect.Materials Letters,vol.39,no.5,pp.287-291.

    Friswell,M.I.;Adhikari,S.(2010):Sensor shape design for piezoelectric cantilever beams to harvest vibration energy.Journal of Applied Physics,vol.108,no.1,014901.

    Fu,J.(2010):Experimental studies of the direct flexoelectric effect in bone materials.Paper presented at the APS Meeting Abstracts18013.

    Fu,J.Y.;Liu,P.Y.;Cheng,J.;Bhalla,A.S.;Guo,R.(2007):Optical measurement of the converse piezoelectric d 33 coefficients of bulk and microtubular zinc oxide crystals.Applied physics letters,vol.90,no.21,212907-212907-212903.Fu,J.Y.;Zhu,W.;Li,N.;Cross,L.E.(2006):Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition.Journal of Applied Physics,vol.100,no.2,024112.

    Fu,Q.;Zhang,Z.Y.;Kou,L.;Wu,P.;Han,X.;Zhu,X.;Gao,J.;Xu,J.;Zhao,Q.;Guo,W.(2011):Linear strain-gradient effect on the energy bandgap in bent CdS nanowires.Nano Research,vol.4,no.3,pp.308-314.

    He,X.;Baskaran,S.;Fu,J.Y.(2012):On the flexoelectricity in Polyvinylidene fluoride films.Paper presented at the MRS Proceedingsmrsf11-1403-v1417-1440.

    Hong,J.;Vanderbilt,D.(2013):First-principles theory and calculation of flexoelectricity.Physical Review B,vol.88,no.17,174107.

    Hong,Y.K.;Moon,K.S.(2005):Single crystal piezoelectric transducers to harvest vibration energy.Paper presented at the Optomechatronic Technologies 200560480E-60480E-60487.

    Hu,S.;Li,H.;Tzou,H.(2011):Static nano-control of cantilever beams using the inverse flexoelectric effect.Paper presented at the ASME 2011 international mechanical engineering congress and exposition463-470.

    Hu,S.;Shen,S.(2009):Electric field gradient theory with surface effect for nanodielectrics.Computers,Materials&Continua(CMC),vol.13,no.1,pp.63.

    Hu,S.;Shen,S.(2010):Variational principles and governing equations in nanodielectrics with the flexoelectric effect.Science China Physics,Mechanics and Astronomy,vol.53,no.8,pp.1497-1504.

    Huang,W.;Yan,X.;Kwon,S.R.;Zhang,S.;Yuan,F.-G.;Jiang,X.(2012):Flexoelectric strain gradient detection using Ba0.64Sr0.36TiO3 for sensing.Applied Physics Letters,vol.101,no.25,252903.

    Huang,W.;Yang,S.;Zhang,N.;Yuan,F.-G.;Jiang,X.(2014a):Cracks monitoring and characterization using Ba0.64Sr0.36TiO3 flexoelectric strain gradient sensors,906119-906119-906119.

    Huang,W.;Yang,S.;Zhang,N.;Yuan,F.-G.;Jiang,X.(2014b):Direct Mea-surement of Opening Mode Stress Intensity Factors Using Flexoelectric Strain Gradient Sensors.Experimental Mechanics,vol.55,no.2,pp.313-320.

    Indenbom,V.;Loginov,E.;Osipov,M.(1981):Flexoelectric effect and crystalstructure.Kristallogra fiya,vol.26,no.6,pp.1157-1162.

    Javey,A.;Guo,J.;Wang,Q.;Lundstrom,M.;Dai,H.(2003):Ballistic carbon nanotube field-effect transistors.Nature,vol.424,no.6949,pp.654-657.

    Klíc,A.;Marvan,M.(2004):Theoretical study of the flexoelectric effect based on a simple model of ferroelectric material.Integrated Ferroelectrics,vol.63,no.1,pp.155-159.

    Kogan,S.M.(1964):Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals.Soviet Physics-Solid State,vol.5,no.10,pp.2069-2070.

    Kwon,S.;Huang,W.;Zhang,S.;Yuan,F.;Jiang,X.(2013):Flexoelectric sensing using a multilayered barium strontium titanate structure.Smart Materials and Structures,vol.22,no.11,115017.

    Kwon,S.R.;Huang,W.;Shu,L.;Yuan,F.-G.;Maria,J.-P.;Jiang,X.(2014):Flexoelectricity in barium strontium titanate thin film.Applied Physics Letters,vol.105,no.14,142904.

    Lee,D.;Noh,T.W.(2012):Giant flexoelectric effect through interfacial strain relaxation.Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,vol.370,no.1977,pp.4944-4957.

    Lee,D.;Yang,S.M.;Yoon,J.-G.;Noh,T.W.(2012):Flexoelectric Rectification of Charge Transport in Strain-Graded Dielectrics.Nano letters,vol.12,no.12,pp.6436-6440.

    Li,Y.;Shu,L.;Huang,W.;Jiang,X.;Wang,H.(2014):Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite.Applied Physics Letters,vol.105,no.16,162906.

    Li,Y.;Shu,L.;Zhou,Y.;Guo,J.;Xiang,F.;He,L.;Wang,H.(2013):Enhanced flexoelectric effect in a non-ferroelectric composite.Applied Physics Letters,vol.103,no.14,142909.

    Liang,X.;Hu,S.;Shen,S.(2014):Effects of surface and flexoelectricity on a piezoelectric nanobeam.Smart Materials and Structures,vol.23,no.3,035020.

    Liu,C.;Hu,S.;Shen,S.(2012):Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire.Smart Materials and Structures,vol.21,no.11,115024.

    Liu,C.;Hu,S.;Shen,S.(2014):Effect of Flexoelectricity on Band Structures of One-Dimensional Phononic Crystals.Journal of Applied Mechanics,vol.81,no.5,051007.

    Ma,W.(2007):Flexoelectricity:strain gradient effects in ferroelectrics.Physica Scripta,2007(T129),180.

    Ma,W.(2010):Flexoelectric charge separation and size dependent piezoelectricity in dielectric solids.physica status solidi(b),vol.247,no.1,pp.213-218.

    Ma,W.;Cross,L.E.(2001a):Large flexoelectric polarization in ceramic lead magnesium niobate.Applied Physics Letters,vol.79,no.26,pp.4420-4422.

    Ma,W.;Cross,L.E.(2001b):Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics.Applied Physics Letters,vol.78,no.19,pp.2920-2921.

    Ma,W.;Cross,L.E.(2005):Flexoelectric effect in ceramic lead zirconate titanate.Applied Physics Letters,vol.86,no.7,072905.

    Ma,W.;Cross,L.E.(2006):Flexoelectricity of barium titanate.Applied Physics Letters,vol.88,no.23,232902-232902-232903.

    Ma,W.;Eric Cross,L.(2002):Flexoelectric polarization of barium strontium titanate in the paraelectric state.Applied Physics Letters,vol.81,no.18,pp.3440-3442.

    Ma,W.;Eric Cross,L.(2003):Strain-gradient-induced electric polarization in lead zirconate titanate ceramics.Applied Physics Letters,vol.82,no.19,pp.3293-3295.

    Majdoub,M.;Maranganti,R.;Sharma,P.(2009a):Understanding the origins of the intrinsic dead layer effect in nanocapacitors.Physical Review B,vol.79,no.11,115412.

    Majdoub,M.;Sharma,P.;Cagin,T.(2008a):Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect.Physical Review B,vol.77,no.12,125424.

    Majdoub,M.;Sharma,P.;Cagin,T.(2009b):Erratum:Enhancedsize-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect[Phys.Rev.B 77,125424(2008)].Physical Review B,vol.79,no.11,119904.

    Majdoub,M.;Sharma,P.;?agin,T.(2008b):Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures.Physical Review B,vol.78,no.12,121407.

    Maranganti,R.;Majdoub,M.;Sharma,P.(2009):Flexoelectricity in nanostructures and ramifications for the dead-layer effect in nanocapacitors and“giant”piezoelectricity.Paper presented at the APS March Meeting Abstracts1193.

    Maranganti,R.;Sharma,N.;Sharma,P.(2006):Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects:Green’s function solutions and embedded inclusions.Physical Review B,vol.74,no.1,014110.

    Marvan,M.;Janus,V.;Havranek,A.(1994):Electric polarization induced by strain gradient.Paper presented at the Electrets,1994.(ISE 8),8th International Symposium on623-627.

    Mbarki,R.;Haskins,J.;Kinaci,A.;Cagin,T.(2014):Temperature dependence of flexoelectricity in BaTiO 3 and SrTiO 3 perovskite nanostructures.Physics Letters A,vol.378,no.30,pp.2181-2183.

    Meyer,R.B.(1969):Piezoelectric effects in liquid crystals.Physical Review Letters,vol.22,no.18,918.

    Nguyen,T.D.;Mao,S.;Yeh,Y.W.;Purohit,P.K.;McAlpine,M.C.(2013):Nanoscale flexoelectricity.Advanced Materials,vol.25,no.7,pp.946-974.

    Nishi,Y.(1978):Field effect transistors):Google Patents.

    Park,S.;Gao,X.(2006):Bernoulli-Euler beam model based on a modified couple stress theory,Journal of Micromechanics and Microengineering,16(11),2355.

    Petrov,A.G.(2002):Flexoelectricity of model and living membranes.Biochimica et Biophysica Acta(BBA)-Biomembranes,vol.1561,no.1,pp.1-25.

    Shen,S.;Hu,S.(2010):A theory of flexoelectricity with surface effect for elastic dielectrics.Journal of the Mechanics and Physics of Solids,vol.58,no.5,pp.665-677.

    Shu,L.;Huang,W.;Kwon,S.R.;Wang,Z.;Li,F.;Wei,X.;Zhang,S.;Lanagan,M.;Yao,X.;Jiang,X.(2014a):Converse flexoelectric coefficient f1212 in bulk Ba0.67Sr0.33TiO3.Applied Physics Letters,vol.104,no.23,232902.

    Shu,L.;Li,F.;Huang,W.;Wei,X.;Yao,X.;Jiang,X.(2014b):Relationship between direct and converse flexoelectric coefficients.Journal of Applied Physics,vol.116,no.14,144105.

    Shu,L.;Wei,X.;Jin,L.;Li,Y.;Wang,H.;Yao,X.(2013):Enhanced direct flexoelectricity in paraelectric phase of Ba(Ti0.87Sn0.13)O3 ceramics.Applied Physics Letters,vol.102,no.15,152904.

    Shu,L.;Wei,X.;Pang,T.;Yao,X.;Wang,C.(2011):Symmetry of flexoelectric coefficients in crystalline medium.Journal of Applied Physics,vol.110,no.10,104106.

    Sodano,H.A.;Inman,D.J.;Park,G.(2004):A review of power harvesting from vibration using piezoelectric materials.Shock and Vibration Digest,vol.36,no.3,pp.197-206.

    Tagantsev,A.(1985):Theory of flexoelectric effect in crystals.Zhurnal Eksperi-mental’noi i Teoreticheskoi Fiziki,vol.88,no.6,pp.2108-2122.

    Tagantsev,A.(1986):Piezoelectricity and flexoelectricity in crystalline dielectrics.Physical Review B,vol.34,no.8,5883.

    Tagantsev,A.(1987):Pyroelectric,piezoelectric, flexoelectric,and thermal polarization effects in ionic crystals.Physics-Uspekhi,vol.30,no.7,pp.588-603.

    Tagantsev,A.K.(1991):Electric polarization in crystals and its response to thermal and elastic perturbations.Phase Transitions:A Multinational Journal,vol.35,no.3-4,pp.119-203.

    Wang,Z.L.(2008):Towards Self-Powered Nanosystems:From Nanogenerators to Nanopiezotronics.Advanced Functional Materials,vol.18,no.22,pp.3553-3567.

    Xu,L.;SHEN,S.(2013):Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity.International Journal of Applied Mechanics,vol.5,no.02.

    Xu,S.;Qin,Y.;Xu,C.;Wei,Y.;Yang,R.;Wang,Z.L.(2010):Self-powered nanowire devices.Nature nanotechnology,vol.5,no.5,pp.366-373.

    Xu,Y.;Hu,S.;Shen,S.(2013):Electrostatic potential in a bent flexoelectric semiconductive nanowire.CMES-Computer Modeling in Engineering&Sciences,vol.91,no.5,pp.397-408.

    Yan,X.;Huang,W.;Kwon,S.;Yang,S.;Jiang,X.;Yuan,F.(2013a):Design of a curvature sensor using a flexoelectric material.Paper presented at the SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring86920N-86920N-86910.

    Yan,X.;Huang,W.;Kwon,S.R.;Yang,S.;Jiang,X.;Yuan,F.-G.(2013b):A sensor for the direct measurement of curvature based on flexoelectricity.Smart Materials and Structures,vol.22,no.8,085016.

    Yan,Z.;Jiang,L.(2013a):Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams.Journal of Applied Physics,vol.113,no.19,194102.

    Yan,Z.;Jiang,L.(2013b):Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity.Journal of Physics D:Applied Physics,vol.46,no.35,355502.

    Yang,S.;Shen,S.(2014):Anti-plane Circular Nano-inclusion Problem with Electric Field Gradient and Strain Gradient Effects.CMC:Computers,Materials&Continua,vol.40,no.3,pp.219-239.

    Yudin,P.;Tagantsev,A.(2013):Fundamentals of flexoelectricity in solids.Nanotechnology,vol.24,no.43,432001.

    Yurkov,A.(2015):Calculation of flexoelectric deformations of finite-size bodies.Physics of the Solid State,vol.57,no.3,pp.460-466.

    Zhu,W.;Fu,J.Y.;Li,N.;Cross,L.(2006):Piezoelectric composite based on the enhanced flexoelectric effects.Applied physics letters,vol.89,no.19,192904-192904-192903.

    Zubko,P.;Catalan,G.;Tagantsev,A.K.(2013):Flexoelectric effect in solids.Annual Review of Materials Research,vol.43,pp.387-421.

    1State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,P.R.China.

    2Corresponding Authors.E-mail:xul594@gmail.com;slhu@mail.xjtu.edu.cn

    日韩精品青青久久久久久| 久久婷婷人人爽人人干人人爱| 有码 亚洲区| 中亚洲国语对白在线视频| 热99re8久久精品国产| 国产综合懂色| 激情在线观看视频在线高清| 精华霜和精华液先用哪个| 午夜福利免费观看在线| 国产成人aa在线观看| 久久国产精品人妻蜜桃| 日本成人三级电影网站| 91麻豆精品激情在线观看国产| 日日干狠狠操夜夜爽| 三级毛片av免费| 国产成人a区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 色吧在线观看| 国产精华一区二区三区| 在线播放国产精品三级| 欧美最新免费一区二区三区 | 动漫黄色视频在线观看| 亚洲av美国av| 嫁个100分男人电影在线观看| 亚洲av电影不卡..在线观看| 少妇熟女aⅴ在线视频| 日韩欧美国产一区二区入口| 99在线人妻在线中文字幕| a在线观看视频网站| 熟女少妇亚洲综合色aaa.| 国产午夜精品论理片| 精品电影一区二区在线| 99在线人妻在线中文字幕| 美女cb高潮喷水在线观看| 国产久久久一区二区三区| 亚洲最大成人中文| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| 欧美另类亚洲清纯唯美| 岛国在线观看网站| 久久亚洲精品不卡| 午夜福利在线观看吧| 午夜福利成人在线免费观看| 一个人看视频在线观看www免费 | 最新美女视频免费是黄的| 精品福利观看| 宅男免费午夜| 久久午夜亚洲精品久久| 免费在线观看日本一区| 亚洲专区国产一区二区| 亚洲美女视频黄频| 女人十人毛片免费观看3o分钟| 夜夜夜夜夜久久久久| 18+在线观看网站| 好男人电影高清在线观看| 中文字幕人妻丝袜一区二区| 18禁裸乳无遮挡免费网站照片| 成年女人毛片免费观看观看9| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av涩爱 | 久久久国产精品麻豆| 麻豆成人午夜福利视频| 少妇的逼水好多| 在线观看av片永久免费下载| 亚洲精品国产精品久久久不卡| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| 老熟妇仑乱视频hdxx| 九色成人免费人妻av| 精品欧美国产一区二区三| xxx96com| 国产精品综合久久久久久久免费| 久久久久久久午夜电影| 亚洲精品456在线播放app | 国产成人啪精品午夜网站| 国语自产精品视频在线第100页| 色噜噜av男人的天堂激情| 日韩av在线大香蕉| 99热这里只有是精品50| 国产乱人视频| 露出奶头的视频| x7x7x7水蜜桃| 欧美日本视频| 婷婷六月久久综合丁香| 国产淫片久久久久久久久 | 一本综合久久免费| 美女免费视频网站| 久久天躁狠狠躁夜夜2o2o| av黄色大香蕉| 99久久九九国产精品国产免费| 色哟哟哟哟哟哟| 日韩欧美三级三区| 女人十人毛片免费观看3o分钟| 狂野欧美激情性xxxx| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产清高在天天线| 久99久视频精品免费| 看免费av毛片| 亚洲精品在线观看二区| 搡老妇女老女人老熟妇| 国产综合懂色| 亚洲精品在线观看二区| 色精品久久人妻99蜜桃| 午夜视频国产福利| 亚洲精品日韩av片在线观看 | 18+在线观看网站| 无遮挡黄片免费观看| 狠狠狠狠99中文字幕| 亚洲av电影不卡..在线观看| 免费在线观看影片大全网站| 天天添夜夜摸| 国产av一区在线观看免费| 亚洲 欧美 日韩 在线 免费| 天天添夜夜摸| 欧美大码av| 不卡一级毛片| 51午夜福利影视在线观看| 精品久久久久久成人av| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区在线av高清观看| xxxwww97欧美| 国产精品亚洲一级av第二区| 淫秽高清视频在线观看| 亚洲男人的天堂狠狠| 99视频精品全部免费 在线| 国产成年人精品一区二区| 国产淫片久久久久久久久 | 三级男女做爰猛烈吃奶摸视频| 高清日韩中文字幕在线| 成人性生交大片免费视频hd| 特级一级黄色大片| 国产一区二区在线观看日韩 | 久久精品国产亚洲av涩爱 | 宅男免费午夜| 三级男女做爰猛烈吃奶摸视频| 男人舔女人下体高潮全视频| 性色av乱码一区二区三区2| 久99久视频精品免费| 少妇的逼水好多| 亚洲精品在线美女| 草草在线视频免费看| 亚洲av熟女| 欧洲精品卡2卡3卡4卡5卡区| 在线十欧美十亚洲十日本专区| 精品国产超薄肉色丝袜足j| 午夜免费观看网址| 亚洲人成伊人成综合网2020| 天堂av国产一区二区熟女人妻| 亚洲自拍偷在线| 久久久久久大精品| 国产v大片淫在线免费观看| 搞女人的毛片| 五月玫瑰六月丁香| 国产淫片久久久久久久久 | 久久精品国产99精品国产亚洲性色| 亚洲在线自拍视频| 又粗又爽又猛毛片免费看| 久久久久久久久久黄片| 男人的好看免费观看在线视频| 精品国内亚洲2022精品成人| 我的老师免费观看完整版| 国产精品自产拍在线观看55亚洲| 久久久久性生活片| 国产老妇女一区| 久久这里只有精品中国| 午夜激情欧美在线| 亚洲国产欧美网| 少妇丰满av| 香蕉丝袜av| 日韩欧美国产在线观看| 麻豆成人av在线观看| 婷婷六月久久综合丁香| 欧美黑人欧美精品刺激| or卡值多少钱| 中文字幕人成人乱码亚洲影| 激情在线观看视频在线高清| 啦啦啦韩国在线观看视频| svipshipincom国产片| 国产精品98久久久久久宅男小说| 三级男女做爰猛烈吃奶摸视频| 全区人妻精品视频| 在线视频色国产色| av在线蜜桃| 免费无遮挡裸体视频| 亚洲精品日韩av片在线观看 | 久久久久精品国产欧美久久久| 婷婷亚洲欧美| 动漫黄色视频在线观看| 91字幕亚洲| 久久精品国产亚洲av涩爱 | 中文字幕av在线有码专区| 757午夜福利合集在线观看| 国产亚洲精品久久久久久毛片| 变态另类成人亚洲欧美熟女| 国产精品综合久久久久久久免费| 久久中文看片网| 深夜精品福利| 天天添夜夜摸| 亚洲人与动物交配视频| 51午夜福利影视在线观看| 色播亚洲综合网| 我要搜黄色片| 性欧美人与动物交配| 中文字幕av在线有码专区| 国产极品精品免费视频能看的| www.999成人在线观看| av片东京热男人的天堂| 精品福利观看| 99在线人妻在线中文字幕| 欧美一级毛片孕妇| 日本熟妇午夜| 亚洲精品粉嫩美女一区| 校园春色视频在线观看| 看片在线看免费视频| 波野结衣二区三区在线 | 亚洲专区中文字幕在线| 成人三级黄色视频| 久久久久久国产a免费观看| 午夜福利免费观看在线| 国产91精品成人一区二区三区| 久久精品影院6| 中文字幕熟女人妻在线| 一夜夜www| av片东京热男人的天堂| 久久久久久久亚洲中文字幕 | 亚洲人与动物交配视频| 国产v大片淫在线免费观看| 国产精品电影一区二区三区| 成人特级黄色片久久久久久久| 波多野结衣高清无吗| 精品国产三级普通话版| 69人妻影院| 夜夜夜夜夜久久久久| 国产精品一区二区免费欧美| 亚洲中文字幕日韩| 九色成人免费人妻av| 亚洲不卡免费看| 日本黄色视频三级网站网址| 免费人成视频x8x8入口观看| 国产成人a区在线观看| 啦啦啦免费观看视频1| 亚洲七黄色美女视频| 99热精品在线国产| 亚洲国产精品999在线| 久久午夜亚洲精品久久| 精品一区二区三区av网在线观看| 91字幕亚洲| 久久人人精品亚洲av| 舔av片在线| 国内久久婷婷六月综合欲色啪| 九九在线视频观看精品| 午夜亚洲福利在线播放| 窝窝影院91人妻| 午夜a级毛片| 18美女黄网站色大片免费观看| 国产伦在线观看视频一区| www日本黄色视频网| 一级作爱视频免费观看| 日韩精品中文字幕看吧| 色综合站精品国产| 首页视频小说图片口味搜索| 国产高潮美女av| 久久久久久国产a免费观看| 丰满人妻熟妇乱又伦精品不卡| 黄色成人免费大全| 亚洲精品美女久久久久99蜜臀| 很黄的视频免费| 中文亚洲av片在线观看爽| 麻豆国产97在线/欧美| 国产精品 欧美亚洲| 国产午夜福利久久久久久| 啪啪无遮挡十八禁网站| 一级毛片女人18水好多| 18禁国产床啪视频网站| bbb黄色大片| 欧美区成人在线视频| 日日干狠狠操夜夜爽| xxx96com| 久久精品国产清高在天天线| 欧美成人一区二区免费高清观看| 欧美绝顶高潮抽搐喷水| 天堂√8在线中文| 热99re8久久精品国产| 女同久久另类99精品国产91| 日韩欧美三级三区| 制服人妻中文乱码| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区三区视频在线 | 最近最新免费中文字幕在线| 欧美最黄视频在线播放免费| 88av欧美| 精品日产1卡2卡| 中文字幕av成人在线电影| 欧美xxxx黑人xx丫x性爽| 国产av麻豆久久久久久久| 日韩欧美三级三区| 中出人妻视频一区二区| 亚洲美女黄片视频| 国产日本99.免费观看| 亚洲av五月六月丁香网| 日韩av在线大香蕉| 欧美+日韩+精品| 宅男免费午夜| 亚洲天堂国产精品一区在线| 欧美区成人在线视频| 香蕉av资源在线| 日韩精品中文字幕看吧| 91九色精品人成在线观看| 白带黄色成豆腐渣| 国内少妇人妻偷人精品xxx网站| 一二三四社区在线视频社区8| 日韩av在线大香蕉| 精品人妻一区二区三区麻豆 | 天天躁日日操中文字幕| 真人做人爱边吃奶动态| 亚洲中文字幕一区二区三区有码在线看| 中文字幕熟女人妻在线| 美女高潮的动态| 麻豆成人av在线观看| 久久精品国产自在天天线| 国产精品 国内视频| 九色国产91popny在线| 免费人成在线观看视频色| 国产视频一区二区在线看| 男女做爰动态图高潮gif福利片| 一边摸一边抽搐一进一小说| 窝窝影院91人妻| 国产高潮美女av| 乱人视频在线观看| 国产成人啪精品午夜网站| 亚洲中文字幕日韩| 久久99热这里只有精品18| tocl精华| 高清在线国产一区| 又紧又爽又黄一区二区| 一区福利在线观看| 嫩草影院精品99| 免费观看的影片在线观看| 久久精品国产99精品国产亚洲性色| 又黄又爽又免费观看的视频| 久久久久久九九精品二区国产| 五月玫瑰六月丁香| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩精品一区二区| 在线观看免费视频日本深夜| 床上黄色一级片| 最近2019中文字幕mv第一页| 人妻制服诱惑在线中文字幕| 黄片wwwwww| 2021少妇久久久久久久久久久| 精品一区二区三卡| www.av在线官网国产| 一级毛片 在线播放| 亚洲va在线va天堂va国产| 免费看不卡的av| 亚洲真实伦在线观看| 久久午夜福利片| 欧美日韩亚洲高清精品| 亚洲精品亚洲一区二区| 国产精品一二三区在线看| 国产亚洲5aaaaa淫片| 嫩草影院入口| 三级经典国产精品| 精品一区在线观看国产| 免费看不卡的av| 美女黄网站色视频| 亚洲人成网站高清观看| 欧美精品国产亚洲| av黄色大香蕉| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 五月玫瑰六月丁香| 联通29元200g的流量卡| 爱豆传媒免费全集在线观看| 成年女人在线观看亚洲视频 | 日本猛色少妇xxxxx猛交久久| 亚洲图色成人| 爱豆传媒免费全集在线观看| 国产中年淑女户外野战色| 亚洲成人av在线免费| 日韩欧美精品免费久久| 大香蕉久久网| 国产精品久久视频播放| 又黄又爽又刺激的免费视频.| av免费观看日本| 国模一区二区三区四区视频| 欧美最新免费一区二区三区| 久久久久九九精品影院| 成人亚洲欧美一区二区av| 国语对白做爰xxxⅹ性视频网站| 十八禁网站网址无遮挡 | 久久久欧美国产精品| 我的老师免费观看完整版| 国内精品宾馆在线| 一级毛片黄色毛片免费观看视频| 亚洲精品日本国产第一区| www.av在线官网国产| 少妇猛男粗大的猛烈进出视频 | 国产午夜精品一二区理论片| 男女啪啪激烈高潮av片| 女人被狂操c到高潮| 国产极品天堂在线| 国产视频内射| 看非洲黑人一级黄片| 国产精品久久久久久精品电影小说 | 男女边吃奶边做爰视频| 黄色欧美视频在线观看| 国产精品爽爽va在线观看网站| 国产伦理片在线播放av一区| 国产男人的电影天堂91| 亚洲av中文字字幕乱码综合| 听说在线观看完整版免费高清| 欧美激情国产日韩精品一区| 亚洲精品影视一区二区三区av| 老司机影院毛片| 搡老妇女老女人老熟妇| 久久久久久久久久人人人人人人| 男人和女人高潮做爰伦理| 我的老师免费观看完整版| 好男人在线观看高清免费视频| av专区在线播放| 久久99热这里只有精品18| 丝袜喷水一区| 亚洲av福利一区| 丝袜喷水一区| a级毛片免费高清观看在线播放| 国产探花在线观看一区二区| 天堂√8在线中文| 久久久欧美国产精品| 国产av不卡久久| 秋霞伦理黄片| 激情 狠狠 欧美| 秋霞伦理黄片| 天美传媒精品一区二区| 麻豆成人av视频| 卡戴珊不雅视频在线播放| 亚洲国产日韩欧美精品在线观看| 我要看日韩黄色一级片| 国内精品一区二区在线观看| 日本av手机在线免费观看| 少妇高潮的动态图| 一个人免费在线观看电影| 日韩国内少妇激情av| 国产视频首页在线观看| 九草在线视频观看| 一区二区三区乱码不卡18| 欧美激情久久久久久爽电影| 一级毛片我不卡| 黄色日韩在线| 久久久色成人| 汤姆久久久久久久影院中文字幕 | 九草在线视频观看| 综合色丁香网| 九九在线视频观看精品| 最近2019中文字幕mv第一页| 午夜福利网站1000一区二区三区| 日韩一区二区三区影片| 哪个播放器可以免费观看大片| 国产单亲对白刺激| ponron亚洲| 亚洲av一区综合| 久久久久久久久中文| 国内精品宾馆在线| 91精品一卡2卡3卡4卡| 国产熟女欧美一区二区| 老女人水多毛片| 久久久亚洲精品成人影院| 午夜福利在线观看吧| 女人久久www免费人成看片| 天堂√8在线中文| 国产在视频线在精品| 午夜福利高清视频| 2022亚洲国产成人精品| 免费观看性生交大片5| 成人综合一区亚洲| 亚洲怡红院男人天堂| 少妇人妻精品综合一区二区| 国产精品一区二区性色av| 欧美激情在线99| 亚洲,欧美,日韩| 日日撸夜夜添| 亚洲av电影不卡..在线观看| 亚洲欧美精品自产自拍| 成人午夜高清在线视频| 午夜精品国产一区二区电影 | 国产男人的电影天堂91| a级毛色黄片| 国产精品国产三级专区第一集| 国产亚洲av嫩草精品影院| 搞女人的毛片| 一级毛片我不卡| 亚洲成色77777| 国产亚洲av嫩草精品影院| 亚洲激情五月婷婷啪啪| 国产成人aa在线观看| 街头女战士在线观看网站| 极品少妇高潮喷水抽搐| 日韩精品有码人妻一区| 日韩视频在线欧美| 最近视频中文字幕2019在线8| 80岁老熟妇乱子伦牲交| 一夜夜www| 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 1000部很黄的大片| 亚洲精品中文字幕在线视频 | 我的女老师完整版在线观看| 欧美变态另类bdsm刘玥| 一边亲一边摸免费视频| 十八禁网站网址无遮挡 | 最近中文字幕2019免费版| 国产黄片视频在线免费观看| 九九在线视频观看精品| 三级毛片av免费| 国产精品国产三级专区第一集| 亚洲av在线观看美女高潮| 日韩欧美三级三区| 在线观看人妻少妇| 久久久精品欧美日韩精品| 亚洲丝袜综合中文字幕| 色播亚洲综合网| 亚洲欧美精品自产自拍| 午夜福利视频1000在线观看| 国产黄色免费在线视频| 男人和女人高潮做爰伦理| 国产真实伦视频高清在线观看| 99热这里只有精品一区| 男人舔女人下体高潮全视频| 国产探花在线观看一区二区| 少妇的逼好多水| 黄色一级大片看看| 亚洲精品国产av成人精品| 欧美日韩综合久久久久久| 午夜爱爱视频在线播放| 熟女电影av网| 国产美女午夜福利| eeuss影院久久| 特大巨黑吊av在线直播| 久久久久久久久久黄片| 中文资源天堂在线| 欧美日韩视频高清一区二区三区二| 免费av不卡在线播放| 少妇猛男粗大的猛烈进出视频 | 中文在线观看免费www的网站| 91久久精品国产一区二区三区| 少妇人妻精品综合一区二区| 亚洲怡红院男人天堂| 天堂网av新在线| 少妇的逼好多水| 不卡视频在线观看欧美| 舔av片在线| 九九在线视频观看精品| 又爽又黄无遮挡网站| 亚洲精品成人久久久久久| 午夜精品一区二区三区免费看| 亚洲国产欧美人成| 不卡视频在线观看欧美| 国产亚洲精品久久久com| 日本与韩国留学比较| 日韩欧美国产在线观看| 亚洲国产欧美人成| 久久久久久久久久人人人人人人| 亚洲人与动物交配视频| 亚洲av.av天堂| av在线老鸭窝| 国产视频首页在线观看| 九九在线视频观看精品| 男人狂女人下面高潮的视频| 亚洲av免费在线观看| 青春草视频在线免费观看| 亚洲欧美日韩卡通动漫| 两个人的视频大全免费| 三级毛片av免费| 草草在线视频免费看| 久久精品国产亚洲av天美| 亚洲欧洲日产国产| 成人亚洲欧美一区二区av| 国语对白做爰xxxⅹ性视频网站| 亚洲精品,欧美精品| 又黄又爽又刺激的免费视频.| 中文欧美无线码| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 联通29元200g的流量卡| 成人午夜高清在线视频| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 免费av毛片视频| 久久久久免费精品人妻一区二区| 久久午夜福利片| 人人妻人人澡欧美一区二区| 中文在线观看免费www的网站| 爱豆传媒免费全集在线观看| 伦精品一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久久久按摩| av黄色大香蕉| 少妇裸体淫交视频免费看高清| 久久久久国产网址| 一级黄片播放器| 一级毛片 在线播放| 男女那种视频在线观看| 啦啦啦中文免费视频观看日本| 日韩精品青青久久久久久| 中文在线观看免费www的网站| 一级片'在线观看视频| 亚洲性久久影院| 69av精品久久久久久| 欧美xxⅹ黑人| 啦啦啦啦在线视频资源| 男女下面进入的视频免费午夜| 国产大屁股一区二区在线视频| 女人十人毛片免费观看3o分钟|