• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical Solution of Thermo-elastic Stresses and Deformation of Functionally Graded Rotating Hollow Discs with Radially Varying Thermo-mechanical Properties under Internal Pressure

    2015-12-12 11:58:14AkbariandGhanbari
    Computers Materials&Continua 2015年3期

    M.R.Akbariand J.Ghanbari,2

    Analytical Solution of Thermo-elastic Stresses and Deformation of Functionally Graded Rotating Hollow Discs with Radially Varying Thermo-mechanical Properties under Internal Pressure

    M.R.Akbari1and J.Ghanbari1,2

    Exact analytical solution for functionally graded hollow discs under internal pressure,thermal load and rotation are provided in this paper.Material properties of discs,i.e.elastic modulus,density and thermal expansion coefficient are assumed to vary in radial direction.Two power functions are assumed for property dependency to study various types of functional grading of materials in the discs.Assuming small deformations,a differential equation is obtained and solved for the Airy stress function.The effects of various grading functions on the stress and deformation distribution are studied and an optimum value for the power is obtained.

    Functionally graded materials, Thermo-elastic solution, Rotating discs.

    1 Introduction

    In functionally graded materials(FGMs),usually two different materials,e.g.a metal and a ceramic,are distributed throughout the body according to a smooth distribution function.The material properties are thus functions of position,gradually changing from one specific material,namely a metal to another,a ceramic.FGMs for their excellent mechanical properties such as high strength impact,creep,erosion and thermal tolerance are highly considered by researchers in extreme loading environments[Suresh and Mortensen(1998)].The metal part of an FGM tolerates mechanical stresses while the ceramic part is a good thermally stable part resisting high erosive conditions[Reddy et al.(1999)].Because of these properties,FGMs are an ideal choice for applications with high temperature and severe temperature gradients.By controlling material distribution in the required dimension,even thin-walled structures are achieved[Niino and Maeda(1990)].

    For better understanding the mechanical behavior of FGMs,various methods are employed by researchers to achieve an optimal design for the specific application.Oral and Anlas(2005)have studied mechanical behavior of non-homogeneous cylindrical bodies assuming a power function dependency of mechanical properties on the radius.Horgan and Chan(1999)considered hollow cylinders under internal pressure,also assuming a power function dependency of the mechanical properties on the radius of the cylinder.Nadeau and Ferrari(1999)studied thermal stresses in a non-homogeneous plate with through the thickness variation of the mechanical properties.A closed-form solution for spherical and cylindrical pressure vessels of FGMs is developed by Tutuncu and Ozturk(2001).Liu et al.(2013)developed an analytical methodology using the averaging technique of composites to describe the thermo-elastic and thermo-elastoplastic behavior of a triple-layered FGM system subjected to thermal loadings.Xie and Chi(2014)studied dynamic response sensitivity of a simply supported functionally graded magneto-electroelastic plates by combining analytical method with finite element method.In their work,the FGM parameters are assumed to obey exponential law in the thickness direction Also an exact three-dimensional elastic model for the free vibration analysis of functionally graded sandwich simply-supported plates and shells is proposed by Brischetto(2013).

    Rotating discs are common in internal combustion engines,centrifugal compressors,turbine rotors and flywheels and operate in harsh thermal conditions which require an appropriate material to withstand applied thermal and mechanical loads.In recent years,FGMs are considered as a good choice of material for these discs and various studies have been conducted by researches for this purpose.Durodola and Attia(2000)studied hollow and solid FGM discs reinforced by fibers and employed the finite element method for their deformation and stress analysis.Bayat et al.(2009)studied bending of rotating FGM discs using first order shear deformation theory and obtained semi-analytical solution for small deformation case.Kadkhodayan and Golmakani(2011)used von Karman equations for large deformation case and analyzed bending of rotating hollow and solid FGM discs.Asghari and Ghafoori(2010)employed a semi-analytical 3D solution to better study the stress on thick rotating discs.Hosseini Kordkheili and Naghdabadi(2007)presented a semi-analytical thermo-elastic solution for constant thickness hollow and solid rotating FGM discs and compared the results with those of the finite element analysis.Bayat et al.(2009)presented a thermo-elastic solution for variable thickness FGM discs.Ghorbanpour et al.(2010)studied variable thickness discs using a magneto-thermo-elastic analysis and obtained a semi-analytical solution.

    In this paper,we present an exact closed-form solution for thermo-elastic analysis of hollow rotating FGM discs under internal presser and temperature gradient throughout the radial direction of the disc.As mentioned earlier,in previous works usually a semi-analytical solution is obtained for discs with radial variation in material properties.In this work,we employed a power function dependency of properties with respect to radial distance instead of the volume fraction of materials.Both internal and external radii are considered as reference position for the grading function and by choosing different values for the power,an optimal value has been obtained for near uniform stress distribution throughout the radial axis of the disc.

    2 Problem formulation

    2.1 Grading function

    A power dependency between the properties and radial distance is used in this paper for the FGM disc.Both inner and outer radius are considered as the reference position.For disc A,the inner radius is considered as the reference position and the material properties depend on radial position as,

    And for disc B,the outer radius is chosen as the reference position,

    whereriandroare inner and outer radii of the disc,respectively,andn,m,andbare arbitrary powers related to the grading of the materials.Note that for these powers equal to zero,isotropic material properties will be obtained(see Fig.1)

    2.2 Temperature gradient

    A temperature gradient is assumed in the radial direction of the rotating disc which is assumed to vary according to,

    As can be seen,the temperature on the inner radius is kept asT0and 0 on the outer radius.

    2.3 Governing equations

    The equilibrium equation in the radial direction for an FGM disc rotating with constant angular velocity of ω assuming a plane stress state can be expressed as,

    Figure 1:Schematic of an FG rotating disc subjected to thermal loading.

    Since geometry,loadings and material properties have rotational symmetry with respect to the axis of rotation of the disc,both radial and circumferential stresses are just functions ofrand do not depend on θ.Also,the shear stress τrθis identically zero.

    Using the general thermo-elastic Hooke’s law,the strain components are,

    whereT(r)is the temperature given in Eq.2.Note that the Poisson’s ratio is assumed to be constant throughout the disc.

    To solve the equilibrium equation in Eq.3,we use the Airy stress function,F,with stress components de fined as,

    In axisymmetric plane stress state,the strain-displacement relations are as follows,

    whereuis the displacement component along the radial direction.Combining the relations in Eq.6,we have,

    Substituting Eq.5 into Eq.4 and the results in Eq.7,we arrive at,

    Eq.8 is a non-homogeneous ordinary differential equation and its solution involves a general homogeneous solution and a particular non-homogeneous one.To obtain the solution to the homogeneous equation,we use a substitution of variables like,

    whereC1andC2are constants which will be obtained from boundary conditions,and

    The particular solution may be obtained as

    whereG,H,andJare constants.For disc A,these constants are obtained as,

    For disc B,similar expressions are obtained as follows,

    Now,the solution to the Eq. 8 is the sum of the homogeneous and non-homogeneous solutions,Eqs.9 and 11,

    Using Eq.5,the stress components are derived.For disc A,

    Similarly,for disc B,

    Using Eq.4,the strain components can be obtained.For disc A,

    And for disc B,

    Substituting Eqs.15-a and 15-b into Eq.6,the radial displacement is obtained as,

    For disc A;and for disc B as follows,

    2.4 Boundary conditions

    To fully determine displacements and the stress components of the discs,we need to apply the boundary conditions on the inner and outer radii of the discs.As we mentioned earlier,we assumed that the discs are under internal pressure and the outer surface is traction-free.So,we have

    Applying these conditions,constantsC1andC2are determined,

    3 Results and discussions

    For better illustration and interpretation of the results,we first define dimensionless parameters for material properties,stress,and strains as follows,

    To plot the results,we have used the following numerical values for the geometry and mechanical properties of the discs,

    Figs.2.a and 2.b show the dimensionless Young’s modulus of disc A and B for different values of the powernwith respect to radial distance.Both positive and negative values fornhave been considered in the analysis.The variation of thermal expansion coefficient α is shown in Figs 2.c and 2.d for discs A and B,respectively.Similar behavior for the density of the discs can be seen in Figs 2.e and 2.f.

    By choosing different relations for describing the dependency of properties on the radial distance,we are able to tune the power values in these relations to match those of experimental data or more accurate modeling of merely the mechanical properties of FGM discs,while maintaining the solvability of the derived equations and yielding a closed form solution for the problem.

    The results for stress and strain components are illustrated on Figs 3 and 4 Figs 3.a and 3.b show the variation of radial stress through the radial distance of both discs for various values ofn.Disc A shows more sensitivity to the value ofnthan disc B.For decreasing values ofn,the stress distribution on the disc tends to be uniform,especially for disc A.This is also the case for the circumferential stress component shown in Figs 3.c and 3.d.Again,disc A is more sensitive to the value of powern.Forn=1,2,minimum values for the radial stress component occur at the middle of the discs,while forn=0,-1,-2,internal radius has the minimum value for the radial stress,which is equal to the applied internal pressure.Disc B does not show this behavior and the minimum value of the radial stress is always occur on the internal radius of the disc corresponding to the applied pressure.

    Figure 2:Material property distribution on the discs:(a)and(b)elastic modulus on discs A and B;(c)and(d)thermal expansion coefficient on discs A and B;(e)and(f)density on discs A and B,respectively with respect to various values for the power in the grading function.

    Figure 3:Stress distribution in the radial direction:(a)and(b)radial stress component for discs A and B;(c)and(d)circumferential stress component for discs A and B,respectively.

    Considering the circumferential stress component,in disc A,there is a smoother variation along the radius forn=-1,-2 compared to other values ofn.The maximum value of the stress always occur on the outer radius,except for the case ofn=-2 for which internal radius of the disc has the maximum value of the stress.Disc B always has the maximum stress on its outer radius.For decreasing value ofn,stress gradient decreases along the radial direction.

    Contrary to the stress components,the strain components tend to decrease with respect to radial distance,as shown in Fig.4.For increasing values ofn,circumferential strain values decrease throughout disc A,but increase in disc B.On the other hand,the radial strain component increases for disc A and decreases for disc B for increasing values ofn.Fig.5 shows the variation of radial displacement for discs

    Figure 4:Strain distribution in the radial direction:(a)and(b)radial strain component for discs A and B;(c)and(d)circumferential strain component for discs A and B,respectively.

    A and B for various values ofn.For increasing values ofn,radial displacement decreases for disc A,while increases for disc B.

    The effects of angular velocity on the stress and deformation components are depicted in Fig.6 for disc A and for the casen=2.For increasing angular velocity,both stress components and radial displacement increase throughout the disc.

    For better understanding the effects of temperature gradient on the stresses and displacement of the disc A,various cases are illustrated in Fig.7.For increasing temperature on the inner radius,the radial stress component shows more intensive gradient in the radial direction.The circumferential stress component decreases on the inner radius and increases on the outer radius for increasing temperature gradient.The radial displacement increases for increasing temperature gradient.Note that for Fig 7,the dimensionless parameters are

    Figure 5:Radial displacement component distribution in disc A(a),and in disc B(b).

    Figure 6:The effects of angular velocity on radial stress(a),and circumferential stress(b)components and radial displacement(c)for disc A.

    Figure 7:The effects of temperature gradient on radial(a),and circumferential stress distribution(b)and radial displacement(c)for disc A.

    4 Conclusion

    An analytical exact solution for functionally graded rotating discs under thermo mechanical loads is obtained in this paper.The discs are assumed to have constant thickness and the grading is on the radial direction.A power grading function is chosen so that a closed form elasticity solution can be obtained.Since the grading is on the radial direction,with the chosen function,mechanical properties on either inner or outer radius are set exactly and on the other side is tuned by the power value.To study the effect of this choice,two discs are considered.In disc A,inner radius is the base for mechanical property variation and in disc B,outer radius is the base.

    Stress and strain component variations throughout the radius of the discs are stud-ied.The variation ofnchanges the stress components behavior,from ascending to descending in some cases,while retain the general behavior for strain components.If an optimal design based on stress distribution is desired,it is possible to determine the proper grading of the base materials throughout the grading direction using the proposed method in this paper.

    Asghari,M.;Ghafoori,E.(2010):A three-dimensional elasticity solution for functionally graded rotating disks.J.Compos.Struct.,vol.92,pp.1092-1099.

    Bayat,M.;Sahari,B.B.;Saleem,M.;Hamouda,A.M.S;Reddy,J.N.(2009):Thermo elastic analysis of functionally graded rotating disks with temperature dependent material properties:uniform and variable thickness.Int.J.Mech.Mater.Des.,vol.5,pp.263-279.

    Bayat,M.;Sahari,B.B.;Saleem,M.;Aidy,A.;Wong,S.V.(2009):Bending analysis of a functionally graded rotating disk based on the first order shear deformation theory.J.Appl.Math.Model.,vol.33,pp.4215-4230.

    Brischetto,S.(2013):Exact elasticity solution for natural frequencies of functionally graded simply-supported structures.CMES:Computer Modeling in Engineering&Sciences,vol.95,no.5,pp.391-430.

    Durodola,J.F.;Attia,O.(2000):Deformation and stresses in FG rotating disks.J.Compos.Sci.Technol.,vol.60,pp.987-995.

    Golmakani,M.E.;Kadkhodayan,M.(2011):Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories.J.Compos.Struct.,vol.93,pp.973-982.

    Ghorbanpour Arani,A.;Loghman,A.;Shajari,A.R.;Amir,S. (2010):Semianalytical solution of magneto-thermo-elastic stresses for functionally graded variable thickness rotating disks.J.Mech.Sci.Technol.,vol.24,no.10,pp.2107-2117.

    Horgan,C.O.;Chan,A.M.(1999):The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials.J.Elasticity,vol.55,pp.43-59.

    Kordkheili,S.A.H.;Naghdabadi,R.(2007):Thermoelastic analysis of a functionally graded rotating disk.J.Compos.Struct.,vol.79,pp.508-516.

    Liu,B.;Dui,G.;Xie,B.;Xin,L.;Xue,L.(2013):A theoretical analysis on elastic and elastoplastic stress solutions for functionally graded materials using averaging technique of composites.CMC:Computers,Materials&Continua,vol.34,no.1,pp.83-94.

    Nadeau,J.C.;Ferrari,M.(1999):Microstructural optimization of a functionally graded transversely isotropic layer.J.Mech.Mater.,vol.31,pp.637-651.

    Niino,M.;Maeda,S.(1990):Recent development status of functionally gradient materials.J.Thin Wall.Struct.,vol.30,pp.699-703.

    Oral,A.;Anlas,G.(2005):Effects of radially varying moduli on stress distribution of nonhomogeneous anisotropic cylindrical bodies.Int.J.Solids Struct.,vol.42,pp.5568-5588.

    Reddy,J.N.;Wang,C.M.;Kitipornchai,S.(1999):Axisymmetric bending of functionally graded circular and annular plates.Eur.J.Mech.A/Solids,vol.18,pp.185-199.

    Suresh,S.;Mortensen,A.(1998):Fundamentals of functionally graded material.Processing and thermo mechanical behavior of graded metals and metal-ceramic composites.IOM Communications LTD,London,UK.

    Tutuncu,N.;Ozturk,M.(2001):Exact solutions for stresses in functionally graded pressure vessels.J.Compos.Part B-Eng.,vol.32,pp.683-686.

    Xie,G.Q.;Chi,M.X.(2014):Sensitivity of dynamic response of a simply supported functionally graded magneto-electro-elastic plate to its elastic parameters.CMC:Computers,Materials&Continua,vol.44,no.2,pp.123-140.

    1Department of Mechanical Engineering,Qom University of Technology,37195-1519,Qom,Iran.

    2Corresponding author.E-mail:ghanbari@qut.ac.ir

    老女人水多毛片| av福利片在线观看| 久久久国产成人精品二区| 美女cb高潮喷水在线观看| videossex国产| 日韩av在线大香蕉| 美女内射精品一级片tv| 日日摸夜夜添夜夜爱| 成人午夜高清在线视频| 免费搜索国产男女视频| 免费搜索国产男女视频| 午夜免费激情av| 1024手机看黄色片| 非洲黑人性xxxx精品又粗又长| 亚洲欧美精品综合久久99| 亚洲av成人精品一区久久| 一个人看的www免费观看视频| 国产av在哪里看| 精品久久久久久久久av| 简卡轻食公司| 男女那种视频在线观看| 在线a可以看的网站| 看非洲黑人一级黄片| 欧美性感艳星| 99热6这里只有精品| 久久这里有精品视频免费| 成人毛片60女人毛片免费| 国产精品国产三级国产av玫瑰| 男女下面进入的视频免费午夜| 亚洲在久久综合| 欧美激情久久久久久爽电影| 久久久久国产网址| 看十八女毛片水多多多| 国产免费福利视频在线观看| 成人毛片60女人毛片免费| 国产三级中文精品| 国产三级在线视频| 精品人妻视频免费看| 久久精品夜夜夜夜夜久久蜜豆| 精品午夜福利在线看| 听说在线观看完整版免费高清| 69人妻影院| 亚洲欧美清纯卡通| 级片在线观看| 全区人妻精品视频| 国产精品国产三级国产av玫瑰| www.色视频.com| 欧美zozozo另类| 国产精品蜜桃在线观看| 国产精品不卡视频一区二区| 国产极品天堂在线| 九色成人免费人妻av| 毛片女人毛片| 天堂网av新在线| 寂寞人妻少妇视频99o| 亚洲av免费在线观看| 国产亚洲精品久久久com| 久久久a久久爽久久v久久| 夫妻性生交免费视频一级片| www.色视频.com| 97热精品久久久久久| 99久久人妻综合| 国产精品一区二区在线观看99 | 亚洲av日韩在线播放| 五月玫瑰六月丁香| 国产淫片久久久久久久久| 欧美97在线视频| 国产免费一级a男人的天堂| 亚洲国产欧洲综合997久久,| 午夜爱爱视频在线播放| 久久久欧美国产精品| 日韩av在线免费看完整版不卡| 国产精品日韩av在线免费观看| 国产黄色视频一区二区在线观看 | 日本免费a在线| 欧美3d第一页| 欧美激情久久久久久爽电影| 亚洲欧洲国产日韩| 久久久久九九精品影院| 中文在线观看免费www的网站| 高清午夜精品一区二区三区| 亚洲自偷自拍三级| 国产精品一区www在线观看| 亚洲av中文字字幕乱码综合| 亚洲精品,欧美精品| 日韩强制内射视频| 成人鲁丝片一二三区免费| 亚洲在久久综合| 欧美bdsm另类| 午夜老司机福利剧场| 老女人水多毛片| 国内精品美女久久久久久| 国产精品一区二区三区四区久久| 国产亚洲精品久久久com| 免费人成在线观看视频色| 成人毛片a级毛片在线播放| 久久久久久国产a免费观看| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 日日啪夜夜撸| 精品久久国产蜜桃| 亚洲五月天丁香| 国产中年淑女户外野战色| 午夜福利成人在线免费观看| 国产一区有黄有色的免费视频 | 亚洲久久久久久中文字幕| 99热这里只有是精品50| 亚洲无线观看免费| 日本-黄色视频高清免费观看| 亚洲精品,欧美精品| 久久久久久伊人网av| 成人漫画全彩无遮挡| 性色avwww在线观看| 国产精品一二三区在线看| 午夜精品一区二区三区免费看| 成人高潮视频无遮挡免费网站| 欧美又色又爽又黄视频| 一个人免费在线观看电影| 国产精品久久久久久久久免| 最近中文字幕2019免费版| 亚洲18禁久久av| 国产美女午夜福利| 亚洲国产日韩欧美精品在线观看| 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 欧美潮喷喷水| 国产一区二区三区av在线| 日韩av在线大香蕉| 夜夜爽夜夜爽视频| 91午夜精品亚洲一区二区三区| 成人漫画全彩无遮挡| 久久久久久久国产电影| 亚洲第一区二区三区不卡| 国产国拍精品亚洲av在线观看| 午夜激情福利司机影院| 欧美不卡视频在线免费观看| 日韩欧美三级三区| 免费在线观看成人毛片| 欧美不卡视频在线免费观看| 国产成人精品婷婷| 欧美3d第一页| 人体艺术视频欧美日本| 一级毛片电影观看 | 婷婷色麻豆天堂久久 | 国产一级毛片七仙女欲春2| 男女边吃奶边做爰视频| 久久久国产成人精品二区| 久久久久久久久久久免费av| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 蜜桃亚洲精品一区二区三区| 人妻制服诱惑在线中文字幕| 波野结衣二区三区在线| 欧美日本亚洲视频在线播放| 99九九线精品视频在线观看视频| 免费黄网站久久成人精品| 国产熟女欧美一区二区| 欧美性猛交黑人性爽| 久热久热在线精品观看| 成年女人看的毛片在线观看| 最近视频中文字幕2019在线8| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 日本猛色少妇xxxxx猛交久久| 桃色一区二区三区在线观看| 成人亚洲欧美一区二区av| АⅤ资源中文在线天堂| 久久99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 人体艺术视频欧美日本| 中文欧美无线码| 淫秽高清视频在线观看| 成人无遮挡网站| 三级国产精品片| 天堂网av新在线| 国产老妇女一区| 精品久久久久久久人妻蜜臀av| 人体艺术视频欧美日本| 七月丁香在线播放| 毛片一级片免费看久久久久| 国产精品国产三级国产专区5o | 国产午夜精品久久久久久一区二区三区| 免费观看在线日韩| 国产毛片a区久久久久| 久久久午夜欧美精品| 久久久久久大精品| 人妻少妇偷人精品九色| 观看免费一级毛片| 中国美白少妇内射xxxbb| 亚洲色图av天堂| 成人三级黄色视频| 亚洲av电影在线观看一区二区三区 | 超碰97精品在线观看| 亚洲三级黄色毛片| 三级经典国产精品| 婷婷色麻豆天堂久久 | 看片在线看免费视频| 国产极品精品免费视频能看的| 亚洲国产精品专区欧美| 六月丁香七月| 欧美成人精品欧美一级黄| 国产午夜精品论理片| 99视频精品全部免费 在线| 亚洲av男天堂| 亚洲五月天丁香| 天堂影院成人在线观看| 亚洲精品日韩在线中文字幕| 中国国产av一级| 99热全是精品| 中文字幕av在线有码专区| 男的添女的下面高潮视频| АⅤ资源中文在线天堂| 蜜桃久久精品国产亚洲av| 国产爱豆传媒在线观看| 一个人观看的视频www高清免费观看| 欧美97在线视频| 成人三级黄色视频| 成人性生交大片免费视频hd| 白带黄色成豆腐渣| 成年女人永久免费观看视频| 亚洲久久久久久中文字幕| 国内少妇人妻偷人精品xxx网站| 岛国在线免费视频观看| 久久精品熟女亚洲av麻豆精品 | 亚洲精品乱久久久久久| 久久草成人影院| 国产午夜福利久久久久久| 国产精品女同一区二区软件| 精品久久久噜噜| 91aial.com中文字幕在线观看| 国产精品久久久久久av不卡| 18+在线观看网站| 国产精品av视频在线免费观看| 熟女人妻精品中文字幕| 在线观看66精品国产| 又粗又硬又长又爽又黄的视频| av女优亚洲男人天堂| 日韩在线高清观看一区二区三区| 日韩三级伦理在线观看| 成人亚洲精品av一区二区| 日韩人妻高清精品专区| 一区二区三区免费毛片| 免费看光身美女| 国产成人福利小说| 直男gayav资源| 国产av在哪里看| 91久久精品国产一区二区成人| 午夜精品在线福利| 亚洲av成人精品一区久久| 亚洲av中文av极速乱| 狠狠狠狠99中文字幕| 国产91av在线免费观看| 全区人妻精品视频| 床上黄色一级片| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品久久男人天堂| 亚洲av二区三区四区| 久久亚洲精品不卡| 性插视频无遮挡在线免费观看| 国产精品蜜桃在线观看| 一级黄色大片毛片| 国产av不卡久久| 成年av动漫网址| 波多野结衣高清无吗| 久久久久九九精品影院| 欧美激情久久久久久爽电影| 久久综合国产亚洲精品| 午夜视频国产福利| 亚洲自偷自拍三级| 精品久久久久久久久久久久久| 只有这里有精品99| 最近2019中文字幕mv第一页| 亚洲av日韩在线播放| 精品久久久久久久末码| 91狼人影院| 精品久久国产蜜桃| 精品久久久噜噜| 日本wwww免费看| 成人二区视频| 久久久午夜欧美精品| 在现免费观看毛片| 插逼视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久中文| 亚洲18禁久久av| 亚洲国产精品久久男人天堂| 国产真实伦视频高清在线观看| 亚洲欧美日韩高清专用| 高清午夜精品一区二区三区| 一区二区三区四区激情视频| 久久人妻av系列| 2022亚洲国产成人精品| av又黄又爽大尺度在线免费看 | 欧美激情国产日韩精品一区| 亚洲美女视频黄频| 在现免费观看毛片| 伊人久久精品亚洲午夜| 亚洲怡红院男人天堂| 大香蕉97超碰在线| 天堂av国产一区二区熟女人妻| 成人毛片a级毛片在线播放| 偷拍熟女少妇极品色| 免费黄网站久久成人精品| 久久精品国产亚洲av涩爱| 少妇被粗大猛烈的视频| 精品久久久久久久末码| 天堂网av新在线| 日韩人妻高清精品专区| 亚洲精品国产av成人精品| 白带黄色成豆腐渣| 91久久精品国产一区二区成人| 亚洲乱码一区二区免费版| 1024手机看黄色片| av.在线天堂| 天天躁日日操中文字幕| 国产精品.久久久| 一个人免费在线观看电影| 青春草视频在线免费观看| 丰满人妻一区二区三区视频av| 日本三级黄在线观看| 日韩中字成人| 中文字幕亚洲精品专区| 亚洲自拍偷在线| 久久久久性生活片| 蜜臀久久99精品久久宅男| 51国产日韩欧美| 1000部很黄的大片| 国产真实乱freesex| 国产极品精品免费视频能看的| 丰满少妇做爰视频| 网址你懂的国产日韩在线| 91在线精品国自产拍蜜月| 久久久久免费精品人妻一区二区| 欧美一区二区亚洲| 亚洲国产日韩欧美精品在线观看| 欧美性猛交黑人性爽| 秋霞伦理黄片| 久久久久久大精品| 国产精品不卡视频一区二区| 久久婷婷人人爽人人干人人爱| 99久国产av精品| av播播在线观看一区| 免费在线观看成人毛片| 自拍偷自拍亚洲精品老妇| 国产淫片久久久久久久久| 日本黄大片高清| 毛片女人毛片| 午夜福利网站1000一区二区三区| 国产精品一区www在线观看| 午夜福利网站1000一区二区三区| 国产人妻一区二区三区在| 身体一侧抽搐| 亚洲最大成人手机在线| 国产女主播在线喷水免费视频网站 | 欧美成人一区二区免费高清观看| 国产成人freesex在线| 青青草视频在线视频观看| 97超碰精品成人国产| 亚洲精品国产成人久久av| 啦啦啦韩国在线观看视频| 五月玫瑰六月丁香| 欧美潮喷喷水| or卡值多少钱| 特级一级黄色大片| 我要搜黄色片| 亚洲欧美日韩东京热| 精品免费久久久久久久清纯| 99久久九九国产精品国产免费| 嫩草影院新地址| 日本熟妇午夜| 欧美成人a在线观看| 亚洲成色77777| 精品久久久久久久末码| av福利片在线观看| 久久国内精品自在自线图片| 永久免费av网站大全| 亚洲国产精品成人久久小说| 午夜日本视频在线| 免费看av在线观看网站| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 少妇被粗大猛烈的视频| 在线播放国产精品三级| 久久久久久久久久黄片| 真实男女啪啪啪动态图| av国产免费在线观看| 日本一二三区视频观看| 欧美不卡视频在线免费观看| 噜噜噜噜噜久久久久久91| 十八禁国产超污无遮挡网站| 蜜臀久久99精品久久宅男| 国产精华一区二区三区| 国产精品乱码一区二三区的特点| 九色成人免费人妻av| 日韩欧美国产在线观看| av免费观看日本| 熟女人妻精品中文字幕| 免费观看在线日韩| 99国产精品一区二区蜜桃av| 国产精品人妻久久久久久| 日韩大片免费观看网站 | 亚洲成av人片在线播放无| 亚洲av男天堂| 极品教师在线视频| 日韩av不卡免费在线播放| 18禁裸乳无遮挡免费网站照片| 黄色配什么色好看| 97在线视频观看| 国产精品人妻久久久久久| 深爱激情五月婷婷| 国产精品一区二区三区四区免费观看| 美女内射精品一级片tv| 国产免费福利视频在线观看| 久久精品夜色国产| 中文欧美无线码| 欧美成人免费av一区二区三区| 男女下面进入的视频免费午夜| 久久精品国产鲁丝片午夜精品| 我的女老师完整版在线观看| 可以在线观看毛片的网站| 欧美性猛交黑人性爽| 国产伦在线观看视频一区| 久久6这里有精品| 波野结衣二区三区在线| 狠狠狠狠99中文字幕| 尾随美女入室| 国产精品日韩av在线免费观看| 久久久久久久亚洲中文字幕| 亚洲精品成人久久久久久| 国内精品宾馆在线| 人人妻人人澡人人爽人人夜夜 | 在线免费观看的www视频| 精品久久久久久成人av| 七月丁香在线播放| 久久这里有精品视频免费| 成年女人永久免费观看视频| 国产免费又黄又爽又色| 日韩制服骚丝袜av| 免费看av在线观看网站| 又粗又爽又猛毛片免费看| 毛片女人毛片| 国产高清不卡午夜福利| 亚洲欧美日韩卡通动漫| 日韩成人伦理影院| 一级毛片电影观看 | 又粗又爽又猛毛片免费看| 国产精品嫩草影院av在线观看| 1000部很黄的大片| 国产精品久久久久久av不卡| 天堂中文最新版在线下载 | 亚洲精品国产成人久久av| 麻豆成人av视频| 久久6这里有精品| 国产老妇女一区| 日韩亚洲欧美综合| 波多野结衣高清无吗| 国产一级毛片在线| 色综合亚洲欧美另类图片| 久久久久久久亚洲中文字幕| 综合色av麻豆| 日本熟妇午夜| 男人的好看免费观看在线视频| 麻豆久久精品国产亚洲av| 99热6这里只有精品| 日本色播在线视频| 国产乱人偷精品视频| 我的女老师完整版在线观看| 免费一级毛片在线播放高清视频| 综合色丁香网| 精品国产一区二区三区久久久樱花 | 国产色爽女视频免费观看| 男女边吃奶边做爰视频| 天天一区二区日本电影三级| 春色校园在线视频观看| 国产av在哪里看| 欧美高清性xxxxhd video| 亚洲av福利一区| 国产伦理片在线播放av一区| 亚洲婷婷狠狠爱综合网| 国产爱豆传媒在线观看| 中文字幕亚洲精品专区| 亚洲国产欧洲综合997久久,| 欧美+日韩+精品| 一边摸一边抽搐一进一小说| 亚洲激情五月婷婷啪啪| 午夜福利成人在线免费观看| 国产男人的电影天堂91| 伦理电影大哥的女人| 男人的好看免费观看在线视频| 亚洲激情五月婷婷啪啪| 亚洲久久久久久中文字幕| 国产男人的电影天堂91| 欧美激情国产日韩精品一区| 亚洲国产最新在线播放| 波多野结衣高清无吗| 成年av动漫网址| 高清av免费在线| 欧美+日韩+精品| 一本久久精品| 免费看a级黄色片| 高清在线视频一区二区三区 | 久久精品国产亚洲av天美| 少妇的逼好多水| 天天一区二区日本电影三级| 午夜精品在线福利| 久久国产乱子免费精品| 亚洲av成人精品一区久久| av在线天堂中文字幕| 国产精品一区二区在线观看99 | 欧美极品一区二区三区四区| 长腿黑丝高跟| 亚洲国产精品合色在线| 国产精品久久久久久av不卡| 国产精品1区2区在线观看.| 午夜福利在线观看吧| av福利片在线观看| 一个人观看的视频www高清免费观看| 国产毛片a区久久久久| 免费观看性生交大片5| 内射极品少妇av片p| 成人午夜高清在线视频| 伦理电影大哥的女人| 亚洲五月天丁香| 久久精品91蜜桃| 久久精品国产亚洲网站| 亚洲伊人久久精品综合 | 国产一区亚洲一区在线观看| av在线亚洲专区| 亚洲欧美清纯卡通| 亚洲成人精品中文字幕电影| 99热这里只有是精品50| 日本av手机在线免费观看| 免费观看在线日韩| 又爽又黄无遮挡网站| 国产一区亚洲一区在线观看| 不卡视频在线观看欧美| 久久久国产成人免费| av国产免费在线观看| 天堂影院成人在线观看| 国产一区亚洲一区在线观看| 国产伦精品一区二区三区四那| 狂野欧美激情性xxxx在线观看| 尾随美女入室| 青青草视频在线视频观看| 一个人看视频在线观看www免费| 狠狠狠狠99中文字幕| 国产黄片美女视频| 欧美成人一区二区免费高清观看| 亚洲中文字幕日韩| 精品欧美国产一区二区三| 精品人妻偷拍中文字幕| 啦啦啦啦在线视频资源| 中文精品一卡2卡3卡4更新| 九草在线视频观看| 国产黄色视频一区二区在线观看 | 日韩一区二区视频免费看| 卡戴珊不雅视频在线播放| 日韩av在线免费看完整版不卡| 久久精品国产鲁丝片午夜精品| 我的女老师完整版在线观看| 精品久久久噜噜| 精品久久久久久久久av| 日韩欧美在线乱码| 久久综合国产亚洲精品| 搞女人的毛片| 91精品伊人久久大香线蕉| 亚洲中文字幕日韩| 成人av在线播放网站| 日产精品乱码卡一卡2卡三| 如何舔出高潮| 七月丁香在线播放| 99热精品在线国产| 亚洲最大成人av| 岛国毛片在线播放| 男人的好看免费观看在线视频| 91午夜精品亚洲一区二区三区| 在线播放国产精品三级| 免费大片18禁| 边亲边吃奶的免费视频| 国产在线一区二区三区精 | av专区在线播放| 国模一区二区三区四区视频| 国产午夜精品久久久久久一区二区三区| 欧美一级a爱片免费观看看| 亚洲国产精品成人综合色| 亚洲av中文av极速乱| 十八禁国产超污无遮挡网站| 成人午夜高清在线视频| 婷婷色麻豆天堂久久 | 国产精品女同一区二区软件| 身体一侧抽搐| 别揉我奶头 嗯啊视频| 久久综合国产亚洲精品| 纵有疾风起免费观看全集完整版 | 午夜免费男女啪啪视频观看| 性色avwww在线观看| av国产免费在线观看| 亚洲人成网站在线观看播放| 免费观看的影片在线观看| 久久精品国产自在天天线| 欧美高清成人免费视频www| 99久国产av精品国产电影| 成人国产麻豆网| 日日摸夜夜添夜夜添av毛片| 欧美色视频一区免费| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品综合一区二区三区| 亚洲av二区三区四区| 干丝袜人妻中文字幕| 国产黄a三级三级三级人| 波野结衣二区三区在线| 久久精品国产99精品国产亚洲性色| 亚洲国产欧美人成| 夜夜看夜夜爽夜夜摸| 久久久久久久国产电影|