• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    APPROXIMATION OF COMMON FIXED POINT OF FAMILIES OF NONLINEAR MAPPINGS WITH APPLICATIONS?

    2015-11-21 07:12:39EricOFOEDUCharlesONYI

    Eric U.OFOEDU Charles E.ONYI

    Department of Mathematics,Nnamdi Azikiwe University,Awka,Anambra State,Nigeria

    APPROXIMATION OF COMMON FIXED POINT OF FAMILIES OF NONLINEAR MAPPINGS WITH APPLICATIONS?

    Eric U.OFOEDU Charles E.ONYI

    Department of Mathematics,Nnamdi Azikiwe University,Awka,Anambra State,Nigeria

    E-mail:euofoedu@yahoo.com;charles.onyi@gmail.com

    It is our purpose in this paper to show that some results obtained in uniformly convex real Banach space with uniformly G?ateaux differentiable norm are extendable to more general reflexive and strictly convex real Banach space with uniformly G?ateaux differentiable norm.Demicompactness condition imposed in such results is dispensed with.Furthermore,Applications of our theorems to approximation of common fixed point of countable infinite family of continuous pseudocontractive mappings and approximation of common solution of countable infinite family of generalized mixed equilibrium problems are also discussed.Our theorems improve,generalize,unify and extend several recently announced results.

    nonexpansive mappings,reflexive real Banach spaces;fixed point;uniformly G?ateaux differentiable norm

    2010 MR Subject Classification 47H06;47H09;47J05;47J25

    1 Introduction

    Let E be a real normed space E.A mapping T:D(T)?E→ R(T)?E is called nonexpansive if and only if‖Tx-Ty‖≤‖x-y‖?x,y∈D(T),where D(T)and R(T)denote the domain and the range of the mapping T,respectively.In what follows,we shall require that D(T)?R(T)and denote the fixed point set of an operator T:D(T)→R(T)by Fix(T),that is,F(xiàn)ix(T):={x∈D(T):Tx=x}.

    Most published results on nonexpansive mappings centered on existence theorems for fixed points of these mappings and iterative approximation of such fixed points.DeMarr[16]in 1963 studied the problem of existence of common fixed point for a family of nonexpansive mappings. He proved the following theorem:

    Theorem 1.1(DeMarr[16]) Let E be a real Banach space and let K be a nonempty compact convex subset of E.If ? is a nonempty commuting family of nonexpansive mappings of K into itself,then the family ? has a common fixed point in K.

    In 1965,Browder[4]proved the result of DeMarr in a uniformly convex real Banach space E,requiring that K is only bounded,closed,convex and nonempty subset of E.For otherfixed point theorems for families of nonexpansive mappings,the reader may consult any of the following references:Belluce and Kirk[2],Lim[21]and Bruck[6].

    Considerable research efforts were devoted to developing iterative methods for approximating common fixed points of families of several classes of nonlinear mappings(see e.g.[1,7,11-14,17,18,27]and references there in).

    Maing′e[22]studied the Halpern-type scheme for approximation of a common fixed point of a countable infinite family of nonexpansive mappings in real Hilbert space.Let{Ti}i≥1be a countable infinite family of nonexpansive mappings.Define NI:={i∈N:Ti/=I}(I being the identity mapping on a real normed space E).Maing′e proved the following theorems

    Theorem 1.2(Maing′e[22])Let K be a nonempty closed convex subset of a real Hilbert space H.Let{Ti}i≥1be a countable family of nonexpansive self-mappings of K,{αn}n≥1and{σi,n}n≥1,i∈N be sequences in(0,1)satisfying the following conditions:

    Theorem 1.3(Maing′e[22])Let K be a nonempty closed convex subset of a real Hilbert space H.Let{Ti}i≥1be a countable family of nonexpansive self-mappings of K,{αn}n≥1and{σi,n}n≥1,i∈N be sequences in(0,1)satisfying the following conditions:

    converges strongly to a unique fixed point of the contraction PFof,where f:K→K is a strict contraction;and PFis the metric projection from H onto F.

    In[9],Chidume et al.proved theorems that extended Theorems 1.2 and 1.3 to ?pspaces,1<p<∞.Furthermore,they proved new convergence theorems which are applicable in Lpspaces,1<p<∞.Moreover,in their more general setting,some of the conditions on the sequences{αn}n≥1and{σi,n}n≥1,imposed in Theorem 1.3 were dispensed with or weakened.

    Chidume and Chidume[10]proved the following theorems which extended the results obtained by Maing′e[22]and Chidume et al.[9]:

    Theorem 1.4(Chidume and Chidume[10])Let E be a uniformly convex real Banach space.Let K be a closed,convex and nonempty subset of E.Letbe a family of nonexpansive self-mappings of K.Letbe a sequence in(0,1)such thatand=0 for all i∈.Define a family of nonexpansive mappings,where I is is an identity map of K and δ∈(0,1)is fixed.Let{ztn}be a sequence satisfying

    Theorem 1.5(Chidume and Chidume[10])Let E be a uniformly convex real Banach space with uniformly G?ateaux differentiable norm.Let K be a closed,convex and nonempty subset of E.Letbe a family of nonexpansive self-mappings of K.For arbitrary fixed δ∈(0,1),define a family of nonexpansive mappingswhere I is is an identity map of K.Assume F:andbe sequences in(0,1)satisfying the following conditions:

    Define a sequence{xn}iteratively by x1,u∈K,

    If at least one of the maps Ti,i=1,2,3,···is demicompact then{xn}converges strongly to an element in F

    Motivated by the results of Maing′e[22],Chidume et al.[9],and Chidume and Chidume[10],it is our aim in this paper to provide a method of proof which enabled us to obtain the conclusion of Chidume and Chidume[10]in more general reflexive and strictly convex real Banach space with unifromly G?ateaux differentiable norm;and the demicompactness condition imposed in[10]is dispensed with.As applications of our theorems,we obtained strong convergence theorems for approximation of common fixed point of countable infinite family of pseudocontractive mappings in real Hilbert space;in addition,strong convergence theorems for approximation ofcommon solution of countable infinite family of generalized mixed equilibrium problem are also obtained in a real Hilbert space.Our theorems augument,extend,generalize and unify the correponding results of Maing′e[22],Chidume et al.[9],and Chidume and Chidume[10].Our method of proof is of independent interest.

    2 Preliminaries

    Let E be a real Banach space with dual E?.We denote by J the normalized duality mapping from E to 2E?defined by

    where<·,·>denotes the generalized duality pairing between members of E and E?.It is well known that if E?is strictly convex then J is single-valued(see,e.g.,[8,28]).In the sequel,we shall denote the single-valued normalized duality mapping by j.

    Let S:={x∈E:‖x‖=1}.The space E is said to have a G?ateaux differentiable norm if and only if the limit

    exists for each x,y∈S,while E is said to have a uniformly G?ateaux differentiable norm if for each y∈S the limit is attained uniformly for x∈S.It is well known that whenever a Banach space has uniformly G?ateaux differentiable norm,then the normalized duality mapping is norm to weak?uniformly continuous on bounded subsets of E.

    Let E be a real normed space.The modulus of convexity of E is the function δE:[0,2]→[0,1]defined by

    The space E is said to be uniformly convex if and only if δE(?)>0??∈(0,2];and the space E is called strictly convex if and only if for all x,y∈E such that‖x‖=‖y‖=1 and for all λ∈(0,1)we have‖λx+(1-λ)y‖<1.It is well known that every uniformly convex real Banach space is strictly convex and reflexive real Banach space,where we know that a real Banach space E is reflexive if and only if every bounded sequence in E has a subsequence which converges weakly.

    A mapping T:D(T)?E→ E is said to be demicompact at h if and only if for any bounded sequence{xn}n≥1in D(T)such that(xn-Txn)→ h as n→ ∞,there exists a subsequence say{xnj}j≥1of{xn}n≥1and x?∈D(T)such that{xnj}j≥1converges strongly to x?and x?-Tx?=h.

    Letμbe a bounded linear functional defined on ?∞satisfying‖μ‖=1=μ(1,1,···,1,···). It is known thatμis a mean on N if and only if

    for every a= (a1,a2,a3,···)∈ ?∞.In the sequel,we shall use the notationμn(an)instead ofμ(a).A meanμon N is called a Banach limit ifμn(an)= μn(an+1)for every a=(a1,a2,a3,···)∈?∞.It is well known that ifμis a Banach limit,then

    In what follows,we shall need the following lemmas.

    Lemma 2.1 Let E be a real normed space,then

    for all x,y∈E and for all j(x+y)∈J(x+y).

    Lemma 2.2(Lemma 3 of Bruck[5]) Let K be a nonempty closed convex subset of a strictly convex real Banach space E.Letbe a sequence of nonexpansive mappings from K to E such thatLetbe a sequence of positive numbers such that,then a mapping T on K defined by Txfor all x∈K is well defined, nonexpansive and Fix(T

    Lemma 2.3(Xu[27])Let{an}be a sequence of nonnegative real numbers satisfying the following relation:

    (ii)limsupσn≤0.

    Then,an→0 as n→∞.

    Lemma 2.5(Kikkawa and Takahashi[19])Let Let K be a nonempty closed convex subset of a Banach spaces E with a uniformly G?ateaux differentiable norm,let{xn}be a bounded sequence of E and letμbe a mean on N.Let z∈K.Then

    3 Implicit Iterative Method for Countable Infnity Family of Nonexpansive Mappings

    We begin with the following lemma:

    Lemma 3.1(Chidume and Chidume[10])Let E be a real Banach space.Let Ti:E→E, i=1,2,···,be a countable infinite family of nonexpansive mappings.Leti=1,2,···be sequences in(0,1)such that.Fix a δ∈(0,1)and define afamily of mappings Si:E→E by Six=(1-δ)x+δTix?x∈E,i=1,2,···.For fixed u∈E and for all n∈N,define a map Φn:E→E by Φnx=αnu+σi,nSix,?x∈E,then Φnis a strict contraction on E.Hence,for all n∈N,there is a unique z∈E satisfying

    n

    Hence,Ψx∈??x∈?,that is,? is invariant under Ψ.Let x?∈Fix(Ψ),then since every closed convex nonempty subset of a reflexive and strictly convex Banach space is a Chebyshev set(see e.g.,[23],Corollary 5.1.19),there exists a unique u?∈? such that

    But x?=Ψx?and Ψu?∈?.Thus,

    So,Ψu?=u?.Hence,F(xiàn)ix(Ψ)∩?/=?.This completes the proof. □

    In particular,we have that

    Now,using(3.1),we have that

    So,

    Again,taking Banach limit,we obtain

    We now show that u?=z?.Suppose for contradiction that u?/=z?,then

    But using(3.1),we have that

    Thus,

    Similarly,we also obtain that≤0 or rather

    Adding(3.4)and(3.5),we have that‖z?-u?‖≤0,a contradiction.Thus,z?=u?.Hence,converges strongly toThis completes the proof.

    4 Explicit Iterative Method for Countable Infinite Family of Nonexpansive Mappings

    For the rest of this paper,{αn}∞n=1and{σi,n}∞n=1are sequences in(0,1)satisfying the following additional conditions:

    Then,

    for some M>0.Thus,

    From(4.1),we have that

    Using Lemma 2.1,we have that

    This implies that

    and hence,

    Also,since j is norm-to-weak?uniformly continuous on bounded subsets of E,we have that

    Moreover,we have that

    Using(4.3),(4.4)and(4.5),we obtain from(4.6)that

    Finally,using Lemma 2.1 we obtain from(4.1)that

    Using(4.7)and Lemma 2.3 in(4.8),we get thatconverges strongly to common fixed point of the familyof nonexpansive mappings. □

    5 Application to Approximation of Common Fixed Points of Counably Infnite Family of Continuous Pseudocontractive Mappings

    The most important generalization of the class of nonexpansive mappings is,perhaps,the class of pseudocontractive mappings.These mappings are intimately connected with the important class of nonlinear accretive operators.This connection will be made precise in what follows.

    A mapping T′with domain D(T′),and range R(T′),in E is called pseudocontractive if and only if for all x,y∈D(T′),the following inequality holds:

    for all r>0.As a consequence of a result of Kato[20],the pseudocontractive mappings can also be defined in terms of the normalized duality mappings as follows:the mapping T′is calledpseudocontractive if and only if for all x,y∈D(T′),there exists j(x-y)∈J(x-y)such that

    It now follows trivially from(5.2)that every nonexpansive mapping is pseudocontractive.We note immediately that the class of pseudocontractive mappings is larger than that of nonexpansive mappings.For examples of pseudocontractive mappings which are not nonexpansive,the reader may see[8].

    To see the connection between the pseudocontractive mappings and the accretive mappings,we introduce the following definition:a mapping A with domain,D(A),and range,R(A),in E is called accretive if and only if for all x,y∈D(A),the following inequality is satisfied:

    for all r>0.Again,as a consequence of Kato[20],it follows that A is accretive if and only if for all x,y∈D(A),there exists j(x-y)∈J(x-y)such that

    It is easy to see from inequalities(5.1)and(5.3)that an operator A is accretive if and only if the mapping T′:=(I-A)is pseudocontractive.Consequently,the fixed point theory for pseudocontractive mappings is intimately connected with the mapping theory of accretive operators.For the importance of accretive operators and their connections with evolution equations,the reader may consult any of the references[8,24].

    Due to the above connection,fixed point theory of pseudocontractive mappings became a flourishing area of intensive research for several authors.It is of interest to note that if E=H is a Hilbert space,accretive operators coincide with the monotone operators,where an operator A with domain,D(A),and range,R(A),in H is called monotone if and only if for all x,y∈D(A),we have that

    Recently,Zegeye[30]established the following lemmas.

    Lemma 5.1(Zegeye[30]) Let K be a nonempty closed convex subset of a real Hilbert space H.Let T′:K→H be a continuous pseudocontractive mapping,then for all r>0 and x∈H,there exists z∈K such that

    Lemma 5.2(Zegeye[30])Let K be a nonempty closed convex subset of a real Hilbert space H.Let T′:K→K be a continuous pseudocontractive mapping,then for all r>0 and x∈H,define a mapping Fr:H→K by

    then the following hold:

    (1)Fris single-valued;

    (2)Fris firmly nonexpansive type mapping,i.e.,for all x,y∈H,

    (3)Fix(Fr)is closed and convex;and Fix(Fr)=Fix(T′)for all r>0.

    Remark 5.3 We observe that Lemmas 5.1 and 5.2 hold in particular for r=1.Thus,ifis a family of continuous pseudocontractive mappings and we define

    Theorem 5.4 Let H be a real Hilbert space.Let T′

    where Six=(1-δ)x+δF(i)1x?x∈H,i=1,2,···.Letbe a sequence in(0,1)such thatand-λi|=0.Let Ψ:=(1-δ)I+δT,where T:=,thenconverges strongly to an element of

    6 Application to Approximation of Common Solution of Countably Infinite Generalized Mixed Equilibrium Problems

    Let K be a closed convex nonempty subset of a real Hilbert space H with inner product ?·,·?and norm‖·‖.Let f:K×K → R be a bifunction and Φ:K → R∪{+∞}be a proper extended real valued function,where R denotes the set of real numbers.Let Θ:K→H be a nonlinear monotone mapping.The generalized mixed equilibrium problem(abbreviated GMEP)for f,Φ and Θ is to find u?∈K such that

    The set of solutions for GMEP(6.1)is denoted by

    If Φ≡0≡Θ in(6.1),then(6.1)reduces to the classical equilibrium problem(abbreviated EP),that is,the problem of finding u?∈K such that

    and GMEP(f,0,0)is denoted by EP(f),where

    If f≡0≡Φ in(6.1),then GMEP(6.1)reduces to the classical variational inequality problem and GMEP(0,0,Θ)is denoted by VI(Θ,K),where

    If f≡0≡Θ,then GMEP(6.1)reduces to the following minimization problem:

    and GMEP(0,Φ,0)is denoted by Argmin(Φ),where

    If Θ≡0,then(6.1)becomes the mixed equilibrium problem(abbreviated MEP)and GMEP(f,Φ,0)is denoted by MEP(f,Φ),where

    If Φ≡0,then(6.1)reduces to the generalized equilibrium problem(abbreviated,GEP)and GMEP(f,0,Θ)is denoted by GEP(f,Θ),where

    If f≡0,then GMEP(6.1)reduces to the generalized variational inequality problem(abbreviated GVIP)and GMEP(0,Φ,Θ)is denoted by GVI(Φ,Θ,K),where

    The generalized mixed equilibrium problem(GMEP)includes as special cases the monotone inclusion problems,saddle point problems,variational inequality problems,minimization problems,optimization problems,vector equilibrium problems,Nash equilibria in noncooperative games.Furthermore,there are several other problems,for example,the complementarity problems and fixed point problems,which can also be written in the form of the generalized mixed equilibrium problem.In other words,the generalized mixed equilibrium problem is a unifying model for several problems arising from engineering,physics,statistics,computer science,optimization theory,operations research,economics and countless other fields.For the past 20 years or so,many existence results have been published for various equilibrium problems(see e.g.[3,25,29]).

    In the sequel,we shall require that the bifunction f:K×K→R satisfies the following conditions:

    (A1)f(x,x)=0?x∈K;

    (A2)f is monotone,in the sense that f(x,y)+f(y,x)≤0 for all x,y∈K;

    t→0

    (A4)the function y→f(x,y)is convex and lower semicontinuous for all x∈K.

    Lemma 6.1(Compare with Lemma 2.4 of[25])Let C be a closed convex nonempty subset of a real Hilbert space H.Let f:K×K → R be a bifunction satisfying conditions(A1)-(A4);Θ:K→H a continuous monotone mapping and Φ:K→R∪{+∞}a proper lower semicontinuous convex function.Then,for all r>0 and x∈H there exists u∈K such that

    Moreover,if for all x∈H we define a mapping Gr:H→2Kby

    then the following hold:

    (1)Gris single-valued for all r>0;

    (2)Gris firmly nonexpansive,that is,for all x,z∈H,

    (3)Fix(Gr)=GMEP(f,Φ,Θ)for all r>0;

    (4)GMEP(f,Φ,Θ)is closed and convex.

    Remark 6.2 We observe that Lemmas 6.1 holds in particular for r=1.Thus,if we define

    where Six=(1-δ)x+?x∈H,i=1,2,···.Letbe a sequence in(0,1)such that=1 andLet Ψ:=(1-δ)I+δT,where T:,then{zn}converges strongly to an element of

    where Six=(1-δ)x+?x∈H,i=1,2,···.Letbe a sequence in(0,1)such that=1 and-λi|=0.Let Ψ:=(1-δ)I+δT,where T:=,then{xn}converges strongly to an element ofGMEP(fi,Φi,Θi).

    Remark 6.5 Prototypes for our iteration parameters are:

    Remark 6.6 It is well known that every real Hilbert is a reflexive and strictly convex real Banach space with uniformly G?ateaux differentiable norm;thus Theorems 5.4,5.5,6.3 and 6.4 hold.

    Remark 6.7 The addition of bounded error terms in any of our recursion formulas leads to no further generalization.

    Remark 6.8 If f:K → K is a contraction map and we replace u by f(xn)in the recursion formulas of our theorems,we obtain what some authors now call viscosity iteration process.We observe that all our theorems in this paper carry over trivially to the so-called viscosity process.One simply replaces u by f(xn),repeats the argument of this paper,using the fact that f is a contraction map.Furthermore,we must note that method of proof of Theorems 3.4 and 4.1 easily carries over to the so-called nonself nonexpansive mappings.

    [1]Bauschke H H.The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space.J Math Anal Appl,1996,202:150-159

    [2]Belluce L P,Kirk W A.Fixed point theorem for families of contraction mappings.Pacific J Math,1996,18:213-217

    [3]Blum E,Oettli W.From optimization and variational inequalities to equilibrum problems.The Mathematics Student,1994,63(1/4):123-145

    [4]Browder F E.Nonexpansive nonlinear operators in Banach space.Proc Nat Acad Sci USA,1965,54(4): 1041-1044

    [5]Bruck R E.Properties of fixed-point sets of nonexpansive mappings in Banach spaces.Trans Amer Math Soc,1973,179:251-262

    [6]Bruck R E,Jr.A common fixed point theorem for a commuting family of nonexpansive mappings.Pacific J Math,1974,53:59-71

    [7]Chang S S,Tan K K,Lee H W Joseph,Chan C K.On the convergnce of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings.J Math Anal Appl,2006,313:273-283

    [8]Chidume C E.Geometric Properties of Banach Spaces and Nonlinear Iterations.Lecture Notes in Mathematics,Vol 1965.Springer-Verlag,2009

    [9]Chidume C E,Chidume C O,Nwogbaga A P.Approximation methods for common fixed points of a countable family of nonself nonexpansive mappings.Nonlinear Analysis,2009,71(12,15):164-175

    [10]Chidume C E,Chidume C O.Iterative methods for common fixed points for a countable family of nonexpansive mappings in uniformly convex spaces.Nonlinear Anal,2009,71(10):4346-4356

    [11]Chidume C E,Ofoedu E U.A new iteration process for finite families of generalized Lipschitz pseudocontractive and generalized Lipschitz accretive mappings.Nonlinear Analysis;TMA,2008,69(4):1200-1207

    [12]Chidume C E,Ofoedu E U.Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings.J Math Anal Appl,2007,333(1):128-141

    [13]Chidume C E,Zegeye H,Prempeh E.Strong convergence theorems for a common fixed point of a finite family of nonexpansive mappings.Comm Appl Nonlinear Anal,2004,11(2):25-32

    [14]Chidume C E,Zegeye H,Shahzad N.Convergence theorems for a common fixed point of finite family of nonself nonexpansive mappings.Fixed Point Theory Appl,2005,(2):233-241

    [15]Cioranescu I.Geometry of Banach Spaces,Duality Mappings and Nonlinear Problems.Dordrecht:Kluwer Academic,1990

    [16]DeMarr R.Common fixed points for commuting contraction mappings.Pacific J Math,1963,13:1139-1141

    [17]Jung J S.Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces.J Math Anal Appl,2005,302:509-520

    [18]Jung J S,Cho Y J,Agarwal R P.Iterative schemes with some control conditions for family of finite nonexpansive mappings in Banach spaces.Fixed Point Theory Appl,2005,2:125-135

    [19]Kikkawa M,Takahashi W.Strong convergence theorems by viscocity approximation methods for a countable family of nonexpansive mappings.Taiwa J Math,2008,12(3):583-598

    [20]Kato T.Nonlinear semi-groups and evolution equations.J Math Soc Japan,1967,19:508-520

    [21]Lim T C.A fixed point theorem for families of nonexpansive mappings.Pacific J Math,1974,53:487-493[22]Maing′e P.Approximation methods for common fixed points of nonexpansive mappings in Hilbert space.J Math Anal Appl,2007,325:469-479

    [23]Megginson R E.An Introduction to Banach Space Theory.New York:Springer-Verlag,1998

    [24]Ofoedu E U,Zegeye H.Further investigation on iteration processes for pseudocontractive mappings with application.Nonlinear Anal TMA,2012,75:153162

    [25]Katchang P,Jitpeera T,Kumam P.Strong convergence theorems for solving generalized mixed equilibrum problems and general system of variational inequalities by the hybrid method.Nonlinear Analysis:Hybrid Systems,2010,4(4):838-852

    [26]Suzuki T.Strong convergence of Krasnoselkii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals.J Math Anal Appl,2005,305:227-239

    [27]Xu H K.Iterative algorithm for nonlinear operators.J London Math Soc,2002,66(2):1-17

    [28]Xu Z B,Roach G F.Characteristic inequalities of uniformly smooth Banach spaces.J Math Anal Appl,1991,157:189-210

    [29]Zegeye H,Ofoedu E U,Shahzad N.Convergence theorems for equilibrum problem,variational inequality problem and countably infinite relatively quasi-nonexpansive mappings.Appl Math Comput,2010,216: 3439-3449

    [30]Zegeye H.An iterativee approximation method for a common fixed point of two pseudo-contractive mappings.ISRN Math Anal,2011,14(2011):Article ID621901

    ?Received February 20,2013;revised March 13,2015.

    国产精品久久久久久精品电影| 中文字幕精品亚洲无线码一区| 99热这里只有精品一区 | 欧美中文综合在线视频| 搡老熟女国产l中国老女人| 悠悠久久av| 国产免费av片在线观看野外av| 国产精品自产拍在线观看55亚洲| 国产成人一区二区三区免费视频网站| 久久久久久久久中文| 一区二区三区高清视频在线| 久久久水蜜桃国产精品网| 十八禁人妻一区二区| 欧美成人免费av一区二区三区| 亚洲一区二区三区不卡视频| 成人三级黄色视频| 在线观看美女被高潮喷水网站 | 女同久久另类99精品国产91| 黄片小视频在线播放| 日日干狠狠操夜夜爽| 亚洲人成电影免费在线| 久久久精品国产亚洲av高清涩受| 欧美色视频一区免费| 男人的好看免费观看在线视频 | 欧美日本视频| 精品高清国产在线一区| 香蕉久久夜色| 国产精品乱码一区二三区的特点| 久久国产乱子伦精品免费另类| 久久久水蜜桃国产精品网| 久久中文字幕人妻熟女| 制服丝袜大香蕉在线| 免费人成视频x8x8入口观看| 国产午夜精品久久久久久| 日韩三级视频一区二区三区| 90打野战视频偷拍视频| 又大又爽又粗| 久久久精品大字幕| 999久久久国产精品视频| 亚洲熟妇中文字幕五十中出| 久久午夜亚洲精品久久| 国产99久久九九免费精品| 亚洲精品在线美女| 一二三四社区在线视频社区8| 久久久久九九精品影院| 欧美久久黑人一区二区| 欧美成人午夜精品| 久久天堂一区二区三区四区| 一边摸一边抽搐一进一小说| 精品一区二区三区av网在线观看| 国产精品综合久久久久久久免费| 中文字幕熟女人妻在线| 久久这里只有精品19| 一级毛片高清免费大全| 男人舔女人的私密视频| 久久久久久九九精品二区国产 | aaaaa片日本免费| 免费在线观看日本一区| 午夜福利在线在线| 国产黄色小视频在线观看| 欧美丝袜亚洲另类 | 在线视频色国产色| 久久亚洲真实| 国产成人啪精品午夜网站| 激情在线观看视频在线高清| 美女黄网站色视频| 操出白浆在线播放| 亚洲国产欧美网| 欧美又色又爽又黄视频| 成在线人永久免费视频| 欧美3d第一页| 久热爱精品视频在线9| 国产精品久久久人人做人人爽| 一边摸一边抽搐一进一小说| 国产精品一区二区免费欧美| 久久精品人妻少妇| 一夜夜www| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 91麻豆精品激情在线观看国产| 久久久久国内视频| 丁香六月欧美| 无遮挡黄片免费观看| 亚洲av第一区精品v没综合| 一进一出抽搐动态| 欧美色欧美亚洲另类二区| 中出人妻视频一区二区| 国产在线精品亚洲第一网站| 国产爱豆传媒在线观看 | 两性夫妻黄色片| 可以在线观看的亚洲视频| 中出人妻视频一区二区| 国产v大片淫在线免费观看| 九色国产91popny在线| 不卡av一区二区三区| 国产精品99久久99久久久不卡| 大型黄色视频在线免费观看| 男人舔女人下体高潮全视频| 极品教师在线免费播放| 国产69精品久久久久777片 | 精品国产美女av久久久久小说| 久久天躁狠狠躁夜夜2o2o| 午夜成年电影在线免费观看| 在线a可以看的网站| 亚洲成人国产一区在线观看| tocl精华| 熟妇人妻久久中文字幕3abv| 两个人免费观看高清视频| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 国产野战对白在线观看| 亚洲精品久久国产高清桃花| 亚洲中文日韩欧美视频| av欧美777| 又大又爽又粗| 久久久精品大字幕| 亚洲国产精品999在线| 亚洲一码二码三码区别大吗| 精品国产乱子伦一区二区三区| 亚洲专区中文字幕在线| 国内毛片毛片毛片毛片毛片| 国产aⅴ精品一区二区三区波| 久久久久久免费高清国产稀缺| 亚洲熟妇熟女久久| 亚洲成人久久爱视频| 亚洲国产欧美网| 麻豆久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 男女视频在线观看网站免费 | 少妇人妻一区二区三区视频| 99riav亚洲国产免费| 国内精品久久久久精免费| 欧美+亚洲+日韩+国产| 久久中文字幕一级| 中文字幕最新亚洲高清| 午夜影院日韩av| cao死你这个sao货| 黄色毛片三级朝国网站| 村上凉子中文字幕在线| 日本一二三区视频观看| 搞女人的毛片| 国产精品一及| e午夜精品久久久久久久| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 成年免费大片在线观看| 午夜两性在线视频| 精品久久久久久,| 欧美黑人精品巨大| 变态另类丝袜制服| 一夜夜www| 中国美女看黄片| 午夜精品在线福利| 99久久综合精品五月天人人| 一级毛片高清免费大全| 国产精品免费视频内射| 少妇人妻一区二区三区视频| 色综合站精品国产| 香蕉国产在线看| 久久久久久久久免费视频了| 亚洲一区二区三区不卡视频| 宅男免费午夜| 国产真实乱freesex| 一本综合久久免费| 国产成年人精品一区二区| 热99re8久久精品国产| 亚洲欧美日韩东京热| 国产欧美日韩一区二区三| 久久久国产成人免费| 欧美乱码精品一区二区三区| 在线免费观看的www视频| 亚洲人与动物交配视频| 亚洲专区国产一区二区| 天天添夜夜摸| 久久热在线av| 无遮挡黄片免费观看| 99riav亚洲国产免费| 成人精品一区二区免费| 亚洲激情在线av| 国产成人aa在线观看| 欧美 亚洲 国产 日韩一| 亚洲,欧美精品.| aaaaa片日本免费| 亚洲精品一卡2卡三卡4卡5卡| 日本精品一区二区三区蜜桃| 欧美一级毛片孕妇| 亚洲中文字幕一区二区三区有码在线看 | 老汉色av国产亚洲站长工具| 国产成人啪精品午夜网站| 成人av一区二区三区在线看| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| av国产免费在线观看| 91国产中文字幕| 国产伦在线观看视频一区| 国产蜜桃级精品一区二区三区| 国产精品美女特级片免费视频播放器 | 三级男女做爰猛烈吃奶摸视频| 久久香蕉国产精品| 最新美女视频免费是黄的| 此物有八面人人有两片| 久久性视频一级片| 国产成+人综合+亚洲专区| 国产91精品成人一区二区三区| 很黄的视频免费| 国产精品免费视频内射| 国产黄色小视频在线观看| 精品久久久久久久久久免费视频| 中文字幕人成人乱码亚洲影| 中文字幕精品亚洲无线码一区| av免费在线观看网站| 麻豆国产97在线/欧美 | 欧美日本亚洲视频在线播放| 成人av在线播放网站| 99国产精品一区二区三区| 国产成年人精品一区二区| 首页视频小说图片口味搜索| 成人永久免费在线观看视频| 国内少妇人妻偷人精品xxx网站 | 巨乳人妻的诱惑在线观看| 麻豆国产97在线/欧美 | 最近最新中文字幕大全电影3| 国模一区二区三区四区视频 | 亚洲第一电影网av| 成年版毛片免费区| 美女午夜性视频免费| av超薄肉色丝袜交足视频| 亚洲国产中文字幕在线视频| 成年版毛片免费区| 日韩欧美一区二区三区在线观看| 母亲3免费完整高清在线观看| 久久伊人香网站| 在线观看66精品国产| 免费av毛片视频| 国产精华一区二区三区| 欧美最黄视频在线播放免费| ponron亚洲| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 国产欧美日韩精品亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人久久性| 久久亚洲真实| 国产熟女xx| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 国产av在哪里看| 成人手机av| 99国产精品一区二区三区| 亚洲熟妇熟女久久| 国产在线精品亚洲第一网站| 精品国产美女av久久久久小说| 国产97色在线日韩免费| 欧美+亚洲+日韩+国产| a在线观看视频网站| 一本大道久久a久久精品| 变态另类丝袜制服| 久久久久久久久免费视频了| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 久久精品91蜜桃| 欧美zozozo另类| 亚洲中文日韩欧美视频| 亚洲精品国产精品久久久不卡| 亚洲国产精品久久男人天堂| 国产真人三级小视频在线观看| 亚洲人与动物交配视频| 无限看片的www在线观看| 97人妻精品一区二区三区麻豆| 在线观看免费午夜福利视频| 搡老熟女国产l中国老女人| 国产真人三级小视频在线观看| 无人区码免费观看不卡| 国内少妇人妻偷人精品xxx网站 | 亚洲人成网站高清观看| 男女做爰动态图高潮gif福利片| 免费在线观看成人毛片| 欧美一区二区精品小视频在线| 这个男人来自地球电影免费观看| 白带黄色成豆腐渣| 一夜夜www| 中文字幕高清在线视频| 天堂√8在线中文| 高清在线国产一区| 亚洲精品久久成人aⅴ小说| 亚洲一区高清亚洲精品| av中文乱码字幕在线| 狠狠狠狠99中文字幕| 精品欧美一区二区三区在线| 久久久久国产精品人妻aⅴ院| 一级a爱片免费观看的视频| 久久亚洲真实| 看免费av毛片| 日本免费一区二区三区高清不卡| 欧美性猛交黑人性爽| 久久久久久亚洲精品国产蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产黄色小视频在线观看| 99热这里只有精品一区 | 搞女人的毛片| 他把我摸到了高潮在线观看| 国产av又大| 黑人操中国人逼视频| 男人舔女人下体高潮全视频| 欧美乱妇无乱码| 在线观看舔阴道视频| 久久精品aⅴ一区二区三区四区| 成年人黄色毛片网站| 久久精品国产综合久久久| 国产主播在线观看一区二区| tocl精华| 久久久久免费精品人妻一区二区| 国产主播在线观看一区二区| 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 国产亚洲av嫩草精品影院| 亚洲av五月六月丁香网| 啪啪无遮挡十八禁网站| 成年版毛片免费区| 久久亚洲真实| 国产精品98久久久久久宅男小说| 欧美日韩亚洲综合一区二区三区_| 亚洲在线自拍视频| 日韩成人在线观看一区二区三区| 欧美zozozo另类| 亚洲人成网站高清观看| 亚洲成人久久性| 99国产综合亚洲精品| 亚洲国产中文字幕在线视频| 身体一侧抽搐| 精品久久久久久久毛片微露脸| 午夜福利成人在线免费观看| 国产精品1区2区在线观看.| 99精品欧美一区二区三区四区| 免费在线观看黄色视频的| 超碰成人久久| 美女黄网站色视频| 很黄的视频免费| 亚洲精品一卡2卡三卡4卡5卡| 国产av不卡久久| 99久久精品国产亚洲精品| 国语自产精品视频在线第100页| 国产高清视频在线观看网站| 日本撒尿小便嘘嘘汇集6| 在线a可以看的网站| 久久久久久大精品| 久久午夜综合久久蜜桃| 88av欧美| 精品国内亚洲2022精品成人| 亚洲国产欧美人成| 看黄色毛片网站| 日韩三级视频一区二区三区| 99国产精品99久久久久| 最近视频中文字幕2019在线8| 天堂av国产一区二区熟女人妻 | 久久伊人香网站| 美女午夜性视频免费| 欧美中文日本在线观看视频| 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 日韩 欧美 亚洲 中文字幕| 久久久国产成人精品二区| 免费看a级黄色片| 国产视频内射| 婷婷精品国产亚洲av在线| 黄色片一级片一级黄色片| 好男人电影高清在线观看| 女警被强在线播放| 国产男靠女视频免费网站| 老司机午夜十八禁免费视频| 最好的美女福利视频网| 少妇的丰满在线观看| 久久久久亚洲av毛片大全| 亚洲成人久久爱视频| 日本免费一区二区三区高清不卡| 无人区码免费观看不卡| 午夜免费成人在线视频| 欧美中文日本在线观看视频| 97人妻精品一区二区三区麻豆| 精品久久蜜臀av无| 国内揄拍国产精品人妻在线| 黄色a级毛片大全视频| 免费av毛片视频| 制服人妻中文乱码| 长腿黑丝高跟| 成人欧美大片| 99在线人妻在线中文字幕| 高潮久久久久久久久久久不卡| 国产精品一及| 久久久精品大字幕| 欧美一区二区国产精品久久精品 | 国产av一区二区精品久久| 国产激情久久老熟女| 男女下面进入的视频免费午夜| 亚洲男人的天堂狠狠| 国产精品av视频在线免费观看| 午夜成年电影在线免费观看| 在线永久观看黄色视频| 久久久精品大字幕| 九九热线精品视视频播放| 亚洲成av人片在线播放无| 久久中文字幕人妻熟女| 国产精品一区二区三区四区免费观看 | 亚洲七黄色美女视频| 亚洲欧美日韩高清在线视频| 丁香欧美五月| 国产亚洲av嫩草精品影院| 国产成+人综合+亚洲专区| 宅男免费午夜| 又爽又黄无遮挡网站| 亚洲精品中文字幕在线视频| av视频在线观看入口| 成人欧美大片| 国产精品av久久久久免费| 9191精品国产免费久久| 两个人视频免费观看高清| 亚洲一区中文字幕在线| 大型av网站在线播放| 国产精品一区二区精品视频观看| 成人手机av| 日韩免费av在线播放| xxxwww97欧美| 欧美在线黄色| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| 欧美zozozo另类| 国产成人精品久久二区二区免费| 国产成人系列免费观看| 成人av在线播放网站| 三级男女做爰猛烈吃奶摸视频| 听说在线观看完整版免费高清| 高清在线国产一区| 久久中文看片网| 夜夜躁狠狠躁天天躁| 欧美一区二区国产精品久久精品 | 午夜免费观看网址| 国产在线精品亚洲第一网站| 丰满的人妻完整版| 欧美国产日韩亚洲一区| 国产精品免费一区二区三区在线| 91老司机精品| 亚洲国产欧洲综合997久久,| 99久久99久久久精品蜜桃| 日本a在线网址| 亚洲色图av天堂| 午夜福利视频1000在线观看| 此物有八面人人有两片| 成人三级做爰电影| 国产91精品成人一区二区三区| 亚洲在线自拍视频| 天天添夜夜摸| 激情在线观看视频在线高清| 高清毛片免费观看视频网站| 老熟妇仑乱视频hdxx| 美女 人体艺术 gogo| 人妻夜夜爽99麻豆av| 久久精品91无色码中文字幕| 久久精品亚洲精品国产色婷小说| 久久久久久国产a免费观看| 正在播放国产对白刺激| 欧美av亚洲av综合av国产av| 久9热在线精品视频| 国产精品1区2区在线观看.| 18禁美女被吸乳视频| 看黄色毛片网站| 亚洲精品美女久久av网站| 99热这里只有是精品50| 久久天堂一区二区三区四区| 日本三级黄在线观看| 国产不卡一卡二| 国产97色在线日韩免费| www.自偷自拍.com| 国产真实乱freesex| 亚洲一区二区三区色噜噜| 亚洲五月婷婷丁香| 在线观看免费视频日本深夜| 夜夜爽天天搞| 亚洲av五月六月丁香网| 日日干狠狠操夜夜爽| 国产精品乱码一区二三区的特点| 日本免费a在线| 国产亚洲精品一区二区www| av有码第一页| 亚洲av成人精品一区久久| 日本精品一区二区三区蜜桃| 欧美乱码精品一区二区三区| 1024视频免费在线观看| 亚洲全国av大片| 狂野欧美激情性xxxx| 色综合亚洲欧美另类图片| 国产av麻豆久久久久久久| 男女之事视频高清在线观看| 成人特级黄色片久久久久久久| 亚洲成人久久爱视频| www日本黄色视频网| 国产精品一区二区免费欧美| 亚洲九九香蕉| 全区人妻精品视频| 99久久精品国产亚洲精品| 两个人免费观看高清视频| 国产激情欧美一区二区| av视频在线观看入口| 999久久久精品免费观看国产| 两人在一起打扑克的视频| 黄色女人牲交| 色综合婷婷激情| 一级片免费观看大全| 我的老师免费观看完整版| 欧美黄色淫秽网站| 美女黄网站色视频| 搡老熟女国产l中国老女人| 欧美成人一区二区免费高清观看 | 亚洲中文av在线| 成人国产综合亚洲| 欧美色视频一区免费| 国产在线观看jvid| 午夜精品一区二区三区免费看| 免费观看人在逋| 久久精品91蜜桃| 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 特级一级黄色大片| 久久午夜亚洲精品久久| 国产成人系列免费观看| 国内精品久久久久精免费| 国产黄色小视频在线观看| 动漫黄色视频在线观看| 少妇的丰满在线观看| 国产成年人精品一区二区| 特级一级黄色大片| 一本一本综合久久| 五月伊人婷婷丁香| 窝窝影院91人妻| 亚洲av熟女| 少妇粗大呻吟视频| 人妻久久中文字幕网| 变态另类丝袜制服| 老司机在亚洲福利影院| 国产成人av教育| 久久精品aⅴ一区二区三区四区| 国产激情偷乱视频一区二区| 欧美黑人巨大hd| 男人舔奶头视频| 久久久久精品国产欧美久久久| 欧美日韩中文字幕国产精品一区二区三区| 免费无遮挡裸体视频| 国产麻豆成人av免费视频| 欧美黑人精品巨大| 欧美高清成人免费视频www| 又大又爽又粗| 无遮挡黄片免费观看| 夜夜躁狠狠躁天天躁| 两个人视频免费观看高清| 一区二区三区高清视频在线| √禁漫天堂资源中文www| 亚洲无线在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲成a人片在线一区二区| 国产精品一及| 搞女人的毛片| av福利片在线| 国产免费av片在线观看野外av| 9191精品国产免费久久| 国产精华一区二区三区| 五月伊人婷婷丁香| 免费一级毛片在线播放高清视频| 最近视频中文字幕2019在线8| 国产精品乱码一区二三区的特点| a级毛片在线看网站| 亚洲熟女毛片儿| 最近在线观看免费完整版| 伊人久久大香线蕉亚洲五| 99久久精品国产亚洲精品| www日本黄色视频网| 国产又黄又爽又无遮挡在线| 99精品欧美一区二区三区四区| 最新美女视频免费是黄的| 日本精品一区二区三区蜜桃| 脱女人内裤的视频| 床上黄色一级片| 久久久久久久久中文| 日韩欧美免费精品| 欧美绝顶高潮抽搐喷水| 美女免费视频网站| 亚洲第一电影网av| 十八禁网站免费在线| 国产亚洲精品综合一区在线观看 | 99热这里只有是精品50| 视频区欧美日本亚洲| 99国产精品一区二区三区| 国产成人精品久久二区二区91| 女同久久另类99精品国产91| 在线观看日韩欧美| 久久国产乱子伦精品免费另类| 亚洲精品国产一区二区精华液| 岛国视频午夜一区免费看| 久久久久久久久中文| 成人午夜高清在线视频| 一区二区三区激情视频| 午夜激情福利司机影院| 精华霜和精华液先用哪个| 国产av一区在线观看免费| 免费高清视频大片| 国产亚洲精品av在线| 亚洲国产欧美一区二区综合| av中文乱码字幕在线| 中文字幕久久专区| 18美女黄网站色大片免费观看| 亚洲自拍偷在线| 国产精品电影一区二区三区| 中亚洲国语对白在线视频| 久久国产乱子伦精品免费另类| 国产av麻豆久久久久久久| 午夜免费激情av| 国产精品香港三级国产av潘金莲|