• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EVOLUTION FILTRATION PROBLEMS WITH SEAWATER INTRUSION:TWO-PHASE FLOW DUAL MIXED VARIATIONAL ANALYSIS?

    2015-11-21 07:12:21GonzaloALDUNCIN

    Gonzalo ALDUNCIN

    Instituto de Geof′?sica,Universidad Nacional Aut′onoma de M′exico,M′exico,C.P.04510,Mexico

    EVOLUTION FILTRATION PROBLEMS WITH SEAWATER INTRUSION:TWO-PHASE FLOW DUAL MIXED VARIATIONAL ANALYSIS?

    Gonzalo ALDUNCIN

    Instituto de Geof′?sica,Universidad Nacional Aut′onoma de M′exico,M′exico,C.P.04510,Mexico

    Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed.A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization.For analysis and computational purposes,spatial decompositions based on nonoverlapping multidomains,above and below the sea level,are variationally introduced with internal boundary fluxes dualized as weak transmission constraints.Further,parallel augmented and exactly penalized duality algorithms,and proximation semi-implicit time marching schemes,are established and analyzed.

    two-phase flow in coastal aquifers;fractional two-phase flow;dual mixed variational analysis;macro-hybrid variational formulations;augmented exactly penalized duality algorithms;proximation semi-implicit time marching schemes 2010 MR Subject Classification 35A15;47H05;35J50;76S05;35R35

    1 Introduction

    The purpose of this paper is to formulate and analyze variational two-phase flows in open coastal aquifers.For the physical model,we adopt the fractional two-phase dual mixed model of Chen and Ewing[1,2],with an air-fresh water and a fresh water-seawater characterization,assuming the fresh water velocity as the wetting phase velocity.This mixed flow model corresponds to an instantaneous total velocity-global pressure incompressible flow,coupled with an evolution wetting velocity-complementary pressure compressible-like flow.Importantly,such a dual mixed two-phase flow modeling is appropriate for the application of composition duality methods[3,4],in the solvability analysis of the system via duality principles.For analysis and computational purposes,suitable spatial decompositions,based on nonoverlapping multidomains,above and below the sea level,were variationally introduced with internal boundary fluxes dualized as weak transmission macro-hybrid constraints[5-7].We should emphasize that these decomposed reformulations lead to macro-hybrid mixed localized models,which are veryappropriate for internal variational finite dimensional approximations,implementable in terms of non-matching finite element discretizations[8,9].

    ?Received November 11,2013;revised February 14,2015.The work reported here is part of a project partially supported by DGAPA,UNAM:PAPIIT Clave IN100214.

    Further,parallel augmented and exactly penalized duality algorithms,as well as proximation semi-implicit time marching schemes of the Douglas-Rachford and Peaceman-Rachford type,are established and analyzed.

    In a recent study[10],we considered this evolution filtration problem in the sense of a slightly compressible Darcian velocity-pressure mixed single phase flow,which corresponds to a mixed variational approach of the classical variational pressure model presented in[11].Such a classical pressure model was in turn an extension to general domains with seawater intrusion,of evolution filtration problems based on the pioneer Baiochi's transform analysis[12];see[13-17]. In this paper,our interest is to apply a special two-phase approach to the evolution coastal filtration problem,in conjunction with a natural compositional duality macro-hybrid mixed variational analysis.

    2 Physical and Mixed Variational Models

    In this section,we start with a qualitative description of the open coastal aquifer to be considered,and the definition of its two-phase flow model.Corresponding mixed variational formulations are established through composition duality methods,and their solvability analysis is performed via duality principles.

    2.1 The Qualitative Mixed Physical Model

    Let ???3denote the spatial configuration of a coastal aquifer,a bounded connected domain with a Lipschitz continuous boundary??.We shall consider the following partition of boundary??(Figure 1):Hence,assuming immobile seawater phase,our interest is to determine and analyze the evolution of the fresh water flow in the wet set Λ?Q=?×(0,T),for arbitrary and fixed T∈(0,+∞),whose boundary?Λ??Q=??×(0,T),relative to??,has the corresponding partition

    Fig.1 A section of an open coastal aquifer

    For an incompressible flow process through the porous media,let ρfand ρsbe constant parameters denoting the fresh water and seawater mass densities,ρs>ρf>0,and define ρ≡1-ρs/ρf<0.Further,let︿h∈{︿h1,︿h2,···,︿hnr}denote the time-varying fresh water ordinate levels for the nrreservoirs of the hydraulic system,relative to the fixed sea level as the origin(y=0).Also,following[10],in order to guarantee that the seawater intrusion cannot be in contact with the fresh water reservoirs,and that the(possibly empty)impervious flow boundary Σi=?Λ∩??ibe geometrically vertical,we introduce the conditions

    Consequently,the coastal aquifer flow domain is characterized by

    where Λ+=[p=0]≡{(x,y,z,t)∈Q:p(x,y,z,t)=0},Λ=[p>?]≡{(x,y,z,t)∈Q: p(x,y,z,t)>?}and Λ-=[p=(ρ-1)y]≡{(x,y,z,t)∈Q:p(x,y,z,t)=(ρ-1)y},and the following qualitative result can be concluded[10]:any solution system(p,u,Λ)of the evolution filtration problem may be extended to all of Q in pressure and Darcian velocity by

    respectively.Here H0denotes the Heaviside function,and ? is the continuous Q-extension of the obstacle function in(2.3),by zero in Λ+and by(ρ-1)y in Λ-.

    In regard to pressure(hydraulic charge)boundary conditions for this qualitative model,we shall consider

    as well as the impervious boundary condition and seepage flux constraint

    In addition,as prescribed initial conditions,we have

    Taking into account qualitative incompressible Darcian flow properties(2.3)-(2.6)and conditions(2.7)-(2.9),the coastal flow problem was formulated in a classical single-phase primal evolution mixed variational form in our previous work[10],extending the model from the flow domain Λ to the whole domain Q,`a la Baiocchi.Here,our interest is to take a further step:to generate and analyze a general three-dimensional dual evolution mixed variational two-phase flow model,which results indeed to be more suitable for macro-hybridization and parallel variational mixed finite element approximations.

    2.2 The Fractional Two-Phase Dual Mixed Physical Model

    Neglecting the effect of evaporation,and assigning to the atmospheric pressure a zero value,we shall here consider an immiscible two-phase Darcian incompressible flow,without mass transfer,of a wetting phase denoted by α=w and a nonwetting phase by α=n,in the whole space-time domain Q=?×(0,T).Hence,for a coastal aquifer,non-homogeneous and anisotropic,the governing mixed equations are the following:

    here uα,pαand sαare the dependent α-phase variables of velocity,pressure and saturation fields.These are the constitutive and conservation of mass equations of the flow system,where K is the symmetric positive definite absolute permeability tensor,κα,μα,ραand︿qαare the α-phase relative permeability,viscosity,mass density and volumetric flow rate,respectively. Also φ is the porosity of the media and g the gravity acceleration vector.Furthermore,as complementary equations to model(2.10),we have the flow volume balance constraint and the capillary pressure relation

    As mentioned in the introduction,our modeling strategy will be to adopt the dual mixed two-phase fractional flow model treated by Chen and Ewing[1].Thereby,we reformulatephysical two-phase model(2.10)-(2.11)as a fractional flow model,with primary dependent variables the total velocity and global pressure fields

    where fα(sw)=λα/λ,α∈{w,n},define the fractional flow functions,in terms of the phase mobilities λα=κα/μαand total mobility λ=λw+λn.Then the dual mixed fractional flow system is given by(see[1])

    and θ is the complementary pressure defined by[18]

    Regarding θ as a function of the wetting phase saturation sw,from the inverse relation sw=S(θ)the complementary compressibility would be given by ?(θ)=φ?S(θ)/?θ.Lastly,we note that the nonwetting phase velocity is related to θ by

    Notice that the structure of fractional flow model(2.13)turns out to be of an instantaneous incompressible total velocity-global pressure flow,coupled with an evolution wetting velocitycomplementary pressure compressible-like flow.This mixed structure is proper for dual mixed variational formulations,which,importantly,permit the application of duality principles in their solvability analysis,the development of macro-hybrid spatial decompositions,and preconditioned augmented regularizations.These are the basis in turn for instantaneous penaltyduality algorithms as well as complementary proximation semi-implicit time marching schemes.

    The particular natural flow assumption for the open coastal aquifer under consideration,the immobility of the air and seawater phases,will be taken into account,and their modeling consequences will be exhibited,in the next section,where the variational macro-hybridization of the whole system is treated.

    2.3 Instantaneous Total Velocity-Global Pressure Variational Model

    We next proceed to formulate variationally the instantaneous component of the fractional two-phase flow model(2.13).Toward this end we apply the duality procedures of[3,19](also,see[9]).

    Let V(?)and Y(?)be two given Hilbert spaces for the instantaneous total velocity and global pressure ?-fields,with trace spaces of boundary normal velocities and pressures denoted by B(??)and its dual B?(??),respectively.Further,let corresponding linear continuous trace operators be denoted by δ∈L(V(?),B(??))and γ∈L(Y(?),B?(??)).Then as primal and dual operators,we introduce the variational divergence div∈L(V(?),Y?(?))and the variational gradient grad∈L(Y(?),V?(?)),formally defined by?divv,q?Y(?)=R?div v q d?and?grad q,w? V(?)=R

    ?grad q·w d?,for w∈V(?),q∈Y(?),with V?(?)and Y?(?)denoting the topological duals of V(?)and Y(?).

    Applying the duality procedure of[3,19]to the pressure-velocity boundary conditions and constraints of the aquifer system,in accordance with those of the qualitative model,(2.7)and(2.8),they are expressed subdifferentially as variational inclusions as follows:

    with the seepage flux constraint

    here I{0i}denotes the indicator functional of the singleton{0i}?B(??i),and I{≥0a}the indicator functional of the convex subset K≥0a={va∈B(??a):va≥0ain B(??a)}.Then,considering the divergence and normal velocity trace variational operators div∈L(V(?),Y?(?))and δ∈L(V(?),B(??)),with transpose divT∈L(Y(?),V?(?))and δT∈L(B?(??),V?(?)),and utilizing the corresponding variational Green formula

    the variational formulation of the incompressible mixed flow component,of the fractional twophase problem is obtained,via the following compositional duality result[19].

    Lemma 2.1 Under the fundamental trace compatibility property[20]

    the variational essential boundary condition(2.16)1in B?(??i),and the essential boundary constraint(2.17)in B?(??a),are such that

    Indeed,the instantaneous dual mixed variational flow component turns out to be

    here the primal subdifferentialis such that,for a.e.t∈(0,T),

    where?C(·,t):V(?)→V?(?)is the gradient of the differentiable convex potential C(v,t)= 1/2R?(λ(θ(·,t))K)-1v·v d?,v∈V(?).Further,

    with Dirichlet boundary dataB?(??sw)×B?(??a),and?0Ydenotes the zero variational subdifferential in Y(?).For a natural regularity of instantaneous data,we shall assume that

    Hence,we adopt the usual velocity-pressure mixed functional Hilbert framework

    with normal velocity and pressure trace spaces

    for which the classical compatibility condition

    holds true[20].We shall denote the kernel of coupling operator div by N(div)?V(?). Therefore,applying compositional dualization[3](see also[21]),we can conclude the following primal composition duality principle.

    Theorem 2.2 Mixed problem(M)is uniquely solvable if,and only if,its instantaneous variational primal problem

    is uniquely solvable,where u︿q(t)is a div-preimage of function︿q(t).

    Thereby,under regularity condition(2.23),in accordance with Theorem 2.2 and the Lax-Milgram Theorem(see[22],Subsection 2.1),the classical solvability result of problem(M)is achieved.

    Theorem 2.3 Instantaneous dual mixed problem(M)possesses a unique solution,continuously dependent on the data.

    2.4 Evolution Wetting Velocity-Complementary Pressure Mixed Variational Model

    For the variational formulation of the dual evolution mixed component of fractional flow model(2.13),let V(?)×Y(?)be an appropriate mixed Hilbert functional framework,with pressure dual space such that Y(?)?Z(?)?Y?(?),where embeddings are dense and continuous,and pressure pivot space Z(?)=L2(?).Then,we consider the following evolution mixed Hilbert spaces

    with topological duals V?=L2(0,T;V?(?))and Y?=L2(0,T;Y?(?)).Also,for the dual pressure solution space,we consider the corresponding Hilbert space X={y:y∈Y,dy/dt∈Y?}endowed with the operator norm,continuously embedded in the space C([0,T];Z(?))of continuous pivot fields.

    Once again we apply the duality procedure of[3,19]to compressible-like system(2.13)2,in order to incorporate variationally the pressure-velocity boundary conditions and constraints,of normal wetting velocity and complementary pressure fields.Hence,in accordance with the qualitative physical flow model presented in Subsection 2.1,we consider as before conditions(2.7)and(2.8),in their corresponding subdifferential sense(2.16)and(2.17),with evolution trace spaces B=L2((0,T);B(??))and its dual B?=L2((0,T);B?(??)).In this manner,evoking corresponding Green formula(2.18)and Lemma 2.1,the dual mixed variational formulation of evolution subproblem(2.13)2results to be as follows.

    where the primal subdifferential?F:V(?)→2V?(?)is given by(2.21),for a.e.t∈(0,T),and the right-hand side term is defined byhere Dirichlet boundary data︿θD(t)= (︿h(t)-y,ρy-y,0a)in B?(??D)=B?(??fw)× B?(??sw)×B?(??a).Also the dual variational operator A∈L(Y?,Y?)is formally defined bywith a natural coefficient regularity ?(θ)∈L∞(?×(0,T)).

    Therefore,in the sense of[4],a dual duality principle can be established for the analysis of evolution mixed variational problem(M),by dualization of its V?-primal equation and compositional dualization.

    Theorem 2.4 Dual evolution mixed problem(M)possesses a unique solution if,andonly if,its dual evolution nonlinear problem

    possesses a unique solution,whereis a fixed divT-preimage of function

    Thereby,given a specific dual mixed functional Hilbert framework,appropriate variational operator properties and regularity conditions,the well-posedness of problem(M)can be determined.For an existence,uniqueness and regularity analysis of dual evolution problem(D),we refer to Chen's study[2].

    3 Macro-Hybrid Variational Formulations

    Once the fractional two-phase dual mixed flow variational problem(M)-(M)has been established,for the open coastal aquifer under consideration,we next specialize the problem in accordance with the qualitative physical stated assumption of air-and seawater-phase immobilities;i.e.,we take into account that the nonwetting-phase velocity field unequals 0 above the sea level(y>0),and below the sea level(y<0).

    Toward this end,we reformulate the global problem as a macro-hybrid mixed localized model.This type of variational decomposition is,additionally important,when regarding big spatial scales,heterogeneities and anisotropy of the system,as well as internal variational approximations,finite element implementations and parallel computing.Here we shall follow our study[23](see,also[4,8])on macro-hybridization of variational mixed constrained problems in mechanics.

    Let us then introduce nonoverlapping domain decompositions of the aquifer spatial region,and derive corresponding dual variational interface continuity transmission problems for synchronization.Hence,let the domain ? be decomposed in terms of connected disjoint subdomains{?e}by

    assuming Lipschitz internal boundaries and interfaces

    In particular,an appropriate specific decomposition of the open aquifer with seawater intrusion,would be the following,with nonoverlapping subdomains above(A)and below(B)the seawater level(y=0)(Fig.1):

    In this manner,we can implement the phase immobilities of the model,obtaining families of air-fresh water and fresh water-seawater flow subsystems,hydraulically communicated acrosstheir interfaces.Thereby,the imposed continuity transmission conditions of the spatial decomposition will correspond,in this case,to the instantaneous normal fresh water velocity and global pressure fields,and to the evolution normal fresh water velocity and complementary pressure fields.

    3.1 Instantaneous Macro-Hybrid Mixed Variational Formulations

    In this subsection,we treat the macro-hybridization of the instantaneous component of the fractional two-phase flow model,dual mixed problem(M).

    We first note that due to the nonwetting phase immobilities,the total velocity u of the model corresponds to the wetting fresh water velocity field,uw,above and below the sea level.Hence,for the macro-hybridization of problem(M),we consider nonoverlapping domain decompositions of type(3.1)-(3.3),and mixed functional framework(2.24)-(2.25)of wetting fresh water velocity and global pressure fields assumed to be decomposable in the sense

    with corresponding global pressure pivot space

    Hence,imposing the primal transmission condition of(3.4)1,via the subdifferential of the indicator functional IQof transmission subspace Q,the macro-hybridized version of mixed problem(M)is achieved,

    Furthermore,incorporating the internal boundary global pressures as Lagrange multipliers, denoted by,the macro-hybrid variational formulation of mixed problem(M)is obtained once the following dualization result is applied[5].

    Lemma 3.1 Due to compatibility property(C[δΓe]),the corresponding macro-hybrid compositional dualizationholds true.

    Indeed,we have the macro-hybrid problem

    This is the localized instantaneous dual mixed incompressible flow model(M),above and below the sea level,related to the nonoverlapping specific spatial decomposition(3.3)of the open coastal aquifer.Its dependent mixed fields are the local wetting fresh water velocities and the global pressures(with nonwetting pressure,the zero atmospheric pressure;see(2.12)2),synchronized by the internal boundary global pressures.Notice that,under seawater,the seepage constraint term primal subdifferential{?F}must be zero,?(I{≥0a}?δa)=0(see(2.21)).

    3.2 Evolution Dual Macro-Hybrid Mixed Variational Formulations

    Next,proceeding similarly as before,the macro-hybridization of the complementary dual evolution mixed model(M)turns out to be

    where the evolution mixed functional framework V{?e}and Y{?e},of wetting fresh water velocity and complementary pressure fields,corresponds to the decomposed version of evolution mixed spaces(2.26),relative to decomposed mixed framework(3.4)-(3.5)and on the basis of specific decomposition(3.3).Furthermore,introducing the Lagrange multiplier{χ?e}∈?IQ({δΓeue})?B?{Γe}of internal boundary complementary pressures,the macro-hybrid variational formulation of evolution mixed problem(M)is finally obtained by applying macro-hybrid compositional dualization result(3.7)of Lemma 3.1.

    As noted in the previous subsection for the instantaneous component of the fractional two-phase flow model,under seawater the seepage constraint term of the primal subdifferential{?F}must be zero(see(2.21)).

    4 Parallel Proximation Algorithms

    In this final section,we state proximation algorithms for the fractional two-phase flow macro-hybrid mixed variational models of the theory.These algorithms have proved to be very efficient in the treatment of mixed variational inclusions[3,4].We should further emphasize that all of these schemes are indeed implementable in terms of local internal variational finite element approximations,as we comment below,which in general may correspond to non-matching spatial discretizations.

    For the instantaneous macro-hybrid dual mixed incompressible model(MH),preconditioned augmented variational formulations are constructed in the sense of two-and three-field variational versions[3].On the other hand,for the complementary coupled dual evolution macro-hybrid mixed compressible-like model(MH),corresponding proximal-point algorithms are semi-implicit time marching schemes of the Douglas-Rachford and Peaceman-Rachford type,with proximation characterizations[4].

    Remark 4.1 For semi-discrete spatial approximations of the instantaneous macro-hybrid dual mixed variational component,(MH),of the coastal filtration flow model,we observe that a natural approach is the introduction of finite dimensional internal variational frameworks[24],implementable in terms of finite element interpolating basis.That is,the distributed local fresh water velocity and global pressure mixed framework may be approximated in terms of given families of finite dimensional subspacesand,such that

    We refer to[4](Sect.4)for further details,as well as for related semi-discrete solvability composition duality principles.For numerical implementation and experimentation,we refer to the works[25,26],where proximation iterative algorithms,as the ones to be presented in this section,are applied and discussed.Importantly,we should notice that corresponding macrohybrid mixed finite element implementations,in general,turn out to be globally nonconforming,allowing their generation via non-matching geometrical meshes,a fundamental strategy in parallel computing.Of course,similar comments on finite element approximations for the dual evolution component of the coastal filtration flow model,(MH),are in order,concerning the macro-hybrid mixed frameworks of the distributed local fresh water velocity and complementary pressure fields,as well as internal boundary complementary pressure fields.

    4.1 Parallel Proximal-Point Algorithms

    Following the resolvent or proximation methodology treated in[3,4,8],for the construction of preconditioned augmented two-and three-field parallel proximal-point algorithms of variational inclusions,we shall consider instantaneous macro-hybrid dual mixed model(MH)expressed in the classical mixed subdifferential form

    Hence,we shall have the primal and dual field identifications

    and the operator relations

    here A:V → 2V?is a primal maximal monotone operator with domain D(A)?{{ve}∈V({?e}):{δieve}= {0ie}},Λ ∈L(V,Y)is a linear continuous coupling operator with transpose ΛT∈L(Y?,V?),and?G?:Y?→2Yis a dual maximal monotone subdifferential operator with effective domain D(G?)?{({qe},{μ?e})∈Y({?e})×B?({Γe}):{μ?e}∈Q?}.

    Next,we shall proceed to state parallel proximal-point algorithms for the abstract general mixed variational problem(S),making precise in the sequel the sense in which the algorithmic results apply to the macro-hybrid dual mixed incompressible flow model of the theory,(MH).

    4.1.1 Two-Field Instantaneous Algorithms

    Following[3],problem(S)is first reformulated as a two-field augmented proximation problem,in terms of a real fixed parameter r>0,and a given linear and symmetric preconditioningoperator M?:Y?→Y,m?-bounded below,with inverse denoted by M-?:Y→Y?.

    In the construction of proximation augmented version(Sr),we should observe that the dual equation of mixed problem(S)is equivalently expressed in its augmented preconditioned form M?p?+rΛu∈(M?+r?G?)(p?),which upon the introduction of the M?-resolvent operator of the dual subdifferential?G?:Y?→2Y,defined by(a single valued 1/m?-firm contraction),takes the final formThen problem(Sr)is completed utilizing the resolvent-proximation relationProxM?,rG?=IY?-M-?ProxM-?,rG?(1/r)IY?M?(see[3]).

    Thereby,mixed augmented problem(Sr)that in fact corresponds to an exact r-penalization of original problem(S)(see[25]for a concrete case),turns out to be well conditioned.Then it becomes natural to associate Uzawa type algorithms for its resolution[27-29],as the following one.

    Algorithm IGiven u0∈D(A),p?0∈D(G?),known um,p?m,m≥0,find um+1,and p?m+1:

    In the convergence analysis of Algorithm I,taking into account the above stated resolventproximation relation,a resolvent dual characterization of the algorithm is given by

    that corresponds to a characterization of the implicit mixed Euler scheme

    related to the dynamical system associated to augmented problem(Sr).Here the dual operator A?Λ:Y?→ 2Yis defined by A?Λ=-ΛA-1(-ΛT(·)),with A-1:V?→2Vthe inverse(graph)of primal operator A:V→2V?.Then the convergence of the algorithm is concluded[30].

    Theorem 4.2 The convergence of Algorithm I is guaranteed whenever the dual operator conditionis fulfilled.

    ·Model(MH) In the case of the macro-hybrid dual mixed incompressible flow model of the paper,the parallel implementation of this two-field proximal-point algorithm,with vector and operator relations(4.3)and(4.4)in force,follows by observing that corresponding primal superpotential G of dual subdifferential(4.4)4is given byand that corresponding proximation operator(4.5)turns out to behere Proj[H-?e],Qstands for the[H-?e]-projection on Q,with the inverse preconditioning operator identification

    In this manner,for the wetting fresh water velocity-global pressure flow component of the two-phase coastal filtration model,Algorithm I takes the explicit local and parallel form

    Algorithm IMHGivenknown

    Moreover,in this case,convergence conditionof Theorem 4.2 is satisfied.

    4.1.2 Three-Field Instantaneous Algorithms

    A second proximal-point algorithm for mixed problem (S)corresponds to a three-field extended formulation,for which the intermediate primal field

    is introduced,and the dual equation is inverted or dualized,to obtain the three-field variational abstract problem

    Then,proceeding as for the original two-field mixed problem(S),a further augmented formulation turns out to be the following,

    Notice that at this instance the proximation operator of the formulation vanishes,in contrast with that of augmented problem(Sr).

    Therefore,for augmented three-field mixed problem(Sr),an alternative Uzawa type proximalpoint algorithm reads as follows.

    Algorithm II Given p?0∈D(G?),known p?m,m≥0,find um+1,τm+1and p?m+1:

    Once again,this algorithm can be interpreted as an implicit Euler scheme,

    with a resolvent dual characterization,

    Then,due to the 1/m?-firm contraction property of the resolvent operator,the convergence of the algorithm is given as follows[30].

    Theorem 4.3 Algorithm II converges,if its dual operator is such that

    It is important to recognize that Algorithm II constitutes an extension of the classical penalty-duality algorithm ALG1 studied in[29-32],with further alternating-direction variants ALG2 and ALG3.

    ·Model(MH) For the macro-hybrid dual mixed incompressible flow model component of the paper,with relations(4.3)and(4.4)in force,intermediate field τ=Λu ∈Y,(4.11),is given by

    the negative divergence of local wetting fresh water velocities and the internal boundary normal wetting fresh water velocities;a subgradient of dual subdifferential(4.4)4.Then Algorithm II for instantaneous macro-hybrid dual mixed model(MH),in terms of preconditioning operator(4.10),takes the local and parallel implementable form

    Algorithm IIMHGivenknownm≥0,find

    Moreover,condition(CA?Λ,?G)of Theorem 4.3 is satisfied and Algorithm IIMHis convergent.

    4.2 Proximation Semi-Implicit Time Marching Schemes

    Next,we proceed to apply time discretization schemes to the dual evolution macro-hybrid mixed variational component of the coastal fractional flow model,(MH).We shall consider semi-implicit time marching schemes that are implementable as proximation local parallel algorithms.In particular,we apply the Douglas-Rachford and Peaceman-Rechford time marching procedures.Also,based on our previous work[8]on proximal-point algorithms for variational constrained problems,corresponding stationary convergence results are stated.

    4.2.1 The Operator Splitting Douglas-Rachford Scheme

    For dual evolution macro-hybrid mixed variational problem(MH),with identifications(4.3)and(4.4)in force,and denoting by r>0 and m≥0 the time marching step and step number,the Douglas-Rachford time marching procedure is given as follows(see[4,8]).

    For a proximal realization of this scheme,we introduce the intermediate macro-hybrid vector{κe}∈B{Γe},such that

    Then the Douglas-Rachford procedure has as a parallel proximal realization the following.

    Algorithm IMHGiven,knownsatisfying the primal synchronizing condition

    4.2.2 The Operator Splitting Peaceman-Rachford Scheme

    As an alternative operator splitting scheme for dual evolution macro-hybrid mixed variational problem(MH),we consider the following.

    Similarly,as for the previous time marching scheme,we introduce an intermediate macrohybrid vector{κe}∈B{Γe},but now such thatand a parallel proximation realization of Peaceman-Rachford scheme is then concluded.

    Algorithm IIMHGivenknown,findsatisfying the primal synchronizing condition

    4.3 Convergence of the Operator Splitting Schemes

    Thereby,defining the auxiliary dual supervectorsuch thatthe macro-hybrid dual problem of the Douglas-Rachford scheme,at the m+1≥1 time step,can be expressed by

    On the other hand,for the Peaceman-Rachford scheme,its macro-hybrid dual problem can be similarly expressed as follows,where the dual subdifferential is given by?G?=({0?e},?IQ?).Therefore,we can conclude the following convergence results[4].

    Theorem 4.4 Let the dual operatorsbe maximal monotone.Then, for time-independent dataoperator splitting algorithms

    Algorithm IMHand Algorithm IIMHevolve,as m → ∞,to aand astationary state of the dual evolution macro-hybrid mixed filtration coastal problem(MH),respectively.

    [1]Chen Z,Ewing R.Mathematical analysis of reservoir models.SIAM J Math Anal,1999,30:431-453

    [2]Chen Z.Degenerate two-phase incompressible flow I,existence,uniqueness and regularity of a weak solution. J Differ Equ,2001,171:203-232

    [3]Alduncin G.Composition duality methods for mixed variational inclusions.Appl Math Opt,2005,52: 311-348

    [4]Alduncin G.Composition duality methods for evolution mixed variational inclusions.Nonlinear Analysis: Hybrid Syst,2007,1:336-363

    [5]Alduncin G.Macro-hybrid variational formulations of constrained boundary value problems.Numerical Funct Anal Opt,2007,28:751-774

    [6]Alduncin G.Analysis of evolution macro-hybrid mixed variational problems.Int J Math Anal,2008,2: 663-708

    [7]Alduncin G.Primal and dual evolution macro-hybrid mixed variational inclusions.Int J Math Anal,2011,5:1631-1664

    [8]Alduncin G.Parallel proximal-point algorithms for constrained problems in mechanics//Yang L T,Paprzycki M.Practical Applications of Parallel Computing.New York:Nova Science,2003:69-88

    [9]Alduncin G.Analysis of augmented three-field macro-hybrid mixed finite element schemes.Analysis in Theory and Applications,2009,25:254-282

    [10]Alduncin G.Evolution filtration problems with seawater intrusion:Macro-hybrid primal mixed variational analysis.Front Eng Mech Research,2013,2:22-27

    [11]Esquivel-Avila J,Alduncin G.Qualitativeanalysisofevolution filtration freeboundary problems//Proceedings of the Second World Congress on Computational Mechanics.Stuttgart:University of Stuttgart,1990:658-661

    [12]Baiocchi C,Comincioli V,Magenes E,et al.Free boundary problems in the theory of fluid flow through porous media:existence and uniqueness theorems.Ann Mat Pura Appl,1973,4:1-82

    [13]Torelli A.Su un proplema a frontiera libera di evoluzione.Bolletino U M I,1975,11(4):559-570

    [14]Torelli A.On a free boundary value problem connected with a non steady phenomenon.Ann Sc Norm Super Pisa Cl Sci,1977,IV:33-58

    [15]Friedman A,Torelli A.A free boundary problem connected with non-steady filtration in porous media. Num Anal,TMA,1977,1:503-545

    [16]Gilardi G.A new approach to evolution free boundary problem.Commun Partial Differ Equ,1979,4: 1099-1122

    [17]DiBenedetto E,F(xiàn)riedman A.Periodic behaviour for the evolutionary dam and related free boundary problems.Commun Partial Differ Equ,1986,11:1297-1377

    [18]Arbogast T.The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow.Nonlinear Analysis,1992,19:1009-1031

    [19]Alduncin G.Variational formulations of nonlinear constrained boundary value problems.Nonlinear Analysis,2010,72:2639-2644

    [20]Girault V,Raviart P A.Finite Element Methods for Navier-Stokes Equations.Berlin:Springer-Verlag,1986

    [21]Alduncin G.Composition duality principles for mixed variational inequalities.Math Comput Model,2005,41:639-654

    [22]Alduncin G.Mixed variational modeling of multiphase flow and transport in the subsurface.Far East J Appl Math,2012,71:1-42

    [23]Alduncin G.Numerical resolvent methods for macro-hybrid mixed variational inequalities.Num Funct Anal Opt,1998,19:667-696

    [24]Temam R.Analyse Num′erique.Paris:Presses Universitaires de France,1970

    [25]Alduncin G,Vera-Guzm′an N.Parallel proximal-point algorithms for mixed finite element models of flow in the subsurface.Commun Numer Methods Eng,2004,20:83-104

    [26]Alduncin G,Esquivel-′Avila J,Vera-Guzm′an N.Steady filtration problems with seawater intrusion:macro-Hybrid penalized finite element approximations.Int J Num Methods in Fluids,2005,49:935-957

    [27]Brezzi F,F(xiàn)ortin M.Mixed and Hybrid Finite Element Methods.New York:Springer-Verlag,1991

    [28]Roberts J E,Thomas J-M.Mixed and hybrid methods//Ciarlet P G,Lions J L.Handbook of Numerical Analysis,Vol II.Amsterdam:North-Holland,1991:523-639

    [29]Fortin M,Glowinski R(eds).M′ethodes de Lagrangien Augment′e:Applications`a la R′esolution Num′erique de Probl`emes aux Limites.Paris:Dunod-Bordas,1982

    [30]Gabay D.Application de la m′ethode des multiplicateurs aux in′equations variationnelles//Fortin M,Glowinski R.M′ethodes de Lagrangien Augment′e.Paris:Dunod-Bordas,1982:279-307

    [31]Glowinski R.Numerical Methods for Nonlinear Variational Problems.New York:Springer-Verlag,1984

    [32]Glowinski R,Le Tallec P.Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Philadelphia:SIAM,1989

    [33]Mosco U.Dual variational inequalities.J Math Anal Appl,1972,40:202-206

    E-mail:alduncin@geofisica.unam.mx

    亚洲18禁久久av| 日本熟妇午夜| 两个人的视频大全免费| 色综合亚洲欧美另类图片| 久久精品综合一区二区三区| 一本久久中文字幕| 亚洲精品国产一区二区精华液| 亚洲中文日韩欧美视频| 岛国在线观看网站| 日韩成人在线观看一区二区三区| 91成年电影在线观看| 亚洲五月婷婷丁香| 久久伊人香网站| 亚洲最大成人中文| 无遮挡黄片免费观看| 亚洲av日韩精品久久久久久密| a在线观看视频网站| 91字幕亚洲| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av高清一级| 欧洲精品卡2卡3卡4卡5卡区| 黄色a级毛片大全视频| 在线a可以看的网站| 美女大奶头视频| 天天添夜夜摸| 国产成人一区二区三区免费视频网站| 精品国内亚洲2022精品成人| 国产99白浆流出| 国产精品久久久久久精品电影| 日本a在线网址| 国产视频内射| 亚洲成av人片在线播放无| 国产99白浆流出| 日本 av在线| 香蕉丝袜av| 精品无人区乱码1区二区| 一级毛片女人18水好多| 妹子高潮喷水视频| 国产私拍福利视频在线观看| 国产精品久久视频播放| svipshipincom国产片| 亚洲最大成人中文| 五月伊人婷婷丁香| 国产精品av久久久久免费| 18禁黄网站禁片午夜丰满| 中文字幕久久专区| 免费无遮挡裸体视频| 日韩欧美 国产精品| 日本免费一区二区三区高清不卡| 日韩免费av在线播放| 无遮挡黄片免费观看| 日韩成人在线观看一区二区三区| 久久天堂一区二区三区四区| 丰满人妻一区二区三区视频av | 90打野战视频偷拍视频| 精品免费久久久久久久清纯| 老鸭窝网址在线观看| 国产亚洲av嫩草精品影院| 俺也久久电影网| 久久香蕉激情| 国内精品久久久久久久电影| 美女扒开内裤让男人捅视频| 免费在线观看日本一区| 成人欧美大片| 亚洲国产欧美网| 国产免费男女视频| 国产精品98久久久久久宅男小说| 日本免费一区二区三区高清不卡| 五月伊人婷婷丁香| 岛国视频午夜一区免费看| 亚洲av电影在线进入| 久久亚洲真实| 亚洲欧美日韩高清专用| e午夜精品久久久久久久| 制服人妻中文乱码| 久久精品91蜜桃| 国产私拍福利视频在线观看| 欧美成狂野欧美在线观看| xxx96com| 日韩欧美 国产精品| 国产av不卡久久| 亚洲一卡2卡3卡4卡5卡精品中文| 日日爽夜夜爽网站| 欧美又色又爽又黄视频| 久久中文字幕人妻熟女| 国产成人欧美在线观看| 色老头精品视频在线观看| av在线播放免费不卡| 久久久久久久精品吃奶| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 国产高清视频在线观看网站| 在线观看免费午夜福利视频| 9191精品国产免费久久| 国产成人系列免费观看| 一级片免费观看大全| 日韩欧美在线二视频| 麻豆成人av在线观看| 国产91精品成人一区二区三区| 日韩高清综合在线| 精品一区二区三区av网在线观看| 日韩欧美 国产精品| 国产三级黄色录像| 在线看三级毛片| 在线观看舔阴道视频| 午夜福利18| 久久精品国产亚洲av高清一级| 国产精品久久电影中文字幕| 亚洲熟女毛片儿| 亚洲18禁久久av| 亚洲人成电影免费在线| 在线观看舔阴道视频| 搡老岳熟女国产| 亚洲黑人精品在线| 最近最新中文字幕大全电影3| 日本黄大片高清| 亚洲中文av在线| 99热6这里只有精品| 亚洲一区二区三区不卡视频| 国产一区二区在线观看日韩 | 无人区码免费观看不卡| svipshipincom国产片| 99久久99久久久精品蜜桃| 久久香蕉精品热| 精华霜和精华液先用哪个| 亚洲中文av在线| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产欧美一区二区综合| 国产成人av教育| 国产麻豆成人av免费视频| 精品欧美一区二区三区在线| 日韩欧美在线乱码| 亚洲午夜理论影院| 韩国av一区二区三区四区| 亚洲成人免费电影在线观看| 久久人人精品亚洲av| 成人午夜高清在线视频| 久久香蕉激情| 法律面前人人平等表现在哪些方面| 真人做人爱边吃奶动态| 一二三四在线观看免费中文在| 日韩成人在线观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 日日夜夜操网爽| 久久久久久人人人人人| 久久中文字幕一级| 精品日产1卡2卡| 一二三四在线观看免费中文在| 国产成年人精品一区二区| 国产精华一区二区三区| 看片在线看免费视频| 亚洲精品一区av在线观看| 国产成人精品无人区| 色尼玛亚洲综合影院| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧美人成| 99久久综合精品五月天人人| 在线观看www视频免费| 久久久久久国产a免费观看| 国产亚洲欧美98| 色老头精品视频在线观看| 免费电影在线观看免费观看| 一进一出抽搐动态| 日韩精品中文字幕看吧| 国产精品一区二区三区四区久久| xxxwww97欧美| 三级男女做爰猛烈吃奶摸视频| 日本精品一区二区三区蜜桃| 99精品久久久久人妻精品| 欧美乱码精品一区二区三区| 久久婷婷人人爽人人干人人爱| 青草久久国产| 国产伦在线观看视频一区| 亚洲片人在线观看| 免费搜索国产男女视频| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看日本一区| 久久久久国产精品人妻aⅴ院| 又黄又粗又硬又大视频| www.自偷自拍.com| 日韩三级视频一区二区三区| 丝袜人妻中文字幕| 91老司机精品| 亚洲专区中文字幕在线| 18禁国产床啪视频网站| 亚洲18禁久久av| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 久久国产精品人妻蜜桃| 日韩精品中文字幕看吧| 在线观看一区二区三区| 露出奶头的视频| 欧美成人一区二区免费高清观看 | 国产区一区二久久| 国产熟女xx| 国产又色又爽无遮挡免费看| 亚洲黑人精品在线| 亚洲精品国产一区二区精华液| 窝窝影院91人妻| 97碰自拍视频| 亚洲九九香蕉| 成人亚洲精品av一区二区| 国产亚洲精品综合一区在线观看 | 两个人视频免费观看高清| 国产成人av教育| xxx96com| 全区人妻精品视频| 久久亚洲精品不卡| 欧美成人性av电影在线观看| 欧美3d第一页| 9191精品国产免费久久| 亚洲av成人不卡在线观看播放网| 丰满人妻一区二区三区视频av | 日韩国内少妇激情av| 久久人人精品亚洲av| 日韩欧美免费精品| 两人在一起打扑克的视频| 日本熟妇午夜| 国产一区二区在线av高清观看| 国产v大片淫在线免费观看| 在线观看www视频免费| 91av网站免费观看| 精品一区二区三区av网在线观看| www日本黄色视频网| 毛片女人毛片| 亚洲最大成人中文| av有码第一页| 国产久久久一区二区三区| 天天躁夜夜躁狠狠躁躁| 亚洲黑人精品在线| 国产精品电影一区二区三区| 99久久精品热视频| 亚洲人成伊人成综合网2020| 国产黄片美女视频| or卡值多少钱| 两个人看的免费小视频| 午夜影院日韩av| 欧美成人一区二区免费高清观看 | 国产三级在线视频| www.www免费av| 99久久99久久久精品蜜桃| 他把我摸到了高潮在线观看| 欧美色欧美亚洲另类二区| 成人特级黄色片久久久久久久| 国内毛片毛片毛片毛片毛片| 亚洲人成网站高清观看| 一区福利在线观看| 亚洲欧美激情综合另类| 久久婷婷成人综合色麻豆| 欧美在线一区亚洲| 亚洲av片天天在线观看| 88av欧美| 法律面前人人平等表现在哪些方面| 嫩草影视91久久| 18禁裸乳无遮挡免费网站照片| 搡老熟女国产l中国老女人| 国产成年人精品一区二区| 99久久综合精品五月天人人| 久久久久亚洲av毛片大全| 一本久久中文字幕| 曰老女人黄片| 欧美日韩乱码在线| 日日摸夜夜添夜夜添小说| 久久国产乱子伦精品免费另类| 亚洲av熟女| 欧美在线一区亚洲| 黄频高清免费视频| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 巨乳人妻的诱惑在线观看| 久久久久久久精品吃奶| 久久伊人香网站| 人妻久久中文字幕网| 亚洲中文日韩欧美视频| 波多野结衣高清无吗| 俄罗斯特黄特色一大片| 久久久久久亚洲精品国产蜜桃av| 免费在线观看视频国产中文字幕亚洲| 美女大奶头视频| 亚洲aⅴ乱码一区二区在线播放 | 999精品在线视频| 19禁男女啪啪无遮挡网站| 免费在线观看亚洲国产| 亚洲va日本ⅴa欧美va伊人久久| 丁香欧美五月| 在线观看午夜福利视频| 国内精品久久久久精免费| 一区二区三区高清视频在线| 亚洲狠狠婷婷综合久久图片| 怎么达到女性高潮| 久久精品国产清高在天天线| 人妻久久中文字幕网| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| 手机成人av网站| 淫秽高清视频在线观看| xxx96com| 亚洲激情在线av| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 18禁黄网站禁片免费观看直播| 欧美日韩一级在线毛片| 妹子高潮喷水视频| 日韩大码丰满熟妇| 老熟妇乱子伦视频在线观看| 男女之事视频高清在线观看| 午夜日韩欧美国产| 床上黄色一级片| 亚洲欧洲精品一区二区精品久久久| 村上凉子中文字幕在线| 久久久精品国产亚洲av高清涩受| 国产精品综合久久久久久久免费| 国产av又大| 午夜激情av网站| 国产精品日韩av在线免费观看| xxx96com| 国产91精品成人一区二区三区| 欧美另类亚洲清纯唯美| 亚洲美女黄片视频| 无人区码免费观看不卡| 麻豆久久精品国产亚洲av| 久久久久国内视频| 在线a可以看的网站| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 色综合站精品国产| 成人欧美大片| 麻豆国产97在线/欧美 | 丁香欧美五月| 国产69精品久久久久777片 | 91成年电影在线观看| 99热这里只有是精品50| 88av欧美| 50天的宝宝边吃奶边哭怎么回事| 日本精品一区二区三区蜜桃| 国内精品久久久久精免费| 美女黄网站色视频| xxx96com| 男女床上黄色一级片免费看| 黑人欧美特级aaaaaa片| 国产精品免费一区二区三区在线| 日本三级黄在线观看| 国产不卡一卡二| 久久久国产成人精品二区| 此物有八面人人有两片| 免费在线观看亚洲国产| 国产av在哪里看| 很黄的视频免费| 国产精品综合久久久久久久免费| 欧美日韩福利视频一区二区| 欧美一区二区精品小视频在线| 久久精品成人免费网站| 婷婷亚洲欧美| a级毛片在线看网站| 亚洲国产精品合色在线| 51午夜福利影视在线观看| 无限看片的www在线观看| 99国产综合亚洲精品| 一级毛片高清免费大全| 色综合站精品国产| 99久久99久久久精品蜜桃| 久久久久久大精品| 亚洲av片天天在线观看| 听说在线观看完整版免费高清| 一区二区三区国产精品乱码| 久久久精品欧美日韩精品| 午夜日韩欧美国产| 亚洲九九香蕉| 亚洲欧美日韩东京热| 香蕉丝袜av| 欧美日韩国产亚洲二区| or卡值多少钱| 香蕉久久夜色| 狠狠狠狠99中文字幕| 国产免费男女视频| 国产成人精品久久二区二区91| 特级一级黄色大片| 国产成人精品无人区| 日韩精品中文字幕看吧| 最近最新免费中文字幕在线| 中文亚洲av片在线观看爽| 俺也久久电影网| 中文亚洲av片在线观看爽| 久久精品91无色码中文字幕| 小说图片视频综合网站| 久久性视频一级片| 99久久久亚洲精品蜜臀av| 亚洲五月天丁香| 精品福利观看| 日本 欧美在线| av免费在线观看网站| a级毛片在线看网站| 精品国产乱子伦一区二区三区| 88av欧美| 免费一级毛片在线播放高清视频| 最近视频中文字幕2019在线8| 久久精品国产综合久久久| 亚洲性夜色夜夜综合| 在线国产一区二区在线| 一个人免费在线观看电影 | 97人妻精品一区二区三区麻豆| 欧美黄色淫秽网站| 国产一区在线观看成人免费| svipshipincom国产片| 少妇被粗大的猛进出69影院| 国产又黄又爽又无遮挡在线| 国产av不卡久久| 国产1区2区3区精品| 国产精品爽爽va在线观看网站| 91九色精品人成在线观看| 精品国产乱码久久久久久男人| 国产成+人综合+亚洲专区| 日本a在线网址| 亚洲午夜精品一区,二区,三区| 亚洲黑人精品在线| 亚洲精品一卡2卡三卡4卡5卡| 丝袜人妻中文字幕| 老司机靠b影院| 一进一出抽搐动态| 精品久久久久久,| 婷婷丁香在线五月| 在线永久观看黄色视频| 中文字幕久久专区| 亚洲人成77777在线视频| 中文资源天堂在线| 久久久久久久精品吃奶| 亚洲熟女毛片儿| 欧美色视频一区免费| 18禁观看日本| 桃色一区二区三区在线观看| av在线播放免费不卡| 色尼玛亚洲综合影院| 亚洲,欧美精品.| 国产99久久九九免费精品| 国产精品爽爽va在线观看网站| 搞女人的毛片| 中国美女看黄片| 不卡一级毛片| 免费在线观看成人毛片| 欧美在线黄色| 中文字幕最新亚洲高清| 变态另类丝袜制服| 欧美乱码精品一区二区三区| 母亲3免费完整高清在线观看| 小说图片视频综合网站| 欧美日韩福利视频一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 久久伊人香网站| 亚洲男人天堂网一区| 黄色毛片三级朝国网站| 香蕉丝袜av| 国产黄片美女视频| 国产av又大| 国产精品影院久久| 亚洲av电影不卡..在线观看| 亚洲,欧美精品.| 国产精品影院久久| 久久久国产成人精品二区| 久久这里只有精品中国| 最近最新中文字幕大全电影3| 国产午夜精品久久久久久| 99久久99久久久精品蜜桃| 岛国在线免费视频观看| 中文亚洲av片在线观看爽| 操出白浆在线播放| 欧美av亚洲av综合av国产av| 男人舔女人的私密视频| 最新在线观看一区二区三区| 色噜噜av男人的天堂激情| 黄色丝袜av网址大全| 亚洲熟妇熟女久久| 日韩欧美在线乱码| 亚洲国产精品成人综合色| 欧美不卡视频在线免费观看 | 国产高清视频在线播放一区| e午夜精品久久久久久久| 亚洲精品久久成人aⅴ小说| 两个人看的免费小视频| 中文字幕熟女人妻在线| 欧美精品啪啪一区二区三区| 日韩高清综合在线| 亚洲 国产 在线| 可以免费在线观看a视频的电影网站| 草草在线视频免费看| 精品国产乱子伦一区二区三区| 天天添夜夜摸| 三级男女做爰猛烈吃奶摸视频| 久久久国产成人免费| 日韩欧美精品v在线| 亚洲国产精品久久男人天堂| 麻豆国产97在线/欧美 | 舔av片在线| 白带黄色成豆腐渣| 国产熟女午夜一区二区三区| 亚洲乱码一区二区免费版| 久久伊人香网站| 老汉色av国产亚洲站长工具| 波多野结衣巨乳人妻| 日本免费a在线| 国语自产精品视频在线第100页| 1024视频免费在线观看| 全区人妻精品视频| 亚洲人成伊人成综合网2020| 少妇人妻一区二区三区视频| 亚洲成av人片免费观看| 欧美日韩精品网址| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 成在线人永久免费视频| 成人18禁高潮啪啪吃奶动态图| 每晚都被弄得嗷嗷叫到高潮| 男人的好看免费观看在线视频 | 国产私拍福利视频在线观看| www.熟女人妻精品国产| 日韩成人在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 欧美三级亚洲精品| 99久久无色码亚洲精品果冻| 久久久久久久久中文| 国产精品爽爽va在线观看网站| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩一区二区精品| 白带黄色成豆腐渣| 国产亚洲精品久久久久5区| 欧美乱色亚洲激情| 免费人成视频x8x8入口观看| 免费在线观看影片大全网站| 久久久久性生活片| 一进一出好大好爽视频| 亚洲在线自拍视频| 亚洲性夜色夜夜综合| 亚洲一区中文字幕在线| 成年人黄色毛片网站| 999久久久国产精品视频| 亚洲国产中文字幕在线视频| 欧美午夜高清在线| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| 亚洲欧美精品综合一区二区三区| 精品欧美国产一区二区三| 亚洲美女黄片视频| 国内久久婷婷六月综合欲色啪| 国产欧美日韩精品亚洲av| 亚洲国产欧美网| 免费人成视频x8x8入口观看| 色哟哟哟哟哟哟| 成年女人毛片免费观看观看9| 草草在线视频免费看| 午夜精品一区二区三区免费看| 亚洲七黄色美女视频| 中文在线观看免费www的网站 | 黑人操中国人逼视频| 亚洲黑人精品在线| 动漫黄色视频在线观看| 免费看日本二区| 免费在线观看完整版高清| 99精品在免费线老司机午夜| 亚洲一码二码三码区别大吗| 久久久久久免费高清国产稀缺| 首页视频小说图片口味搜索| 亚洲男人天堂网一区| 久久精品国产综合久久久| 国产成人影院久久av| 亚洲真实伦在线观看| 国产av一区在线观看免费| 一个人免费在线观看的高清视频| 欧美不卡视频在线免费观看 | 欧美又色又爽又黄视频| 欧美一级毛片孕妇| 亚洲精品美女久久久久99蜜臀| 欧美精品啪啪一区二区三区| 亚洲精品久久国产高清桃花| 日韩欧美国产一区二区入口| 久久精品国产99精品国产亚洲性色| 精品乱码久久久久久99久播| 人人妻人人看人人澡| 最近最新中文字幕大全免费视频| 亚洲专区中文字幕在线| 久久久精品国产亚洲av高清涩受| 午夜a级毛片| 国产成人精品久久二区二区免费| 男女视频在线观看网站免费 | 久久久久性生活片| 久久久久久久久久黄片| 中文字幕高清在线视频| 久久精品成人免费网站| 久久欧美精品欧美久久欧美| 最新美女视频免费是黄的| 久久久久久久午夜电影| 国产精品99久久99久久久不卡| 黄色片一级片一级黄色片| 国产又色又爽无遮挡免费看| 日日爽夜夜爽网站| 狠狠狠狠99中文字幕| 亚洲 国产 在线| 亚洲男人的天堂狠狠| 亚洲无线在线观看| 老熟妇乱子伦视频在线观看| 美女 人体艺术 gogo| 婷婷六月久久综合丁香| 欧美日韩国产亚洲二区| 天天添夜夜摸| 亚洲精品在线美女| 亚洲av电影不卡..在线观看| 亚洲国产欧洲综合997久久,| 欧美日韩国产亚洲二区| 国产精品av久久久久免费| 国产精品1区2区在线观看.| 国产成人av教育| 国产91精品成人一区二区三区| 麻豆一二三区av精品| 禁无遮挡网站| 无遮挡黄片免费观看| 国产av麻豆久久久久久久|