• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control-Oriented Modeling and Simulation on Rigid-Aeroelasticity Coupling for Hypersonic Vehicle

    2015-11-21 07:09:05XiaoLiping肖莉萍ZhangYong張勇LuYuping陸宇平
    關(guān)鍵詞:搜集整理本門張勇

    Xiao Liping(肖莉萍),Zhang Yong(張勇),Lu Yuping(陸宇平)

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.School of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Control-Oriented Modeling and Simulation on Rigid-Aeroelasticity Coupling for Hypersonic Vehicle

    Xiao Liping(肖莉萍)1*,Zhang Yong(張勇)1,Lu Yuping(陸宇平)2

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.School of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Since the subsystems of aerodynamics,propulsion,structure and so on in hypersonic vehicles involve characteristics of nonlinearity,strong coupling and uncertainty,and typical hypersonic vehicles adopt slender-body and wave-rider layout with widely-used lightweight materials,the accuracy of the modeling with a conventional rigid-body assumption is challenged.Therefore,a nonlinear mathematical longitudinal model of a hypersonic vehicle is established with its geometry provided to estimate aerodynamic force and thrust using hypersonic aerodynamics and quasi-one-dimensional flow with heat added and capture vehicle aeroelasticity using a single free-free Bernoulli-Euler beam model.Then the static and dynamic properties of the rigid and rigid-aeroelasticity coupling model are compared via theoretical analysis and numerical simulation under the given flight condition.Einally,a LQR controller for rigid model is designed and the comparable results are obtained to explain the aerolasticity influence on the control effect.The simulation results show that the aeroelasticity mode of slender-body hypersonic vehicles affects short period mode significantly and it cannot be simply neglected.

    hypersonic vehicle;wave-rider;aeroelasticity;modeling;dynamic properties

    0 Introduction

    Hypersonic unmanned vehicle is an unmanned aircraft that travels at high speeds.The term hypersonic refers to speeds faster than five times the speed of sound or Mach 5 at altitudes higher than 20 km.An″air-breathing″hypersonic vehicle takes oxygen from the atmosphere rather than having to carry it in the form of fuel oxidizer during flight.It can increase the effective load capacity in the same state of take-off loads.The airbreathing hypersonic vehicle provides a promising technology for low-cost and time-saving flight both in commercial and military fields[1].

    The vehicles become more complex because of the profound coupling among aerodynamic and propulsive phenomena[2].At the same time,a new generation of hypersonic vehicles commonly uses lightweight flexible material,and its aerodynamic shape is generally elongated body,having a waverider layout.Special structure and aerodynamic layout result in the low natural vibration frequency of hypersonic vehicle structure obviously,where the structural flexibility of the airframe or the aerodynamic surfaces for aircraft attitude control increase greatly[3].The longitudinal dynamics of a classical hypersonic air-breathing vehicle is established with rigid and aeroelasticity coupling based on Lagrange equation[4],called the Bolender and Doman model.An overview of scramjet-powered hypersonic vehicle with aeroelastic-propulsive interactions modeling and control challenges is studied[5-6].And then,the further work for the model simplification is imple-mented for model-based control[7].Typically,a linear parameter-varying(LPV)version of the model is developed for robust control design,and a novel LPV regulator design methodology is developed considering the case of over-actuated[8]. A controller for flexible hypersonic vehicle is synthesized using H∞LPV techniques,where a least squares optimization is performed on the tracking error state[9].Meanwhile,other control methods for flexible hypersonic vehicle are developed.A suitable controller formulation for trajectory tracking of a hypersonic vehicle is derived,which explicitly accommodates nonlinear constraints involving both state and control variables[10].However,no literatures further explore the interaction between rigid and aeroelasticity modes.

    Here a dynamic model of rigid-elastic coupling of hypersonic vehicles is first built.The body surface aerodynamic force of the vehicle is estimated based on oblique shockwave theory and Prandtl-Mayer equation.A quasi-one-dimensional Rayleigh flow scramjet propulsion model with heat increase is used to estimate the engine thrust.In addition,a typical elongated waverider configuration can be approximately considered as a single free-free Bernoulli-Euler beam,where longitudinal vibration of partial differential equations with viscous damping is used to establish the equivalent elastic model of the vehicle.Secondly,the static characteristics of rigid body and rigid-aeroelasticity coupling body are compared in the Matlab simulation environment.The dimensional derivatives of short period mode are analyzed between the rigid and rigid-aeroelastic body,and further the dynamic characteristic of both body is simulated.Einally,according to the rigid model,a LQR controller is designed for the rigid-aeroelastic coupling model.Simulation results show that the aeroelasticity of a hypersonic vehicle of slender waverider configuration has a more significant impact on the short period mode,which cannot be neglected.

    1 Modeling of Hypersonic Vehicle with Rigid-Aeroelasticity Coupling

    1.1 Geometries of typical hypersonic vehicle

    A typical waverider is selected as a hypersonic vehicle configuration,as shown in Eig.1. Scramjet engine is placed on the lower abdomen of the airframe.The lower forebody considered as the external compression section of the inlet could pre-compress the air to improve the compression ability of the incoming flow.The lower surface of aftbody in relation to the external expansion section of the nozzle could increase the propulsive efficiency without generating induced drag[11].

    The geometric parameters in Eig.1 are described as follows.xBozBis the body-axis coordinates.τ1landτ1uare lower forebody turn angle and upper forebody turn angle with respect to xBaxis respectively.τ2is aftbody vertex angle.Lf,Lnand Laare the length of forebody,engine and aftbody respectively.Obviously,the total length of the vehicle is Lv=Lf+Ln+La.hiis inlet height of the scramjet engine.

    Eig.1 Geometries of typical waverider

    1.2 Aerodynamics of hypersonic vehicle

    In order to obtain the required aerodynamic for modeling,oblique shock and Prandtl-Meyer expansion theory could be used to estimate the surface force in the study of hypersonbic vehicle modeling.In different flight conditions,the shock effects on forebody,the engine combustion chamber and the aftbody expansion surface of the hypersonic vehicle are considered.The force on the surface of the vehicle is estimated by studying the flow relationship between the shock and flight state.

    Eor the hypersonic vehicle configuration shown in Eig.1,attack angle isα,and lower forebody turn angle related with xBaxis isτ1l.If flow turn angleδs=α+τ1l≥0°,oblique shock theory is used to estimate the pressure on the surface of forebody P and temperatures

    where Ma∞,P∞,T∞are the Mach number,pressure,and static temperature,respectively;Mas,Ps,Tsthe Mach number,pressure,and static temperature,after the flow through the shock,respectively;γthe heat ratio;andβsthe shock angle.

    Otherwise,if the flow turn angleδs=α+ τ1l<0°,then the expansion wave appears on the forebody surface of the vehicle,and Prandtl-Meyer theory could be used to estimate the pressure on the forebody surface of the vehicle[6,12].Let δ=-δs,airflow parameters(Mas,Ts,Ps)after the expansion wave is

    whereυ(Ma)is the Prandtl-Meyer function,whose value is determined by the heat ratioγand the mach number of the airflow.

    Therefore,the pressure on the lower forebody can be resolved along with the x and z bodyaxis components

    where Lfis the length of forebody shown in Eig.1,(xf,zf)the coordinate that is the aerodynamic center of forebody with regard to the aircraft center of gravity.

    Similarly,the aerodynamic force and moment on the upper surface Fx,u,F(xiàn)z,u,Mu,the aerodynamic force and moment on the lower surface Fx,n,F(xiàn)z,n,Mn,and the aerodynamic force and moment on the control surface Fx,cs,F(xiàn)z,cs,Mcscan be obtained by oblique shock theory and Prandtl-Meyer theory.

    It is noted that when airflow entering the engine,the airflow direction will change from parallel to the forebody to parallel to the engine axis. This is because the flow will get through the new shock layer.Here a single reflect shock is used to model the new shock layer.Using Eqs.(1—4)and the oblique shock theory,the further compressed airflow parameters(Ma1,T1,P1)can be obtained,here,Ma1is the Mach number of the compressed airflow,T1the temperature and P1the pressure.Thus the additional force and moment are[4]

    where hiis the height of engine inlet,(xinlet,zinlet)the coordinate of the flow turning point with respect to the center of gravity.Besides,the flow engine nozzle exhausted will expand and form a shear layer as a result of generating pressure on the aftbody.According to Prandtl-Meyer theoryand shear layer approximate pressure formula[4]

    where(xa,za)is the coordinate of aftbody aerodynamic center relative to the aircraft center of gravity and Pethe pressure of the inner nozzle of the engine.

    According to principle of force synthesis,the aerodynamics effect on the airframe axis x and z of the hypersonic vehicle are

    The lift and drag force expression by coordinate transformation are as follow

    Aerodynamic pitching moment is

    1.3 Thrust of hypersonic vehicle

    A quasi-one-dimensional Rayleigh flow with heat increase is used to estimate the scramjet thrust of hypersonic vehicle,as shown in Eig.2[7].The engine model comprises three parts:a diffuser chamber,a combustion chamber,and an inner nozzle,that is,parts①②③in Eig.2,respectively.The fluid in the diffuser and inner nozzle is assumed to be a one-dimensional entropic flow,and the fluid in the combustion chamber is characterized as a one-dimensional flow with heat increase in the tube with the constant area.In this paper,only the stoichiometric ratioφis considered as the engine input,and diffuser area ratio is fixed value Ad=1.

    Eig.2 Schematic of scramjet engine

    In the diffuser,continuity equations(mass conservation)is applied to calculate the Mach number Ma2,temperature T2,and pressure P2in the diffuser exit

    where Hf=119 789 kJ/kg is the heat of reaction for liquid hydrogen(LH2),ηc=0.9 the combustion efficiency,cp=1 004.832 J/(kg·K)the specific heat of air at constant pressure,fst= 0.029 1 the stoichiometric fuel-to-air ratio for LH2.Once the temperature increment is confirmed,according to classic one-dimensional Rayleigh flow relationship,the Mach number Ma3,temperature T3,and pressure P3of the combuster exit are easily obtained[7].

    1.4 Aeroelasticity modeling of hypersonic vehicle

    The typical hypersonic vehicle is slender waverider configuration,which is approximately equivalent to a single free-free Bernoulli-Euler beam.The bending vibration differential equation of a single free-free Bernoulli-Euler beam is[9]

    where f(x,t)and m(x,t)are used to denote the external force and moment distributed on per unit length beam,respectively.

    The method of variable separation is applied to solve Eq.(32).Introducing principal coordinate transformation,the natural frequency ω(x,t)can be expressed by the natural mode of vibrationΦi(x)

    The method of separate variable is utilized again,and the corresponding deflection angle θi(x,t)of the i th order natural mode of vibration can be expressed asthe force of vibration mode.Here the corresponding f(x,t)and m(x,t)are the aerodynamic force and distribution of aerodynamic moment,respectively.

    The elastic deformation on the tip of nose of the airframe will change the attack angle of the aircraft,and the elastic deformation on the afterbody of the airframe will change the deflection angle of the control surface correspondingly[13].The change in the forebody attack angle can be approximated given by the deflection angle on the end of the craft noseθi(0,t).Considering the first three-order of vibration mode,the corresponding attack angle change isΔα.Similarly,the deflection angle of aftbody control surface θi(xδe,t)approximates to the change of control surface attack angle,and the corresponding change of control surface angle isΔδe.So the attack angle and control surface after elastic deformation change toα=αr-Δαandδe=δe,r-Δδe,where the subscript″r″means a situation of rigid body.

    The assumed modes method(based on a global basis)is used to obtain natural frequen-cies,mode shapes,and finite-dimensional approximants[6,14].It results in a model whereby the rigid body dynamics influence the flexible dynamics through generalized forces.When the associated beam model is assumed to be made of titanium with a dimension of 30.48 m in length,0.244 m in height,and 0.304 8 m in depth,the nominal modal frequencies areωf1=22.2 rad/s,ωf2=48.1 rad/s,ωf3=94.8 rad/s as a consequence.Hence,it ensures that the beam model and the vehicle have the same vibration characteristics.

    1.5 Rigid-elastic dynamics model

    Considering the influence of the earth′s curvature,it is assumed that the thrust direction is along with the engine axis,which is parallel to the airframe axis.Take the fuel stoichiometric ratio of combusterφand elevatorδeas the input,and choose the flight state variable X=[v,α,q,h,θ,η1,˙η1,η2,˙η2,η3,˙η3]T,where velocity v,attack angleα,pitching angular velocity q,height h and pitching angleθare rigid modal;andηi,˙ηi(i=1,2,3)are elastic mode.Lagrangian method is used to deduce the nonlinear equations of longitudinal model of hypersonic vehicle[15]

    2 Simulation of Rigid-Aeroelasticity Coupling for Hypersonic Vehicle

    The aim of this paper is to illustrate the characteristics of the rigid-aeroelasticity coupling model for a general regularity.Eurthermore,the accuracy of aerodynamic force estimated by oblique shockwave theory and Prandtl-Mayer equation has been demonstrated[12].Within the current model,forebody deflections influence the rigid body dynamics via the oblique shock which influences engine inlet conditions,thrust,lift,drag,and moment.Aftbody deflections influence the attack of angle seen by the elevator.As such,flexible modes influence the rigid body dynamics. Hence the model accuracy can meet the needs of the analysis of control-oriented characteristics for the rigid-aeroelasticity coupling model.

    2.1 Selection of geometric parameters

    Select the front edge point as the origin of coordinates,directions of x and z axes are shown in Eig.1.The geometric parameters are:total length Lv=30.48 m,forebody length Lf= 14.33 m,aftbody length La=10.06 m,lower forebody turn angleτ1l=6.2°,upper forebody turn angleτ1u=3°,aftbody turn angleτ2= 14.34°;engine inlet height hi=1 m,diffuse chamber area ratio Ad=1,inner nozzle area ratio An=6.25;control surface effective area Ae= 1.58 m2,position(-25.9,1.1),mass m= 2 000 kg,rotary inertia around axis y Iyy=5× 105kg·m2,gravity center position(-16.8,0),elastic mode dampingζ=0.02,and the aeroelasticity modal frequenciesωf1=22.2 rad/s,ωf2= 48.1 rad/s,ωf3=94.8 rad/s.As the aeroelasticity mode is considered,the mass-normalized mode shapes and derivatives of the vehicle′s transverse vibration are shown in Eig.3.

    2.2 Simulation of hypersonic vehicle static characteristics

    本課程多媒體教學資源構(gòu)建主要目的在于制作合適本門課程的教學動畫、視頻和相關(guān)素材搜集整理和整合,適當延長微課時間,增強知識點間銜接,授課過程中側(cè)重課后及課堂練習的運用。

    In a Matlab environment,we separately trim the rigid body model and the model considering the first three-order aeroelasticity,and the trimstates of the two shown in Tables 1,2.

    Eig.3 Mass-normalized mode shapes of vehicle′s transverse vibration

    Table 1 Trim states in the given flight condition(rigid)

    Table 2 Trim states in the given flight condition(considering aeroelastic)

    Compared Table 1 with Table 2,when the aeroelasticity is considered,the elastic deformation of the airframe will induce changes of the attack angle of balance point and control input.To better elucidate the problem,through simulation and analysis,Eig.4 illustrates the transverse deformation excited by aerodynamic force and moment in the condition of Mach number 8 and height 26 km level flight.

    Eig.4 Transverse deformation of fuselage under the condition:Ma=8,h=26 km level flight

    Erom Eig.4,the transverse deformation of the fuselage caused by the first-order aeroelasticity is almost the same as that caused by the first three-order aeroelasticity.It means the one-order aeroelasticity is most influential on the vehicle.

    2.3 Simulation and analysis of dynamic characteristics

    The effect of aeroelasticity on the short period mode is analyzed as follows.Using the values of trim state obtained in Section 2.2,one can approximately linearize the longitudinal non-linear model of hypersonic vehicle in the given Mach number and flight height with the small perturbation linear equation

    where the state of a model of rigid body is defined as

    And the state of a model of rigid-aeroelasticity coupling is defined.

    Now the short period mode is considered,let v=0,θ=0,h=0.Eurthermore,the problem is simplified,which is analyzed only in consideration of the first-order aeroelasticity.Therefore,we have the short period motion equation of the first-order aeroelasticity coupling mode,written in a polynomial matrix form via Laplace transformation[11]

    The short period characteristic polynomial of the first-order aeroelasticity coupling has the form as follow,which is a new short period and the first-order aeroelasticity mode.

    Similarly,the new polynomial coefficient of the first-order aeroelasticity in Eqs.(43—44)can be otained.The first items in the right side of Eqs.(43-44)are single aeroelasticity mode coefficient.

    The effects of aeroelasticity mode and short period coupling mainly reflect in the rest parts in the right side of Eqs.(41—44).And it is exactly the existence of rigid-aeroelasticity coupling terms

    thus leading to a greater effect on the short period mode of vehicle considering aeroelasticity than that considering rigid body vehicle.

    Eor further elucidating the problem,choose Ma=8,h=26 000 km level flight,and the corresponding coefficient matrixes of rigid body model and rigid-aeroelasticity coupling model are obtained respectively.Then the eigenvalues of simulation are given in Table 3 correspondingly.

    In Table 3,the phugoid modes of both rigid body model and rigid-aeroelasticity coupling model are close to imaginary axis,leading to neutral stability.The height mode is almost unchanged,and the change of short period mode is more significant.Besides,the aeroelasticity mode affects short period mode significantly.

    Table 3 Characteristic roots of rigid and rigid-aeroelasticity coupling model under the given flight condition

    Generally,since aerodynamical moment and aeroelasticity are deeply influenced by center of gravity and mass distribution,the characteristic roots of rigid and rigid-aeroelasticity coupling model are compared by moving the center of gravity.When the center of gravity is moved forward and back wards,the eigenvalues of simulation are listed in Tables 4,5 correspondingly.

    Erom Tables 4,5,it is obvious that the conclusion drew above is universal.

    Table 4 Characteristic roots of rigid and rigid-aeroelasticity coupling model in the given flight condition(with CG moving forward)

    Table 5 Characteristic roots of rigid and rigid-aeroelasticity coupling model in the given flight condition(with CG moving backwards)

    3 LQR Control Compared Simulation of Rigid and Rigid-Aeroelasticity Coupling Hypersonic Vehicle

    Eor the rigid body model,take quadratic performance index

    where

    When solving the algebra Riccati equation

    the positive definite solution P is obtained.

    According to linear quadratic regulator(LQR)theory,the state feedback gain matrix

    Hence,the control law of the non-linear model is described by

    where the superscript″*″represents the input and state of the balance point.Eurthermore,we add the initial disturbance to the balance point,and substitute the control law into the rigid body model.The corresponding state response and input response of the vehicle are shown in Eigs.5,6.

    Eig.5 State responses of rigid model

    Eig.6 Input responses of rigid model

    Substituting the control law of rigid body model into the rigid-aeroelastic coupling model,we gain the state response and input response of vehicle rigid body mode and aeroelastic mode,as shown in Eigs.7—9.

    Erom Eig.5,when the initial disturbance exists,the effect on the designed control law is favorable.Known from Eig.6,the input is within reasonable value during the input response process.Every state and input of the vehicle approach to the nominal value.In Eigs.7—9,when the effect on vehicle aeroelasticity is considered,the control law designed according to rigid body model will not be able to meet the control effect,especially the short period modesα,q.The aeroelastic modes will gradually divergent.Thus,a great challenge for controller design is posed when the vehicle is a slender body due to the rigid-aeroelastic coupling.

    Eig.7 Rigid state responses of rigid-aeroelastic coupling model

    Eig.8 Elexible state responses of rigid-aeroelastic coupling model

    Eig.9 Input responses of rigid-aeroelastic coupling model

    4 Conclusions

    A dynamic model of rigid-aeroelasticity coupling for hypersonic vehicles is established.By theoretical analyses and simulation comparison of the control-oriented characteristics of the rigidaeroelasticity coupling model,one can draw the conclusion that when the vehicle is a slender body due to the rigid-aeroelastic coupling,its short period mode is greatly affected by the aeroelasticity,which is innegligible.

    [1] Liu Yanbin,Lu Yuping.The new modeling method of aerodynamic and dynamic integration facing control study for hypersonic vehicle[J].Chinese Journal of Computational Mechanics,2011,28(1):31-36.(in Chinese)

    [2] Kelkar A G,Vogel J M,Whitmer C E.Design tool for control-centric modeling,analysis,and trade studies for hypersonic vehicles[R].AIAA 2011-2225,2011.

    [3] Kelkar A G,Vogel J M,Inger G.Modeling and analysis framework for early stage trade-off studies for scramjet-powered hypersonic vehicles[R].AIAA-2009-7325,2009.

    [4] Bolender M A,Doman D B.Nonlinear longitudinal dynamics model of an air-breathing hypersonic vehicle[J].Journal of Spacecraft and Rockets,2007,44(2): 374-386.

    [5] Rodriguez A A,Dickeson J J,Cifdaloz O,et al. Modeling and control of scramjet-powered hypersonic vehicles:Challenges,Trends,&Tradeoffs[R]. AIAA 2008-6793,2008.

    [6] Rodriguez A A,Dickeson J J,Sridharan S,et al. Control-relevant modeling,analysis,and design for scramjet-powered hypersonic vehicles[R].AIAA 2009-7287,2009.

    [7] Sigthorsson D O,Serrani A.Development of linear parameter-varying models of hypersonic air-breathing vehicles[R].AIAA 2009-6282,2009.

    [8] Sigthorsson D O,Serrani A,Bolender M A,et al. LPV control design for over-actuated hypersonic vehicles models[R].AIAA 2009-6280,2009.

    [9] Hughes H,Wu Een.H-infinity LPV state feedback control for flexible hypersonic vehicle longitudinal dynamics[R].AIAA 2010-8281,2010.

    [10]Vaddi1 SS,Sengupta P.Controller design for hypersonic vehicles accommodating nonlinear state and control constraints[R].AIAA 2009-6286,2009.

    [11]Newman B,Schmidtt D K.Numerical and literal aeroelastic-vehicle-model reduction for feedback control synthesis[J].Journal of Guidance,1991,14(5): 943-953.

    [12]Liu Yanbin,Zhang Yong,Lu Yuping.Integrated design on aerodynamic,propulsion and control for deformable waverider[J].Journal of Nanjing University of Aeronautics&Astronautics,2011,43(2):252-253.(in Chinese)

    [13]Wang Liang,Chen Huaihai,He Xudong.Modal frequency characteristics of axially moving beam with supersonic/hypersonic speed[J].Transactions of Nanjing University of Aeronautics and Astronautics,2011:28(2):163-168.

    [14]Li Zhaofei,Chai Yi,Li Huafeng.Eault feature extraction method of vibration signals base on multifractal[J].Journal of Data Acquisition and Processing,2013:28(1):34-41.(in Chinese)

    [15]Torrez S,Driscoll J,Bolender M,et al.Effects of improved propulsion modeling on the flight dynamics of hypersonic vehicles[R].AIAA 2008-6386,USA: AIAA,2008.

    (Executive editor:Zhang Tong)

    V271.9 Document code:A Article ID:1005-1120(2015)01-0070-11

    *Corresponding author:Xiao Liping,Associate Researcher,E-mail:xiaolp@nuaa.edu.cn.

    How to cite this article:Xiao Liping,Zhang Yong,Lu Yuping.Control-oriented modeling and simulation on rigid-aeroelasticity coupling for hypersonic vehicle[J].Trans.Nanjing U.Aero.Astro.,2015,32(1):70-80.

    http://dx.doi.org/10.16356/j.1005-1120.2015.01.070

    (Received 11 November 2014;revised 3 January 2015;accepted 12 January 2015)

    猜你喜歡
    搜集整理本門張勇
    Photon blockade in a cavity–atom optomechanical system
    跟曾國藩學修身
    做人與處世(2022年6期)2022-05-26 10:26:35
    開設(shè)全科醫(yī)療中的醫(yī)患關(guān)系及溝通技巧課程的調(diào)查分析
    秋天來菊花開
    啟蒙(3-7歲)(2020年10期)2020-10-10 14:32:16
    張勇
    書香兩岸(2020年3期)2020-06-29 12:33:45
    小巧嘴兒
    啟蒙(3-7歲)(2017年12期)2017-12-19 08:14:05
    對近年來湯顯祖佚作搜集整理的總結(jié)與思考
    戲曲研究(2017年2期)2017-11-13 03:10:42
    月亮光光
    啟蒙(3-7歲)(2017年9期)2017-02-26 02:52:48
    體育學院學生對理論課課程改革的適應(yīng)現(xiàn)狀
    ——以《中學體育教材教法》為例
    Code switching for college students on campus
    亚洲狠狠婷婷综合久久图片| 日日干狠狠操夜夜爽| 国产精品女同一区二区软件 | 淫秽高清视频在线观看| 亚洲av电影在线进入| 天堂动漫精品| 日本免费a在线| 欧美zozozo另类| 午夜免费激情av| 狂野欧美白嫩少妇大欣赏| www国产在线视频色| 成人18禁在线播放| 一级毛片高清免费大全| 熟妇人妻久久中文字幕3abv| 欧美不卡视频在线免费观看| 精品一区二区三区视频在线观看免费| 伦理电影免费视频| 国产亚洲精品av在线| 精品不卡国产一区二区三区| 啦啦啦免费观看视频1| 久久99热这里只有精品18| 国产高清视频在线观看网站| 午夜亚洲福利在线播放| 久久久成人免费电影| 国产午夜精品久久久久久| 少妇裸体淫交视频免费看高清| 国产淫片久久久久久久久 | 别揉我奶头~嗯~啊~动态视频| 两性夫妻黄色片| 香蕉国产在线看| 很黄的视频免费| 最新在线观看一区二区三区| 国产高清三级在线| 搞女人的毛片| 国产高潮美女av| 他把我摸到了高潮在线观看| а√天堂www在线а√下载| a级毛片a级免费在线| 色av中文字幕| 国产精品乱码一区二三区的特点| 一区二区三区激情视频| 国产伦精品一区二区三区视频9 | 国产成人精品无人区| bbb黄色大片| 国产aⅴ精品一区二区三区波| 成人国产综合亚洲| 日韩中文字幕欧美一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 一二三四在线观看免费中文在| 精品人妻1区二区| 国产精品九九99| 综合色av麻豆| 无人区码免费观看不卡| 欧美高清成人免费视频www| 午夜视频精品福利| 亚洲激情在线av| 午夜福利在线观看吧| 亚洲国产中文字幕在线视频| 日本黄色视频三级网站网址| 亚洲av美国av| 99精品久久久久人妻精品| 亚洲欧美日韩高清在线视频| 精品人妻1区二区| 偷拍熟女少妇极品色| 国产成人aa在线观看| 啦啦啦韩国在线观看视频| 亚洲成人久久性| 国产高清视频在线观看网站| 精品一区二区三区视频在线 | 99视频精品全部免费 在线 | 天堂网av新在线| 亚洲人成网站在线播放欧美日韩| 丰满人妻一区二区三区视频av | 久久久色成人| 中文字幕av在线有码专区| 日韩人妻高清精品专区| 午夜福利免费观看在线| 老司机福利观看| 日韩精品中文字幕看吧| 在线永久观看黄色视频| 最近在线观看免费完整版| 亚洲欧美日韩高清在线视频| 国产男靠女视频免费网站| 久久久精品欧美日韩精品| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品综合一区在线观看| 亚洲欧美日韩无卡精品| 母亲3免费完整高清在线观看| 欧美极品一区二区三区四区| 国产精品久久久久久久电影 | a在线观看视频网站| 久久午夜综合久久蜜桃| 亚洲成人久久性| 久久久久久久午夜电影| 国产97色在线日韩免费| 一本综合久久免费| 欧美在线黄色| 一本一本综合久久| 在线观看日韩欧美| 国产1区2区3区精品| 久久精品人妻少妇| 亚洲aⅴ乱码一区二区在线播放| 亚洲av电影不卡..在线观看| 久久国产精品影院| 欧美一区二区国产精品久久精品| 欧美3d第一页| 黄色成人免费大全| 日韩三级视频一区二区三区| 国产97色在线日韩免费| 黄色日韩在线| 欧美黄色片欧美黄色片| 免费在线观看成人毛片| 变态另类成人亚洲欧美熟女| 香蕉av资源在线| 色综合站精品国产| 精品日产1卡2卡| 亚洲av五月六月丁香网| 亚洲av成人av| 男人和女人高潮做爰伦理| 欧美一级毛片孕妇| 三级男女做爰猛烈吃奶摸视频| 人妻夜夜爽99麻豆av| 亚洲熟妇熟女久久| 中出人妻视频一区二区| 国产亚洲精品久久久久久毛片| 欧美黄色片欧美黄色片| 色视频www国产| 国产精品乱码一区二三区的特点| 成人无遮挡网站| 午夜福利成人在线免费观看| 熟女电影av网| 亚洲国产欧美人成| 91麻豆av在线| 1000部很黄的大片| 日本免费a在线| 亚洲国产精品久久男人天堂| 日韩中文字幕欧美一区二区| 久久久久久久午夜电影| 三级毛片av免费| 特级一级黄色大片| 国产成年人精品一区二区| 免费观看的影片在线观看| 99热精品在线国产| av中文乱码字幕在线| 两个人视频免费观看高清| 色av中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 亚洲aⅴ乱码一区二区在线播放| 国产高清videossex| 99久久久亚洲精品蜜臀av| 淫秽高清视频在线观看| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久久电影 | 亚洲人与动物交配视频| 国产精品一区二区三区四区免费观看 | 美女高潮喷水抽搐中文字幕| 99热6这里只有精品| 免费在线观看视频国产中文字幕亚洲| 精品乱码久久久久久99久播| 黄色片一级片一级黄色片| 国产亚洲精品一区二区www| 国产精品香港三级国产av潘金莲| 在线观看日韩欧美| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美人成| 亚洲av电影不卡..在线观看| 国产乱人视频| 久久亚洲真实| 中文字幕久久专区| 亚洲国产精品sss在线观看| 日本 欧美在线| 脱女人内裤的视频| av欧美777| 国产亚洲av嫩草精品影院| 麻豆一二三区av精品| 91av网一区二区| 色精品久久人妻99蜜桃| 可以在线观看毛片的网站| 色在线成人网| 亚洲色图 男人天堂 中文字幕| 国产成人精品久久二区二区免费| 国产精品免费一区二区三区在线| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽| 国产黄a三级三级三级人| 成年免费大片在线观看| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 国产久久久一区二区三区| 久久香蕉精品热| 国产一区二区三区在线臀色熟女| 亚洲天堂国产精品一区在线| 91av网一区二区| 国产亚洲av嫩草精品影院| 韩国av一区二区三区四区| www日本黄色视频网| 黄片大片在线免费观看| 欧美绝顶高潮抽搐喷水| 97超视频在线观看视频| 中出人妻视频一区二区| 嫩草影视91久久| 日本 欧美在线| 看片在线看免费视频| www日本黄色视频网| 香蕉国产在线看| 无限看片的www在线观看| 免费av毛片视频| 欧美成人一区二区免费高清观看 | 欧美日韩乱码在线| 国产伦精品一区二区三区四那| 亚洲成人中文字幕在线播放| 中文字幕精品亚洲无线码一区| 白带黄色成豆腐渣| 亚洲性夜色夜夜综合| 色av中文字幕| 日韩免费av在线播放| 18禁美女被吸乳视频| 91老司机精品| 国产蜜桃级精品一区二区三区| bbb黄色大片| 网址你懂的国产日韩在线| 19禁男女啪啪无遮挡网站| 中出人妻视频一区二区| 老熟妇仑乱视频hdxx| 国产成人精品无人区| 日日夜夜操网爽| 国产又色又爽无遮挡免费看| 99久久国产精品久久久| 国产精品亚洲一级av第二区| 亚洲七黄色美女视频| 亚洲人成网站高清观看| 成人三级黄色视频| 久久这里只有精品19| 国产精品1区2区在线观看.| 日本精品一区二区三区蜜桃| 国产成人精品无人区| 亚洲精品乱码久久久v下载方式 | 韩国av一区二区三区四区| 嫩草影视91久久| 久久久国产精品麻豆| 别揉我奶头~嗯~啊~动态视频| 少妇的逼水好多| 亚洲美女黄片视频| 中亚洲国语对白在线视频| 午夜成年电影在线免费观看| 天堂av国产一区二区熟女人妻| 午夜福利高清视频| 欧美性猛交黑人性爽| 成熟少妇高潮喷水视频| 动漫黄色视频在线观看| 90打野战视频偷拍视频| 很黄的视频免费| 亚洲专区国产一区二区| 欧美一区二区国产精品久久精品| 亚洲成a人片在线一区二区| 国产成人精品久久二区二区免费| 久久香蕉精品热| 1024香蕉在线观看| 国产亚洲精品久久久com| 亚洲国产精品久久男人天堂| 婷婷亚洲欧美| 久久精品aⅴ一区二区三区四区| 色精品久久人妻99蜜桃| 午夜久久久久精精品| 亚洲电影在线观看av| 天堂√8在线中文| 18禁黄网站禁片午夜丰满| 香蕉久久夜色| 最新中文字幕久久久久 | 日本三级黄在线观看| 少妇人妻一区二区三区视频| 极品教师在线免费播放| 亚洲精品乱码久久久v下载方式 | 亚洲精品在线观看二区| 亚洲精品国产精品久久久不卡| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 国产av不卡久久| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 亚洲午夜理论影院| 国产高潮美女av| 日日摸夜夜添夜夜添小说| 日韩欧美精品v在线| 免费观看的影片在线观看| 99在线视频只有这里精品首页| 精品久久久久久久人妻蜜臀av| 国产一区二区三区视频了| 成人特级av手机在线观看| 国产精品久久久久久精品电影| 亚洲黑人精品在线| 中文在线观看免费www的网站| 久久久久亚洲av毛片大全| 18美女黄网站色大片免费观看| 免费在线观看日本一区| 成人三级黄色视频| 别揉我奶头~嗯~啊~动态视频| 熟妇人妻久久中文字幕3abv| 91麻豆精品激情在线观看国产| 国产淫片久久久久久久久 | 精品人妻1区二区| 亚洲精品久久国产高清桃花| 成人一区二区视频在线观看| 日韩精品青青久久久久久| а√天堂www在线а√下载| 丰满人妻熟妇乱又伦精品不卡| 日韩免费av在线播放| 18禁美女被吸乳视频| 免费在线观看日本一区| 一a级毛片在线观看| 熟女人妻精品中文字幕| 一本综合久久免费| 色综合亚洲欧美另类图片| 操出白浆在线播放| 日韩精品中文字幕看吧| 哪里可以看免费的av片| 国内精品久久久久久久电影| 国产精品久久久久久久电影 | 一本一本综合久久| 国产精品亚洲美女久久久| 国产一区在线观看成人免费| 欧美一区二区国产精品久久精品| 国产麻豆成人av免费视频| 99久久成人亚洲精品观看| 全区人妻精品视频| 成年女人永久免费观看视频| 国产成人啪精品午夜网站| 亚洲精品在线观看二区| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| av天堂在线播放| 中亚洲国语对白在线视频| 美女被艹到高潮喷水动态| 18禁黄网站禁片免费观看直播| a在线观看视频网站| 国产伦在线观看视频一区| 91麻豆精品激情在线观看国产| 非洲黑人性xxxx精品又粗又长| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出| 久久久久性生活片| 在线观看免费视频日本深夜| 久久久久久久午夜电影| 国产精品 欧美亚洲| 国产高潮美女av| 亚洲狠狠婷婷综合久久图片| 亚洲欧美精品综合久久99| 国产午夜福利久久久久久| 久久中文字幕一级| 国产 一区 欧美 日韩| 国产精品久久久久久久电影 | 床上黄色一级片| aaaaa片日本免费| 老熟妇乱子伦视频在线观看| 久久久久久久久久黄片| 午夜精品久久久久久毛片777| 精品国内亚洲2022精品成人| 免费看a级黄色片| 免费看美女性在线毛片视频| 精品久久蜜臀av无| 婷婷亚洲欧美| 久久精品国产清高在天天线| 在线观看日韩欧美| 亚洲国产日韩欧美精品在线观看 | 亚洲 欧美 日韩 在线 免费| 久久久国产精品麻豆| 亚洲男人的天堂狠狠| 久久精品人妻少妇| 母亲3免费完整高清在线观看| 99国产精品99久久久久| 美女午夜性视频免费| 性色avwww在线观看| 日韩大尺度精品在线看网址| 国产乱人视频| 欧美成人一区二区免费高清观看 | 国产精品九九99| 久久热在线av| 99re在线观看精品视频| 99久久精品国产亚洲精品| 黑人巨大精品欧美一区二区mp4| 亚洲九九香蕉| 免费在线观看日本一区| 99热只有精品国产| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| 亚洲av第一区精品v没综合| 黑人欧美特级aaaaaa片| 日韩欧美精品v在线| 成人av在线播放网站| 在线观看免费视频日本深夜| 日韩欧美免费精品| 精品一区二区三区av网在线观看| 亚洲自拍偷在线| 1024手机看黄色片| 中文资源天堂在线| 搡老岳熟女国产| a级毛片a级免费在线| 日本在线视频免费播放| 在线观看免费视频日本深夜| 综合色av麻豆| 亚洲成av人片免费观看| 久久久久久久久免费视频了| www.自偷自拍.com| 欧美日韩中文字幕国产精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 亚洲熟妇熟女久久| 欧美另类亚洲清纯唯美| 日韩欧美 国产精品| 精品免费久久久久久久清纯| 色播亚洲综合网| 亚洲av成人精品一区久久| 身体一侧抽搐| 国产成人精品久久二区二区91| 国产av麻豆久久久久久久| 午夜a级毛片| 三级毛片av免费| av福利片在线观看| 综合色av麻豆| 日本撒尿小便嘘嘘汇集6| 麻豆成人av在线观看| 视频区欧美日本亚洲| 成熟少妇高潮喷水视频| 亚洲中文字幕一区二区三区有码在线看 | 青草久久国产| 亚洲午夜精品一区,二区,三区| 一个人免费在线观看电影 | 欧美一区二区国产精品久久精品| 精品一区二区三区av网在线观看| 久久中文看片网| 中文在线观看免费www的网站| 国产精品av视频在线免费观看| 免费在线观看成人毛片| 国产精品综合久久久久久久免费| 夜夜爽天天搞| 丁香六月欧美| 国产精品久久久久久精品电影| 人妻久久中文字幕网| 日本与韩国留学比较| 午夜福利视频1000在线观看| 国产亚洲精品综合一区在线观看| 欧美精品啪啪一区二区三区| 午夜视频精品福利| 18美女黄网站色大片免费观看| 欧美绝顶高潮抽搐喷水| 亚洲精品粉嫩美女一区| 精品久久久久久成人av| 国产成人系列免费观看| 别揉我奶头~嗯~啊~动态视频| 麻豆成人av在线观看| 日日干狠狠操夜夜爽| 国产熟女xx| 舔av片在线| 亚洲成av人片在线播放无| 深夜精品福利| 中文字幕最新亚洲高清| 成人三级黄色视频| 国产精品美女特级片免费视频播放器 | 一区二区三区激情视频| 又大又爽又粗| 午夜日韩欧美国产| 色综合亚洲欧美另类图片| 精品久久蜜臀av无| 此物有八面人人有两片| 99在线视频只有这里精品首页| 国产亚洲av高清不卡| 免费人成视频x8x8入口观看| 天天一区二区日本电影三级| 国产成人福利小说| 蜜桃久久精品国产亚洲av| 人妻夜夜爽99麻豆av| 嫩草影院入口| 无限看片的www在线观看| 亚洲中文av在线| 亚洲欧洲精品一区二区精品久久久| 最好的美女福利视频网| 男人的好看免费观看在线视频| 一级毛片高清免费大全| 少妇丰满av| 三级毛片av免费| 日本成人三级电影网站| 亚洲七黄色美女视频| 国产激情欧美一区二区| 久久99热这里只有精品18| www国产在线视频色| 悠悠久久av| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 一进一出好大好爽视频| 亚洲国产精品久久男人天堂| 一级a爱片免费观看的视频| 国产成人欧美在线观看| 久久久久久人人人人人| 麻豆av在线久日| 久久精品国产综合久久久| 1024香蕉在线观看| 亚洲成a人片在线一区二区| 国内少妇人妻偷人精品xxx网站 | 99热这里只有是精品50| 日韩 欧美 亚洲 中文字幕| 成人av在线播放网站| 人妻夜夜爽99麻豆av| 精品欧美国产一区二区三| 在线观看免费视频日本深夜| 欧美xxxx黑人xx丫x性爽| www日本在线高清视频| 极品教师在线免费播放| 9191精品国产免费久久| 久久久国产精品麻豆| 一级毛片高清免费大全| 亚洲18禁久久av| av黄色大香蕉| 国产精品香港三级国产av潘金莲| 中出人妻视频一区二区| 日本五十路高清| 免费在线观看亚洲国产| 12—13女人毛片做爰片一| 一本一本综合久久| 三级男女做爰猛烈吃奶摸视频| 欧美在线一区亚洲| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩卡通动漫| 亚洲va日本ⅴa欧美va伊人久久| 免费看美女性在线毛片视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av日韩精品久久久久久密| 国产激情欧美一区二区| 亚洲av成人av| 国产精品一区二区免费欧美| 一a级毛片在线观看| 亚洲成a人片在线一区二区| 精品国产亚洲在线| 国产精品 国内视频| 网址你懂的国产日韩在线| 成人午夜高清在线视频| 无限看片的www在线观看| 国内毛片毛片毛片毛片毛片| 小蜜桃在线观看免费完整版高清| 国产黄a三级三级三级人| 国产又黄又爽又无遮挡在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品456在线播放app | 日韩人妻高清精品专区| 国产亚洲av嫩草精品影院| 亚洲专区国产一区二区| 免费看十八禁软件| 午夜两性在线视频| 国模一区二区三区四区视频 | 久久久水蜜桃国产精品网| 中文在线观看免费www的网站| 国产精品av视频在线免费观看| 美女高潮的动态| av天堂在线播放| 99热6这里只有精品| 日韩欧美国产一区二区入口| 免费在线观看亚洲国产| 国产野战对白在线观看| 成年女人毛片免费观看观看9| 巨乳人妻的诱惑在线观看| 国产精品久久电影中文字幕| 亚洲一区高清亚洲精品| 亚洲欧美日韩无卡精品| www国产在线视频色| 欧美在线黄色| 日韩欧美在线二视频| 18禁黄网站禁片免费观看直播| 欧美黄色淫秽网站| 国产精品影院久久| 国产日本99.免费观看| av天堂在线播放| 欧美色欧美亚洲另类二区| 人人妻人人澡欧美一区二区| e午夜精品久久久久久久| 村上凉子中文字幕在线| 成年女人毛片免费观看观看9| 午夜影院日韩av| 两人在一起打扑克的视频| 午夜福利在线在线| 国产美女午夜福利| 男人舔女人的私密视频| 欧美日韩一级在线毛片| 老汉色∧v一级毛片| 性色avwww在线观看| 亚洲成人免费电影在线观看| 午夜福利视频1000在线观看| 999久久久精品免费观看国产| 成年人黄色毛片网站| 男人舔女人的私密视频| 亚洲人成伊人成综合网2020| 亚洲精品一区av在线观看| 性欧美人与动物交配| 国产一区二区在线观看日韩 | 日韩欧美免费精品| 无限看片的www在线观看| 日日干狠狠操夜夜爽| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩卡通动漫| 亚洲色图av天堂| 免费看十八禁软件| 日本黄色视频三级网站网址| 成年人黄色毛片网站| 日韩欧美 国产精品| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看| 美女高潮的动态| 亚洲美女视频黄频| 成人18禁在线播放| 国产高清视频在线观看网站| 少妇的逼水好多| 免费大片18禁| 亚洲色图av天堂| 久久久久九九精品影院| 12—13女人毛片做爰片一| 欧美3d第一页|