• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2D and 3D milled surface roughness of high volume fraction SiCp/Al composites

    2015-11-01 07:13:52TaoWANGLijingXIEXibinWANGTengyiSHANG
    Defence Technology 2015年2期

    Tao WANG,Li-jing XIE*,Xi-bin WANG,Teng-yi SHANG

    School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,PR China

    ?

    2D and 3D milled surface roughness of high volume fraction SiCp/Al composites

    Tao WANG,Li-jing XIE*,Xi-bin WANG,Teng-yi SHANG

    School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,PR China

    This paper presents a study on surface roughness generated by high speed milling of high volume fraction(65%)silicon carbide particlereinforced aluminum matrix(SiCp/Al)composites.Typical 2D(Raand Rz)and 3D(Saand Sq)surface roughness parameters were selected to evaluate the influence of the milling parameters on the surface quality in comparison with aluminum alloy.The 3D topography of the milled surface was studied as well.The results indicate that 3D parameters(Saand Sq)are more capable to describe the influence of the milling parameters on the surface quality,and among them Sqis preferable due to its good sensitivity.Sqdecreases with milling speed and increases with feed rate.The influence of axial depth of cut(ADOC)is negligible.

    High volume fraction;SiCp/Al;Surface roughness;2D;3D

    1.Introduction

    Particle-reinforced metal matrix composites have drawn considerable attention in aerospace,automotive,and electronic industries due to the high specific stiffness,high specific strength,and wear resistance,which make them superior to the monolithic alloys[1].Silicon carbide particle-reinforced aluminum matrix(SiCp/Al)composites are ones of the most popular materials among them and they are taken as the potential materials which can be widely used in lightweight optical assemblies,advanced electronic packaging,thermal management.However,SiCp/Al composites usually exhibit the typical low-ductility,inhomogeneity and anisotropy due to the particular structure,which lead to poor machined surface integrity[2].Exploringfundamentalknowledgeofthemachined surface quality can provide a solid foundation for the widespread industrial application of SiCp/Al composites.

    The investigations on the surface roughness generated by machining of SiCp/Al composites were reported in the last two decades.El-Gallab et al.[3]found that the surface roughness improved with an increase in the feed rate and the cutting speed,but slightly deteriorated with an increase in the depth of cut during machining of SiCp/Al composites.Chan et al.[4]reported that the surface roughness and surface integrity could be significantly improved by using high spindle speed and fine tool feed rate.Depth of cut did not influence the surface roughness significantly except under low spindle speed condition.Pendse et al.[5]developed an artificial neural network(ANN)based model for the prediction of surface roughness during machining of Al/SiC/30p composites.The surface roughness Rais relatively large,almost all over 1 μm. Dabade et al.[6]studied the cutting force,surface finish,microstructure,and residual stress of the machined surfaces of Al/SiC/10p and Al/SiC/30p composites,and found that the effect of depth of cut was evident only for Al/SiC/30p composites.Feed rate was found to have influence on themachined surface roughness of both the composites.Ge et al.[7]carried out the ultra-precision turning tests on SiCp/2024Al and SiCp/ZL101A composites using single point diamond tools(SPDT)and polycrystalline diamond(PCD)cutters.The results indicated that a lower surface roughness value could be achieved when a positive tool cutting edge inclination angle,zero rake angle or bigger flank angle was selected.Pramanik et al.[2]investigated experimentally the effects of reinforcement particles on the machining of MMCs and found the surface roughness was mainly controlled by feed.Schubert et al.[8]utilized CVD diamond tipped indexable inserts for turning AA2124 with 25%volume proportion of SiC particles and found that the surface roughness values could be decreased by using tools with wiper geometry.Bian et al.[9]presented an exploratory study on precision milling of SiCp/Al composites with high volume fraction(65%)and large particle size(60-80 μm),and the results showed that mirror-like surface with surface roughness around 0.1 μm Racould be achieved by precision milling with small parameters in the range of a few micros.

    http://dx.doi.org/10.1016/j.dt.2015.01.001

    2214-9147/Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    f the above-mentioned

    is listed in Table 1.As for the SiC volume fraction,the majority of the reported research have focused on SiCp/Al composites with low volume fraction(<30%),and the machining of SiCp/Al composites with high volume fraction has been rarely reported.These materials with high volume fraction are widely used in electric packaging,such as in satellites,due to its low heat expansion and high heat conductivity[10].In terms of the machining operation,the majority of papers focus on turning operation,while according to practical production requirement,a large portion of components are supposed to be made by milling process due to the geometry features.In addition,the 2D roughness parameter is chosen by all the above reports,among which Rais the main parameter.

    In order to use 2D roughness parameter to represent the machined surface quality,it is worth pointing out an important prerequisite that the surface is characterized by a prevailing and well-determined lay in one direction and the profile is cut perpendicularly to that direction[11].The machined surface of monolithic metal material generated by turning is assumed to comply with the above-mentioned case.However,when the milling operation is selected and the volume fraction of the reinforcement is quite high,many defects such as big cavitiesand crack of SiC may exist on the machined surface.Therefore,the accuracy of 2D roughness value can be influenced greatly if there are some big defects on the track of the profile,and it can even lead to larger than 50%error in some cases.It is evident that the disadvantages of the 2D roughness parameter can be eliminated if the 3D parameters are chosen.

    Table 1 Summary of the above-mentioned references.

    Based on the above analysis,the objective of the paper is to explore a more appropriate roughness parameter to evaluate the surface quality of SiCp/Al composites generated by high speed milling operation.The material is a high volume fraction(65%),small silicon carbide(nominal size 10 μm)reinforced aluminum matrix composite.Four widely utilized roughness parameters including both 2D and 3D,i.e.,Ra,Rz,Saand Sz,are used to study the influence of the milling parameters on milled surface quality.The sensitivity and effectiveness of the parameters are analyzed based on the curve graphs and milled surface morphology.In addition,the result comparison between aluminum matrix and SiCp/Al composite is presented as well.

    2.Experimental design and procedure

    2.1.Materials

    The high-speed milling tests were conducted on high volume fraction SiCp/Al composites fabricated through vacuum infiltration method.The microstructure of the SiCp/Al composites is shown in Fig.1.The properties of SiCp/Al composites are listed in Table 2.

    2.2.Equipment setup and procedure

    All the machining tests were carried on DMU80 mono BLOCK five-coordinates machining center.Work by Refs.[12]and[13]indicated that PCD was the only tool material which is capable of providing a useful tool life during machining of SiCp/Al composites due to the high abrasive character of particle reinforcement.Therefore,the end milling tools which consist of two PCD inserts brazed on the carbidetool shank were utilized.The tool diameter and tip corner radius of the inserts are 6 mm and 0.4 mm,respectively.Both the top and bottom surfaces of the workpiece were ground for obtaining less than 1 μm parallelism prior to the tests.The schematic diagram of the milling process is shown in Fig.2.

    Fig.1.Microstructure of the Al/SiC/65p composites.

    Table 2 Properties of the Al/SiC/65p composites.

    Four typical surface roughness parameters including 2D and 3D,i.e.,Ra,Rz,Saand Sz,were selected to evaluate the milled surface quality of the SiCp/Al composites.The corresponding significance and formula are listed in Table 3.The measurement of both the 2D and 3D surface roughness parameters was achieved by Talysurf CCI non-contact surface profiler system.In terms of 2D,cut-off length was set to 0.8 mm and the evaluation length was ln=4.0 mm according to ISO4288.The 2D surface roughness parameters were measured at five equally spaced locations in feed direction on each milled surface and then averagedtoobtainthefinalvalue.Whereasthe 3Dmeasurementwas performed in the sampling area of 1.6 mm×1.6 mm without additional filtering and the final 3D roughness parameters were obtained by averaging the values from four locations.

    3.Results and discussion

    3.1.The influence of the milling speed on milled surface roughness

    Fig.2.The schematic diagram of the milling process.

    Table 3 The details of the four roughness parameters.

    The influence of the milling speed on the milled surface roughness is demonstrated in Fig.3.As for the 2D parameter, Raand Rzcurves indicate that the influence of milling speed on the surface roughness is not obvious,although they experience some slight fluctuations,as shown in Fig.3(a).In addition,it is worth pointing out that,when milling speed is 250 m/min,the error is relatively large,117%for Raand 80%for Rz.It is evident that the 2D roughness parameters are not stable in describing the milled surface quality of the SiCp/Al composites.In terms of the 3D parameters,the influence is clear,and Saand Sqcurves decrease when milling speed increases from 100 m/min to 250 m/min.After that,the two values remain steady.Sqis preferable since the trend is more obvious.In addition,it is worth mentioning that Sais recommended to be wiped off in favor of Sqaccording to the research in Refs.[11],although Ramasawmy et al.[14]and Grzesik et al.[15]still took Saas an important roughness parameter in their research.

    Fig.4 shows the typical topography of the milled surface under two milling speeds.Although the cavities can be observed on both surfaces,the surface quality generated at high milling speed is superior to that generated at low milling speed in terms of the size and depth of the cavities.However,2D value is unable to capture the phenomenon.The reason can be attributed to the fact that the increased milling speed can lead to the increase in the strain rate and the decrease in the plastic deformation of the aluminum matrix.Therefore,SiC particles are more likely to be cut through rather than pulled out during the formation of the milled surface.

    4.The influence of feed rate on surface roughness

    The influence of the feed rate on the milled surface roughness is demonstrated in Fig.5.It is evident that all the selected parameters increase with the feed rate,which complies with the conventional pattern due to the higher residual height generated at higher feed rate.Therefore,all the selected roughness parameters are capable to describe the influence of feed rate on the surface quality.Fig.6 demonstrates the typical topographies of the milled surfaces at two feed rates.It is obvious that there are many pits and cavities on the milled surface generated at the feed rate of 0.05 mm/z,while the defects are relatively fewer when the feed rate is 0.01 mm/z.In addition,the major color in Fig.6(a)is blue,while the corresponding color is red in Fig.6(b),which indicates that the depths of the defects are much larger at high feed rate than that at low feed rate.

    Fig.3.Influence of milling speed on surface roughness(fz=0.02 mm/min,ae=6 mm,ap=0.1 mm).

    Fig.4.Typical 3D topographies at two different milling speeds(fz=0.02 mm/min,ae=6 mm,ap=0.1 mm).

    Fig.5.Influence of feed rate on surface roughness(vc=300 mm/min,ae=6 mm,ap=0.1 mm).

    Fig.6.Typical 3D topographies under two feed rates(vc=300 mm/min,ae=6 mm,ap=0.1 mm).

    Fig.7.Influence of ADOC on surface roughness(fz=0.02 mm/min,ae=6 mm,vc=300 mm/min).

    5.The influence of ADOC on surface roughness

    The influence of ADOC on the milling surface roughness is demonstrated in Fig.7.All four roughness parameter curves demonstrate that the influence of ADOC is not significant,although with tiny fluctuations.Fig.8 demonstrates the typical topographies of the milled surfaces at two ADOCs.In terms of the depth of the cavities and pits,the difference of the two milled surfaces is not evident,which is consistent with the result reported in Ref.[4],although the Ravalue is lower than 0.1 μm in their paper.Two main mechanisms have influence on the surface quality,i.e.,the pull-out and cut-through of particles.Compared to the nominal size of the particles(nominal size:10 μm),all ADOCs are large enough and their influence on the pattern of pull-out and cut-through is negligible.

    6.Comparison with aluminum

    In order to reveal the influence of the SiC particles on the milled surface roughness,the high speed milling tests on the corresponding aluminum matrix were also conducted.The comparison of the surface roughness results between the SiCp/ Al and aluminum matrix is shown in Fig.9.

    Fig.8.Typical 3D topographies at different ADOCs(fz=0.02 mm/min,ae=6 mm,vc=300 mm/min).

    Fig.9.The comparison between two materials at different milling speeds(fz=0.02 mm/z,ae=6 mm,ap=0.1 mm).

    Fig.10.The comparison between two materials at different feed rates(vc=300 mm/min,ae=6 mm,ap=0.1 mm).

    It can be seen from Fig.9 that there are several distinctions between the pattern of aluminum matrix and SiCp/Al composes. Specifically,intermsofthevaryingtrend,theinfluenceofmilling speedonmilledsurfaceofaluminummatrixisnotsignificantand all the four roughness parameters experience some fluctuation when milling speed increases,while the influence of milling speed is evident for the SiCp/Al composites that the roughness parametersdeclinewiththeincreasesinmillingspeed,especially for Sqand Sa.This can be attributed to the fact that the SiC particles are more likely to be cut through rather than pulled out when milling speed is high,thereby reducing the surface roughness,asmentionedbefore.Howeverthemechanismiseliminated when aluminum matrix is milled due to the lack of SiC reinforcements.In terms of the amplitude,it is expectable that all the roughness parameters for aluminum matrix are smaller than those of SiCp/Al composite,which can be attributed to the absence of the defects,e.g.,cavities and pits,on the milled surfaces of aluminum matrix.The phenomenon can be observed in Fig.10 as well when the influence of feed rate is concerned.

    7.Conclusions

    1)Compared to 2D parameters(Raand Rz),3D parameters(Saand Sq)are more accurate to describe the surface quality.As for the error bar,the standard error of 3D is smaller than that of 2D.

    2)Milled surface roughness of SiCp/Al composites decreases gradually when milling speed increases from 100 m/min to 250 m/min,and then the values remain stable.However,the trend is not evident when aluminum matrix is studied.

    3)The influence of feed rate on the surface qualities of both SiCp/Al composites and aluminum matrix is consistent,and all the roughness parameters increase with feed rate. All the roughness amplitudes of aluminum matrix are lower than those of SiCp/Al composites.

    4)The influence of ADOC on the surface quality is negligible.All ADOCs are large enough compared to the nominal size of the particle,and their influence on the pattern of pull-out and cut-through is not significant.

    Acknowledgment

    This work was supported by the National Key Projects of ScienceandTechnologyofChina(ItemNo.: 2012ZX04003051-3).

    References

    [1]Li YL,Ramesh KT,Chin ESC.Plastic deformation and failure in A359 aluminum and an A359-SiCp MMC under quasistatic and high-strainrate tension.J Compos Mater 2005;41(1):27-40.

    [2]Pramanik A,Zhang LC,Arsecularatne JA.Machining of metal matrix composites:effect of ceramic particles on residual stress,surface roughness and chip formation.Int J Mach Tool Manu 2008;48:1613-25.

    [3]El-Gallab M,Sklad M.Machining of Al/SiC particulate metal matrix composites part II:workpiece surface integrity.J Mater Process Technol 1997;83:277-85.

    [4]Chan KC,Cheung CF,Ramesh MV,Lee WB,To S.A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/SiCp metal matrix composite.Int J Mech 2001;43:2047-68.

    [5]Pendse DM,Joshi SS.Modeling and optimization of machining process in discontinuously reinforced aluminium matrix composites.Mach Sci Technol 2004;8:85-102.

    [6]Dabade UA,Joshi SS,Balasubramaniam R,Bhanuprasad VV.Surface finish and integrity of machined surfaces on Al/SiCp composites.J Mater Process Technol 2007;192-193:166-74.

    [7]Ge YF,Xu JH,Yang H,Luo SB,F(xiàn)u YC.Workpiece surface quality when ultra-precision turning of SiCpAl composites.J Mater Process Technol 2008;203:166-75.

    [8]Schubert A,Nestler A.Enhancement of surface integrity in turning of particle reinforced aluminium matrix composites by tool Design.Procedia Eng 2011;19:300-5.

    [9]Bian R,He N,Li L,Zhan ZB,Wu Q,Shi ZY.Precision milling of high volume fraction SiCp/Al composites with monocrystalline diamond end mill.Int J Adv Manuf Technol 2013;71:411-9.

    [10]Tan ZH,Pang BJ,Gai BZ,Wu GH,Jia B.The dynamic mechanical response of SiC particulate reinforced 2024 aluminum matrix composites.Mater Lett 2007;61:4606-9.

    [11]Lonardo PM,Trumpold H,Chiffre LD.Progress in 3D surface microtopography characterization.Ann ClRP 1996;45(2):589-98.

    [12]Davim JP,Baptista AM.Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium.J Mater Process Technol 2000;103:417-23.

    [13]El-Gallab M,Skald M.Machining of Al/SiC particulate metal-matrix compositespartI:toolperformance.JMaterProcessTechnol 1998;83:151-8.

    [14]Ramasawmy H,Blunt L.Effect of EDM process parameters on 3D surface topography.J Mater Process Technol 2004;148:155-64.

    [15]Grzesik W,Wannat T.Comparative assessment of surface roughness produced by hard machining with mixed ceramic tools including 2D and 3D analysis.J Mater Process Technol 2005;169:364-71.

    22 July 2014;revised 7 December 2014;accepted 15 January 2015

    Available online 16 March 2015*

    .Tel./fax:+86 10 68911214.

    E-mail address:rita_xie2004@163.com(L.J.XIE).

    Peer review under responsibility of China Ordnance Society.

    Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    久久久精品国产亚洲av高清涩受| 亚洲情色 制服丝袜| 日韩一卡2卡3卡4卡2021年| 校园春色视频在线观看| 亚洲第一电影网av| www.熟女人妻精品国产| 天堂影院成人在线观看| svipshipincom国产片| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人妻熟女乱码| 极品人妻少妇av视频| 亚洲欧美激情综合另类| 老司机午夜福利在线观看视频| 国产精品久久电影中文字幕| 日韩一卡2卡3卡4卡2021年| 日韩一卡2卡3卡4卡2021年| 少妇的丰满在线观看| 午夜成年电影在线免费观看| 性欧美人与动物交配| 亚洲中文日韩欧美视频| 纯流量卡能插随身wifi吗| 男女做爰动态图高潮gif福利片 | 大香蕉久久成人网| 欧美中文日本在线观看视频| 9191精品国产免费久久| 亚洲专区中文字幕在线| 老汉色av国产亚洲站长工具| 亚洲五月婷婷丁香| 日本三级黄在线观看| 日韩国内少妇激情av| 嫩草影视91久久| 啦啦啦 在线观看视频| 禁无遮挡网站| 久久午夜综合久久蜜桃| 国产精品1区2区在线观看.| 国产真人三级小视频在线观看| 久久久久久国产a免费观看| 91av网站免费观看| 欧美日韩乱码在线| 欧美激情高清一区二区三区| 国产精品九九99| 男女下面进入的视频免费午夜 | 人人妻人人澡人人看| 操美女的视频在线观看| 亚洲精品国产色婷婷电影| 日日摸夜夜添夜夜添小说| 国产精品乱码一区二三区的特点 | 满18在线观看网站| 1024视频免费在线观看| 亚洲精品美女久久av网站| 91精品三级在线观看| 精品国内亚洲2022精品成人| 制服人妻中文乱码| 欧美久久黑人一区二区| 看黄色毛片网站| 无限看片的www在线观看| 精品不卡国产一区二区三区| 亚洲全国av大片| 国产野战对白在线观看| 1024香蕉在线观看| 国产成人精品在线电影| 国产高清有码在线观看视频 | 欧美另类亚洲清纯唯美| 熟女少妇亚洲综合色aaa.| 91老司机精品| 久久精品国产综合久久久| 色尼玛亚洲综合影院| 99精品在免费线老司机午夜| 又黄又粗又硬又大视频| 在线观看66精品国产| 久久精品91蜜桃| 97碰自拍视频| 午夜福利欧美成人| 亚洲精品美女久久久久99蜜臀| 19禁男女啪啪无遮挡网站| 大型av网站在线播放| 两性夫妻黄色片| 很黄的视频免费| 美女扒开内裤让男人捅视频| 欧美一级a爱片免费观看看 | 啦啦啦韩国在线观看视频| 亚洲中文字幕一区二区三区有码在线看 | 大陆偷拍与自拍| 国产极品粉嫩免费观看在线| 久久久久久久久中文| 女人被躁到高潮嗷嗷叫费观| 国产午夜精品久久久久久| 麻豆国产av国片精品| 啦啦啦观看免费观看视频高清 | 国产亚洲欧美98| 国产伦一二天堂av在线观看| 一级a爱片免费观看的视频| 欧美激情高清一区二区三区| 日本撒尿小便嘘嘘汇集6| 三级毛片av免费| 国产高清有码在线观看视频 | 黄色丝袜av网址大全| 麻豆一二三区av精品| 一二三四在线观看免费中文在| 久久婷婷成人综合色麻豆| 免费看a级黄色片| 国产蜜桃级精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 久久久久久久久久久久大奶| 18禁黄网站禁片午夜丰满| 欧美国产日韩亚洲一区| 色综合婷婷激情| 久久精品91蜜桃| 国产xxxxx性猛交| 国产av精品麻豆| 亚洲五月婷婷丁香| 脱女人内裤的视频| 波多野结衣高清无吗| 大陆偷拍与自拍| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 一a级毛片在线观看| 一级片免费观看大全| 亚洲avbb在线观看| 麻豆成人av在线观看| 亚洲精品久久成人aⅴ小说| av在线天堂中文字幕| 给我免费播放毛片高清在线观看| 久久青草综合色| 久久人人97超碰香蕉20202| 国产精品爽爽va在线观看网站 | 黄色丝袜av网址大全| 国产99白浆流出| 国产一区二区在线av高清观看| 人人妻人人澡人人看| 亚洲第一电影网av| 国产高清有码在线观看视频 | 国产黄a三级三级三级人| 一个人免费在线观看的高清视频| 又大又爽又粗| 天天添夜夜摸| 久久久久久久午夜电影| 狠狠狠狠99中文字幕| 在线观看午夜福利视频| 日本vs欧美在线观看视频| 天堂影院成人在线观看| 香蕉久久夜色| 妹子高潮喷水视频| av在线播放免费不卡| 久久久国产精品麻豆| 高清毛片免费观看视频网站| 亚洲第一欧美日韩一区二区三区| 亚洲 欧美一区二区三区| 黑人巨大精品欧美一区二区mp4| www.999成人在线观看| 免费在线观看黄色视频的| 欧美乱码精品一区二区三区| 日韩欧美一区视频在线观看| 麻豆国产av国片精品| 欧美日本视频| 国产不卡一卡二| 桃红色精品国产亚洲av| 男男h啪啪无遮挡| 两性夫妻黄色片| 欧美最黄视频在线播放免费| 亚洲成人精品中文字幕电影| 国产精品久久视频播放| 中文字幕久久专区| 村上凉子中文字幕在线| 免费人成视频x8x8入口观看| 欧美久久黑人一区二区| 99国产极品粉嫩在线观看| 最近最新中文字幕大全免费视频| 黄色丝袜av网址大全| 一区二区三区高清视频在线| 极品教师在线免费播放| 色尼玛亚洲综合影院| 每晚都被弄得嗷嗷叫到高潮| 香蕉丝袜av| 国产激情久久老熟女| 亚洲精品中文字幕在线视频| 免费看美女性在线毛片视频| 伦理电影免费视频| 大型黄色视频在线免费观看| 搡老妇女老女人老熟妇| 两个人看的免费小视频| 国产亚洲精品第一综合不卡| 午夜福利在线观看吧| 一级毛片女人18水好多| 国产在线观看jvid| 欧美成狂野欧美在线观看| 91九色精品人成在线观看| 久久亚洲精品不卡| 日韩有码中文字幕| 亚洲午夜精品一区,二区,三区| 日韩欧美三级三区| 桃色一区二区三区在线观看| 国产精品98久久久久久宅男小说| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 悠悠久久av| 叶爱在线成人免费视频播放| 两个人看的免费小视频| 色在线成人网| 给我免费播放毛片高清在线观看| 国产伦一二天堂av在线观看| 精品乱码久久久久久99久播| 国产97色在线日韩免费| 国产精品亚洲一级av第二区| 免费高清在线观看日韩| 伦理电影免费视频| 亚洲精品在线观看二区| www.www免费av| 9191精品国产免费久久| 欧美午夜高清在线| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 国内毛片毛片毛片毛片毛片| 最新美女视频免费是黄的| 伊人久久大香线蕉亚洲五| 国产成人精品久久二区二区91| 免费观看精品视频网站| 精品国产一区二区三区四区第35| 99香蕉大伊视频| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久99久久久精品蜜桃| avwww免费| 给我免费播放毛片高清在线观看| 国产精品一区二区免费欧美| 精品一区二区三区四区五区乱码| 午夜亚洲福利在线播放| 这个男人来自地球电影免费观看| 国产单亲对白刺激| 亚洲国产日韩欧美精品在线观看 | 成人18禁高潮啪啪吃奶动态图| 777久久人妻少妇嫩草av网站| 亚洲欧美日韩无卡精品| 国产一区二区三区在线臀色熟女| 三级毛片av免费| 黑人操中国人逼视频| 91成人精品电影| 国产亚洲精品久久久久5区| 欧美一级毛片孕妇| www日本在线高清视频| 欧美在线黄色| 免费看十八禁软件| 国产成人av激情在线播放| 老熟妇仑乱视频hdxx| 琪琪午夜伦伦电影理论片6080| 色综合欧美亚洲国产小说| 老熟妇仑乱视频hdxx| 电影成人av| 精品国产国语对白av| 欧美激情 高清一区二区三区| 性欧美人与动物交配| 黄色 视频免费看| 亚洲黑人精品在线| 精品高清国产在线一区| 1024香蕉在线观看| 狂野欧美激情性xxxx| 麻豆久久精品国产亚洲av| 亚洲一码二码三码区别大吗| 男男h啪啪无遮挡| 久久精品国产清高在天天线| 精品久久蜜臀av无| 亚洲欧美激情在线| 日本精品一区二区三区蜜桃| 香蕉国产在线看| 宅男免费午夜| 99在线人妻在线中文字幕| 免费观看人在逋| 村上凉子中文字幕在线| 久久久国产精品麻豆| 亚洲国产精品成人综合色| 高清在线国产一区| 国产视频一区二区在线看| 美女高潮喷水抽搐中文字幕| 国产国语露脸激情在线看| av电影中文网址| 一a级毛片在线观看| 久久精品成人免费网站| 久久久久久久久免费视频了| 午夜视频精品福利| 露出奶头的视频| 国产成人欧美在线观看| 欧美不卡视频在线免费观看 | 成人18禁高潮啪啪吃奶动态图| 黄色 视频免费看| 黑丝袜美女国产一区| 在线av久久热| 国产精品一区二区精品视频观看| 久久精品国产清高在天天线| 精品日产1卡2卡| 老熟妇仑乱视频hdxx| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 国产不卡一卡二| 午夜亚洲福利在线播放| 日韩 欧美 亚洲 中文字幕| 久久久久久久精品吃奶| 精品日产1卡2卡| xxx96com| 夜夜看夜夜爽夜夜摸| 成人三级黄色视频| 淫秽高清视频在线观看| 亚洲欧美精品综合久久99| 99精品在免费线老司机午夜| 99国产极品粉嫩在线观看| 国语自产精品视频在线第100页| 亚洲中文日韩欧美视频| 国产一区在线观看成人免费| 午夜精品在线福利| 丝袜美足系列| 97人妻天天添夜夜摸| 久久人人精品亚洲av| 精品久久久久久久毛片微露脸| 男人的好看免费观看在线视频 | 成人欧美大片| 9热在线视频观看99| 亚洲av美国av| 日本 欧美在线| 色综合欧美亚洲国产小说| 亚洲人成网站在线播放欧美日韩| 国产三级黄色录像| 三级毛片av免费| 黄色成人免费大全| 亚洲精品美女久久久久99蜜臀| 日本三级黄在线观看| 村上凉子中文字幕在线| 亚洲欧美一区二区三区黑人| 国产日韩一区二区三区精品不卡| 国产精品影院久久| 在线观看午夜福利视频| 国产熟女xx| 午夜福利,免费看| 国产精品亚洲av一区麻豆| 在线观看66精品国产| 成在线人永久免费视频| 成人亚洲精品av一区二区| 美女国产高潮福利片在线看| 国产精品香港三级国产av潘金莲| 国产亚洲精品久久久久5区| 校园春色视频在线观看| 男人舔女人的私密视频| 少妇裸体淫交视频免费看高清 | 国产精品1区2区在线观看.| 欧美+亚洲+日韩+国产| 久久久精品欧美日韩精品| 久久午夜亚洲精品久久| 波多野结衣巨乳人妻| 99re在线观看精品视频| 欧美在线一区亚洲| 亚洲精品国产一区二区精华液| 国产免费男女视频| 欧美在线黄色| 高清毛片免费观看视频网站| 精品国内亚洲2022精品成人| 国产成人欧美| 国产一区二区三区综合在线观看| 日本撒尿小便嘘嘘汇集6| 国语自产精品视频在线第100页| 久久久水蜜桃国产精品网| 欧美中文日本在线观看视频| 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美在线一区二区| 在线播放国产精品三级| 最好的美女福利视频网| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| 国产在线观看jvid| x7x7x7水蜜桃| 黑人巨大精品欧美一区二区mp4| 国产成人精品在线电影| 少妇的丰满在线观看| 欧美国产精品va在线观看不卡| 丰满的人妻完整版| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 丝袜美腿诱惑在线| 多毛熟女@视频| 精品国产超薄肉色丝袜足j| 免费观看人在逋| 老司机午夜十八禁免费视频| 一级,二级,三级黄色视频| 级片在线观看| 黄色 视频免费看| 大型av网站在线播放| 在线av久久热| 国产精华一区二区三区| 啦啦啦韩国在线观看视频| 午夜免费观看网址| 大码成人一级视频| 精品少妇一区二区三区视频日本电影| 国产成年人精品一区二区| 十分钟在线观看高清视频www| 黑人巨大精品欧美一区二区mp4| 亚洲精品国产精品久久久不卡| 1024视频免费在线观看| 亚洲av成人av| 久9热在线精品视频| 女性被躁到高潮视频| 琪琪午夜伦伦电影理论片6080| 男人操女人黄网站| 欧美乱妇无乱码| 99国产精品99久久久久| 国产精品香港三级国产av潘金莲| 免费在线观看亚洲国产| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 久久国产精品人妻蜜桃| 亚洲国产看品久久| 十分钟在线观看高清视频www| 91字幕亚洲| 又大又爽又粗| 欧美国产精品va在线观看不卡| 91精品三级在线观看| av福利片在线| 亚洲av五月六月丁香网| 国产一区二区三区综合在线观看| 国产欧美日韩精品亚洲av| 欧美日韩亚洲综合一区二区三区_| 国产人伦9x9x在线观看| 亚洲伊人色综图| 成年人黄色毛片网站| 欧美日韩瑟瑟在线播放| 90打野战视频偷拍视频| xxx96com| 欧美黑人精品巨大| 首页视频小说图片口味搜索| 免费在线观看影片大全网站| 一边摸一边抽搐一进一小说| 久久精品亚洲熟妇少妇任你| 色综合站精品国产| 精品久久久久久久久久免费视频| 婷婷六月久久综合丁香| 首页视频小说图片口味搜索| 91字幕亚洲| 久久午夜亚洲精品久久| 国产精品一区二区精品视频观看| 91av网站免费观看| 99国产精品99久久久久| 国产成人精品久久二区二区免费| 亚洲久久久国产精品| 精品久久久久久久久久免费视频| 国产精品日韩av在线免费观看 | 99精品欧美一区二区三区四区| 脱女人内裤的视频| 午夜福利,免费看| 日本三级黄在线观看| 免费在线观看完整版高清| 亚洲欧美日韩高清在线视频| 免费高清在线观看日韩| 国产精品国产高清国产av| 日本 欧美在线| 国产午夜福利久久久久久| 在线观看日韩欧美| 亚洲欧美日韩无卡精品| 国产av一区在线观看免费| 男女床上黄色一级片免费看| 国产亚洲精品综合一区在线观看 | 国产亚洲欧美在线一区二区| 免费在线观看视频国产中文字幕亚洲| 1024视频免费在线观看| 一进一出抽搐gif免费好疼| 亚洲成a人片在线一区二区| 亚洲国产看品久久| 黄片播放在线免费| 嫩草影院精品99| 亚洲国产精品合色在线| 国产色视频综合| 此物有八面人人有两片| av福利片在线| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区激情短视频| a级毛片在线看网站| 久久久久国产精品人妻aⅴ院| 极品教师在线免费播放| 99国产精品99久久久久| 国产精品九九99| 91大片在线观看| 两个人免费观看高清视频| 可以免费在线观看a视频的电影网站| 纯流量卡能插随身wifi吗| 禁无遮挡网站| 精品不卡国产一区二区三区| 国产成人精品久久二区二区91| 热re99久久国产66热| 国产精品,欧美在线| 国产成人欧美在线观看| 国产成人欧美| 99riav亚洲国产免费| 国产免费男女视频| 色综合站精品国产| 精品国产乱子伦一区二区三区| 久久亚洲精品不卡| 日本撒尿小便嘘嘘汇集6| 日韩免费av在线播放| 色精品久久人妻99蜜桃| 久久久久国产精品人妻aⅴ院| 日韩欧美免费精品| 亚洲午夜理论影院| 欧美激情极品国产一区二区三区| 国产精品久久电影中文字幕| 在线视频色国产色| 亚洲人成伊人成综合网2020| 亚洲成人久久性| 波多野结衣一区麻豆| 国产99白浆流出| 大陆偷拍与自拍| 这个男人来自地球电影免费观看| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区在线av高清观看| 人人澡人人妻人| 美女免费视频网站| 欧美丝袜亚洲另类 | 亚洲国产日韩欧美精品在线观看 | 丁香欧美五月| 欧美丝袜亚洲另类 | 欧美+亚洲+日韩+国产| 亚洲一卡2卡3卡4卡5卡精品中文| 成人特级黄色片久久久久久久| 一边摸一边抽搐一进一小说| 变态另类成人亚洲欧美熟女 | 日韩精品中文字幕看吧| 精品国产乱码久久久久久男人| 757午夜福利合集在线观看| 满18在线观看网站| 久久久久国产精品人妻aⅴ院| 大型av网站在线播放| 夜夜看夜夜爽夜夜摸| tocl精华| 纯流量卡能插随身wifi吗| 国产精品亚洲av一区麻豆| 欧美激情 高清一区二区三区| 国产熟女xx| 亚洲人成电影观看| 亚洲成人精品中文字幕电影| 黄片播放在线免费| 黑丝袜美女国产一区| 搞女人的毛片| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 午夜两性在线视频| 大香蕉久久成人网| 日韩中文字幕欧美一区二区| 一区二区三区精品91| 激情视频va一区二区三区| 亚洲人成电影观看| 国产99白浆流出| 久99久视频精品免费| 日韩欧美国产一区二区入口| 极品人妻少妇av视频| 天天躁狠狠躁夜夜躁狠狠躁| 成人亚洲精品av一区二区| 日韩精品免费视频一区二区三区| 亚洲国产精品久久男人天堂| 在线免费观看的www视频| 欧美最黄视频在线播放免费| 色综合站精品国产| 韩国av一区二区三区四区| 欧美日韩乱码在线| 成人国产综合亚洲| 久久精品91无色码中文字幕| 夜夜看夜夜爽夜夜摸| 99精品久久久久人妻精品| 久久欧美精品欧美久久欧美| 欧美丝袜亚洲另类 | 日韩欧美免费精品| 色哟哟哟哟哟哟| 欧美成人免费av一区二区三区| 日韩三级视频一区二区三区| 777久久人妻少妇嫩草av网站| 久久久精品国产亚洲av高清涩受| 他把我摸到了高潮在线观看| 午夜福利影视在线免费观看| tocl精华| 国产主播在线观看一区二区| 午夜日韩欧美国产| 国产精华一区二区三区| 啦啦啦免费观看视频1| 黄色毛片三级朝国网站| 麻豆av在线久日| 亚洲美女黄片视频| 精品一区二区三区av网在线观看| 国产成人精品久久二区二区91| 大型黄色视频在线免费观看| 中文字幕最新亚洲高清| 国产亚洲精品久久久久5区| 免费在线观看影片大全网站| 日本三级黄在线观看| 国产av精品麻豆| 国产一区二区三区视频了| 熟女少妇亚洲综合色aaa.| 精品久久久久久久毛片微露脸| 亚洲 欧美 日韩 在线 免费| 老司机福利观看| 一个人免费在线观看的高清视频| 激情视频va一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲欧美在线一区二区| 亚洲成人免费电影在线观看| 精品日产1卡2卡| 亚洲av电影在线进入| 精品国产亚洲在线| 国产激情久久老熟女| 黄色女人牲交| 中文字幕精品免费在线观看视频| 欧美日韩福利视频一区二区| 午夜免费观看网址| 少妇熟女aⅴ在线视频| 99久久国产精品久久久| 国产精品,欧美在线| 日韩精品中文字幕看吧| 日韩一卡2卡3卡4卡2021年| 亚洲久久久国产精品| 国产精品1区2区在线观看.| 首页视频小说图片口味搜索| 国产一区二区激情短视频| 黄网站色视频无遮挡免费观看|