• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiobjective optimization of friction welding of UNS S32205 duplex stainless steel

    2015-11-01 07:13:57AJITHBirendrKumrBARIKSATHIYAARAVINDAN
    Defence Technology 2015年2期
    關(guān)鍵詞:念書伯父熟人

    P.M.AJITH,Birendr Kumr BARIK,P.SATHIYA,*,S.ARAVINDAN

    aDepartment of Production Engineering,National Institute of Technology,Tiruchirappalli 620015,Tamilnadu,India

    bDepartment of Mechanical Engineering,Indian Institute of Technology Delhi,New Delhi 110016,India

    ?

    Multiobjective optimization of friction welding of UNS S32205 duplex stainless steel

    P.M.AJITHa,Birendra Kumar BARIKa,P.SATHIYAa,*,S.ARAVINDANb

    aDepartment of Production Engineering,National Institute of Technology,Tiruchirappalli 620015,Tamilnadu,India

    bDepartment of Mechanical Engineering,Indian Institute of Technology Delhi,New Delhi 110016,India

    The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of the neural network,included friction pressure,upsetting pressure,speed and burn-off length.Tensile strength and microhardness were selected as the outputs of the neural networks.The weld metals had higher hardness and tensile strength than the base material due to grain refinement which caused failures away from the joint interface during tensile testing.Due to shorter heating time,no secondary phase intermetallic precipitation was observed in the weld joint.A multi-layer perceptron neural network was established for modeling purpose.Five various training algorithms,belonging to three classes,namely gradient descent,genetic algorithm and Levenberg-Marquardt,were used to train artificial neural network.The optimization was carried out by using particle swarm optimization method.Confirmation test was carried out by setting the optimized parameters.In conformation test,maximum tensile strength and maximum hardness obtained are 822 MPa and 322 Hv,respectively.The metallurgical investigations revealed that base metal,partially deformed zone and weld zone maintain austenite/ferrite proportion of 50:50.

    Artificial neural network;Duplex stainless steel;Hardness;Tensile test;Friction welding;Particle swarm optimization

    1.Introduction

    Duplex stainless steel has equal phase balance of approximately equal amounts of ferrite and austenite.It has a mixed microstructure consisting of ferrite(bcc)and austenite(fcc)phases.The duplex stainless steel exhibits higher resistance to stress corrosion cracking and has higher strength than austenitic stainless steel.As a result of these positive factors,the duplex stainless steel is widely used in the oil and gas,petrochemical,pulp and paper,and pollution control industries.It is well known that the duplex stainless steel exhibits good weldability,but the melting and solidification associated with fusion welding processes destroy the favorableduplex microstructure of this stainless steel[1,2].A major concern with fusion welding of duplex stainless steel is the formation of detrimental intermetallic phases at elevated temperatures.Sigma and chi phases form in duplex stainless steels at elevated temperature and precipitate preferably in the ferrite.This will considerably affect the toughness of the welded joint[3].The formations of these phases are due to the high chromium and molybdenum contents.The problem mentioned above can be overcome by employing solid state welding process like friction welding.

    Friction welding is a solid state welding process.It makes use of frictional heat generated on the rubbing surfaces to raise the temperature at the interface,which is high enough to cause the two surfaces to be forged together at high pressure.Friction welding has significant economic and technical advantages.The present study utilized a continuous drive friction welding machine.In continuous drive friction welding,oneworkpiece is rotated at nominal constant speed and aligned with the second part at an applied pressure.The rotation and pressure are maintained for a specific period to ensure adequate thermal and mechanical conditioning of the interface region.Thereafter the rotation is stopped by forced braking,and at the same time the pressure is increased to forge the parts together.The application of an axial force maintains an intimate contact between the parts and causes the plastic deformation of the material near the weld interface.

    http://dx.doi.org/10.1016/j.dt.2015.03.001

    2214-9147/Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    The friction welding finds widespread industrial use as a mass production process for the joining of materials.Friction welding process allows welding of several materials that are extremely difficult to fusion weld.The friction welding process parameters play a significant role in making good quality joints[4].To produce a good quality joint,it is important to set up proper welding process parameters.Therefore,identifying the suitable combinations of process input parameters to produce the desired output requires many experiments,making this process time-consuming and costly[5].

    So as to avoid this problem,various optimization methods can be applied to define the desired output variables by developing the mathematical models to specify the relationship among the input parameters and output variables. Generally,the quality of a weld joint is directly influenced by the welding input parameters during the welding process. Therefore,welding can be considered as a multi-input multioutput process.Though several studies have been made on weld quality by considering response variables separately,the report on simultaneous consideration of response variables in friction welding of DSS material is scarce.

    Artificial neural network(ANN)is a modelling technique which is inspired by the structure and functional aspects of biological neural networks.It has been widely used for modelling manufacturing related problems.ANN eliminates the limitations of the classical approaches by extracting the desired information using the input data.Applying ANN to a system needs sufficient input and output data instead of a mathematical equation[6,7].ANN is a good alternative to conventional empirical modeling based on polynomial and linear regressions[8].Employing the neural networks models would lead to time and cost saving by predicting the experimental results[9].Sathiya et al.[10]used the evolutionary computational techniques optimize the friction welding parameters.The suggested methods were used to determine the welding process parameters by which the desired tensile strength and minimized metal loss were obtained in friction welding.They described how to obtain near optimal welding conditions over a wide search space by conducting a smaller number of experiments.Paventhan et al.[11]have done the optimization of friction welding process parameters for joining carbon steel and stainless steel.They developed an empirical relationship to predict the tensile strengths of friction welded AISI 1040 grade medium carbon steel and AISI 304 austenitic stainless steel,incorporating the process parameters,namely friction force,forging force,friction time and forging time which have greater influence on strength of the joint.Response surface methodology was applied to optimize the friction weldingprocessparameterstoattainmaximumtensile strength of the joint.Koen et al.[12]developed a new welding method for fully automatic pipelines girth welding using a new friction welding machine.The proposed new welding procedure,called Friex,is a new variant of the well-known friction welding process.An intermediate ring is rotated between the pipes to be welded to generate the heat necessary to realize the weld.Luo et al.[13]designed a mixed-integrated approach to control the welding flashes in the continuous drive friction welding on small diameter tubes and then eliminate the problems of the inner friction welding flashes.Experimental results show that this mixed-integrated approach is used to reduce the sum of the inner welding flashes to control the crimping direction of the friction welding flashes,which promotes the forming of the outer friction welding flashes. Udayakumar et al.[14],carried out the experimental investigation on super duplex stainless steel and attempted to develop the mathematical models based on response surface methodology in order to predict the corrosion current and impact strength as a function of key input parameters in the friction welding process.They found that the friction force is a significant parameter for changing the impact strength.Friction force and burn-off length have a negative effect on impact strength.As the friction force increases,the impact strength decreases.

    In a very recent investigation,an attempt has been made to optimize the process parameters of activated tungsten inert gas(ATIG)welding process for ASTM/UNS S32205 DSS joints to obtain desirable aspect ratio and average ferrite number(FN). This investigation revealed that,the joints were produced by the optimized process parameters and their average ferrite number(FN)in the weld zone is 71.62,and the ferrite content is approximately 50.674%which is well within the acceptable range[15].

    From the above literatures,a very few investigations were carried out on friction welding and the parameter optimization of duplex stainless steel using evolutionary algorithms like artificial neural networks(multiobjective optimization).The aim of this work is to predict and optimize the friction welding parameters of UNS S32205 duplex stainless steel using ANN and PSO.The input(factors)parameters were friction pressure(FP),upsetting pressure(UP),rotational speed(N)and burnoff length(BOL),and the responses were tensile strength(TS)and hardness.The five training algorithms selected were batch back propagation(BBP),incremental back propagation(IBP),quick propagation(QP),Levenberg-Marquardt(LM),and genetic algorithm(GA).Among the five algorithms,the QP algorithm had a better performance.The QP algorithm was applied to the ANN network for modeling of friction welding parameters and also to study the direct effect of the individual parameters.

    2.Material and methods

    The base material chemical compositions of UNS S32205 duplex stainless steel were analyzed using an optical emission spectrometer,and their values are presented in Table 1.

    Table 1 Base material chemical composition(wt.%).

    The friction welding parameters were chosen based on the preliminary welding trials and their parameter levels were categorized as low,medium and high.The upper and lower limits were identified and the different levels of process parameters are presented in Table 2.

    The friction welding trials were conducted as per the central composite rotatable factorial design consisting of 30 sets of coded conditions[16].The microstructure samples were prepared as per the standard procedure.The samples were prepared by electrolytically etching them in 10%oxalic acid at 9 V for 30 s as per ASTM E3-11.The mechanical characteristics of friction welds were evaluated from tensile tests as per the ASTM E 8 standards.The tensile-tested samples are presented in Fig.1.Microhardness survey was carried out using a HMV-2000 Vickers microhardness tester at 500 g load for 10 s.

    3.Methodology

    Typical ANN model flow chart was used in this study,as shown in Fig.2.The basic steps considered for designing the neural network model are to collect the data required for training the network,designing the network architecture and training the network.

    Alldatasetswereobtainedfromtheexperiments mentioned above and were divided into three parts,i.e.21,5 and 4 data as training data,testing data and validation data,respectively,which are summarized in Table 4.The training data were used to compute the network parameters.The Neural Power professional version 2.5 software tool was employed in this study.The models were developed to establish the input-output correlations of the friction welding of duplex stainless steel(DSS UNS S32205)using the neural networks.ANNs were constructed with layers of units,and thus termed multilayer ANNs.Multilayer perceptron(MLP)neural network consisted of input,hidden and output units.A single hidden layer network was used in this study.The optimum number of neurons in hidden layer was determined by a series of topologies,in which the number of neurons was varied from 1 to 30.The root mean square error(RMSE)was used as the error function.

    Table 2 Upper and lower limits with different levels of the parameters.

    Fig.1.Tensile-tested weld samples.

    Experimental data were used to train the network.Scaled data were passed into the input layer and then were propagated from input layer to hidden layer and finally to the output layer of the network.Every node in hidden or output layer first acted as a summing junction which combined and modified the inputs from the previous layer using the following equation.

    where yiis the net input to node j in hidden or output layer;xiis the input to node j(or output of previous layer);wijis the weight representing the strength of the connection between the ith node and jth node;i is the number of nodes;and bjis the bias associated with node j.

    In order to perform a supervised training,ANN output error between the actual and predicted output results could be evaluated.The following equations were used to find R,DC,AAPD and RSME.DC reflects the degree of fit for themathematical model.The DC shows the level of model fitness. If value of DC is closer to 1,the model is considered as a better design and fits to the actual data.

    Fig.2.Typical ANN model flow chart.

    Table 3 ANN algorithm setting for five learning algorithms.

    where E=experimental value P=predicted value;E- is the mean value of Eiis the mean value of Pi.Coefficient of determination is

    Average absolute percentage deviation(AAPD)is

    So,we considered the ANN model with lowest RMSE,AAPD and highest DC,R as the best ANN design.

    3.1.Optimization procedure

    Particle swarm optimization(PSO)was used to optimize the friction welding parameters and its flow chart for PSO is presented in Fig.3.The trained data obtained from ANN should be imported into PSO as the basic input data.

    4.Results

    4.1.Selection of the best neural network model

    The results for various algorithms are summarized and presented in Table 3.As shown in Table 3,the QP algorithm has a better performance relative to BBP,IBP,LM and GA algorithms.Fig.4 shows the plots of ANN predicted response versus actual response with QP algorithms for the training and testing data.From Fig.4 it is seen that the calculated and observed hardness's and tensile strengths have almost the same values for QP algorithms.

    The percentages of contribution to the individual input parameters are presented in Fig.5.

    Fig.3.Flow chart of PSO.

    Fig.4.Training and testing data with experimental results for TS and mH using QP model.

    From Fig.5,it can be seen that the upsetting pressure is the most significant parameter followed by the friction pressure, speed of rotation and born-off length.The percentage contributions of individual parameter are upsetting pressure of 47.05%,friction pressure of 25.99%,speed of rotation of 21.96%and burn-off length of 4.96%.

    Fig.5.Percentages of contribution to the input parameters using QP model.

    4.2.Effects of process parameters

    The effects of upsetting pressure and friction pressure on tensile strength and microhardness are presented in Fig.6.

    From Fig.6(a)it is seen that the friction pressure varied from 45 MPa to 125 MPa and the upsetting pressure varied from 155 MPa to 185 MPa,and,the hardness and tensile strength increased at maximum friction pressure Maximum tensile strength obtained was 825 MPa at friction pressure of 185 MPa and upsetting pressure of 105 MPa.In Fig.6(b),the obtained maximum microhardness was 323 MPa at friction pressure of 85 MPa and upsetting pressure of 105 MPa.The predicted model using quick propagation algorithm was fitted so well to the actual values for both training and testing set. Therefore,it could be suggested that the model trained with QP algorithm is the most efficient model for this problem;hence this model was applied for further application.It was reported that the quick propagation learning algorithm could be adopted for the training of all the ANN models[17].Thepredicted values of the best model for training and testing set are presented in Table 4.

    Fig.6.Effects of friction pressure and upsetting pressure on TS and Microhardness(mH).

    Table 5 Results of confirmation test.

    From Table 4,it is clearly seen that the testing and training data are very closer to the experimental results.So QP model is the most appropriate method to predict the effect of the individual parameters of friction welding process.The input parameters were obtained from the QP model and fed in to the PSO algorithm to get the optimized values.The optimized values of friction pressure,upsetting pressure,rotational speed and burn-off length are 105 MPa,180 MPa,2000 rpm and 3.9 mm,respectively.The tensile strength of 827.17 MPa and the hardness of 325.61 Hv were obtained.

    4.3.Results of confirmation test

    因?yàn)槌潜緛?lái)是不大的,有許多熟人,也都是來(lái)看燈的都遇到了。其中我們本城里的在哈爾濱念書的幾個(gè)男學(xué)生,他們也來(lái)看燈了。哥哥都認(rèn)識(shí)他們。我也認(rèn)識(shí)他們,因?yàn)檫@時(shí)候我們到哈爾濱念書去了。所以一遇到了我們,他們就和我們?cè)谝黄?,他們出去看燈,看了一?huì),又回到我們的地方,和伯父談話,和哥哥談話。我曉得他們,因?yàn)槲覀兗冶容^有勢(shì)力,他們是很愿和我們講話的。

    In order to further validate the obtained results,the confirmation test was carried out to verify the PSO model results.The results of confirmation test are shown in Table 5.

    From Table 5,it is seen that the results obtained from test is very close to the results of PSO.The photograph and macrograph of optimized friction welded sample are presented in Fig.7(a)and(b).

    The different zones of microstructures for optimized parameters are presented in Fig.8.

    The joint interface is called as the weld zone(WZ)and the adjunct side is called as the partially deformed zone(PDZ)and also unaffected base metal(BM).The percentage of ferrite phase was measured using Fischer Feritscope MP 30 and average ferrite values are presented in Table 6.

    The microhardness test was carried out along the longitudinal direction of the joint interface with load of 500 g and dwell time of 10 s.The microhardness profile is shown in Fig.9.

    Fig.10 presents the SEM fracture surface of the confirmation tensile tested sample.The fracture of tensile weld sample takes place away from the joint interface.

    The XRD pattern of optimized parameter weld zone is presented in Fig.11.

    5.Discussions

    Fig.7.Confirmation test.

    Fig.8.SEM micrograph of different zones of friction weld joint..

    Table 6 Austenite-to-ferrite values in different weld zones.

    In the real time engineering applications of manufacturing industries,the selection of proper process parameters plays a crucial role in making quality products.In this study,the friction welding process parameters were optimized using PSO.The best result was obtained from QP algorithm with 4-4-2 topology that had minimum RMSE and AAP,maximum R and DC for both training and testing sets.From Fig.4,it is seen that a good agreement was made on predicted values with observed values of QP algorithms.Fig.5 shows that the joint performance of the friction welded joint mainly depends on the upsetting and friction pressures.Because of more refined grain formation during the high UP,a large amount of heat is generated.Fig.6(a)and(b)revels that more heat was generated at higher friction pressure and also more soften state was obtained.It was also observed that,when the upsetting pressure was high,less amount of soften material was retained in the weld zone.The grains were finer due to the faster cooling rate in the weld and HAZ regions.Coarse grains were observed at low upsetting pressure because of slow rate of cooling.The weld zone consisted of finer grains,while the adjunct side PDZ had the coarse grains.The refinement of grains in the weld zone was due to dynamic recrystallization and also due to higher temperature in the peripheral region[18].

    Fig.9.Microhardness profile for optimized parameter.

    During the friction welding,heat generated at both ends of the metal rod is high.Due to this,the ends of the rods are in red hot or plastic stage.Later the upsetting pressure is applied and welding is completed with immediate atmospheric air cooling.

    Fig.10.SEM fracture surface of tensile tested sample.

    Fig.11.XRD pattern of optimized parameter weld zone.

    So the simultaneous effect of short time cooling and high upsetting pressure will result in the formation of fine grains in PDZ and WZ regions.Another advantage is of the short timecooling prevents the phase changes.Therefore optimum amount of austenite was reformed.Table 6 reveals that the austenite-to-ferrite ratio is 50:50 in the three zones of the weld like BM,PDZ and WZ.It was found that hardness and tensile strength was mostly influenced by an interactive effect of upsetting pressure and heating pressure.

    From the confirmation experiment it is observed that PSO resultsareingoodagreementwiththeexperimentalresults.The deviationoftheexperimentalvalueswaslessthan2%compared with optimized PSO results of tensile strength and microhardnessvalues.Fig.8(a)and(b)revealthattheweldingcarriedwith the optimized values resulted in nowelding defects like cavities and cracks in the interface.Presence of secondary phases in duplex stainless steel microstructure can be very harmful for its corrosion resistance.No secondary intermetallic phases were found from Fig.8.From Fig.9,it is seen that PDZ has higher hardness values than that of WZ and base material.It is due to therefinementofgrainsoccurringinPDZ.Thiscanbeattributed to work hardening effect caused by heavy deformation in PDZ[19].The measured average grain sizes for BM,PDZ and WZ wereintheorderof28.7,10.6and22.3microns,respectively.In thetensiletestedsample,thefractureoccurredinbasemetaland was away from the joint zone.The tensile strength of the weld jointwasmuchhigherthanthatofthebasemetal(750Mpa).The maximum tensile strength obtained using optimized parameters was 827.17 Mpa and the experimental value was 822 Mpa.The strength and hardness were increased due to grain refinement in WZ and PDZ.It is also revealed that the hardness and tensile strength values are higher in both WZ and PDZ.Fig.10 reveals that the ductile fracturewas appeared and also the dimpleswere found.The dimples were elongated in the stress direction.Due to the high amount of ferrite content and more amounts of dimples present in the weld zone,the tensile strength of the joints is much higher than the strength of base material.Fig.11 reveals that the identified peaks represent the presence of only ferrite and austenite.No other intermetallic phases were identified in the XRD pattern.Less plastic state and slow cooling time restricted the weld zone phase transformation.

    6.Conclusions

    From this investigation the following conclusions are drawn:

    1)The percentage contributions of input parameters are: upsetting pressure=47.05%,friction pressure=25.99%,speed of rotation=21.96%,and burn-off length=4.96%.

    2)PDZ has the finer grain size compared to the weld zone and base material.

    3)Austenite and ferrite phases are present in the weld zone.

    4)The tensile strength of the friction joint(optimized)is higher than the base material strength and the fracture occurred is in ductile nature.

    5)Higher hardness values were obtained in PDZ compared to WZ and BM.This is due to the refinement of grain size in the weld region.

    6)The austenite-to-ferrite ratio is 50:50 for three zones of the weld like BM,PDZ and WZ.

    [1]TMR Stainless.Practical guidelines for the fabrication of duplex stainless steels.London:International Molybdenum Association;2009. p.1-69.

    [2]Jenney Cynthia L,Annette O'Brien.Welding handbookvol.2.Miami F L:AWS:American Welding Society;1991.p.523-30.

    [3]Olson David Leroy,Siewert Thomas A,Liu Stephen,Edwards Glen R. ASM handbook,vol.6.Materials Park:ASM International;1995. p.1130-52.

    [4]Dunkerton SB.Toughness properties of friction welds in steels.Weld J 1986;8:193-201.

    [5]Balamurugan Karupanan,Mishra Mahendra Kumar,Sathiya Paul,Sait Abdullah Naveen.Weldability studies and parameter optimization of AISI 904L super austenitic stainless steel using friction welding.Mater Res 2014;17(4):908-19.

    [6]Mandal S,Sivaprasad PV,Venugopal S,Murthy KPN.Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion.Appl Soft Comput J 2009;9(1):237-44.

    [7]Ali Akcayol M,Cinar Can.Artificial neural network based modeling of heatcatalyticconverterperformance.ApplThermEng 2005;25(14-15):2341-50.

    [8]Erdogan Kose.Modelling of colour perception of different age groups usingartificialneuralnetworks.ExpertSystAppl 2008;34(3):2129-39.

    [9]Shabanzadeh Parvaneh,Norazak Senu,Shameli Kamyar,Ismail Fudziah,Maryam Mohagheghtabar.Application of artificial neural network(ANN)for the prediction of size of silver nano particles prepared by green method.Dig J Nanomater Biostructures 2013;8(2):541-9.

    [10]Sathiya P,Aravindan S,Noorul Haq A,Paneerselvam K.Optimization of friction welding parameters using evolutionary computational techniques.J Mater Process Technol 2009;209(5):2576-84.

    [11]Paventhan R,Lakshminarayanan PR,Balasubramanian V.Optimization of friction welding process parameters for joining carbon steel and stainless steel.J Iron Steel Res Int 2012;19(1):66-71.

    [12]Faes Koen,Dhooge Alfred,De Baets Patrick,Van Der Donckt Eric,De Waele Wim.Parameter optimisation for automatic pipeline girth welding using a new friction welding method.Mater Des 2009;30:581-9.

    [13]Luo J,Ye YH,Xu JJ,Luo JY,Chen SM,Wang XC.A new mixedintegrated approach to control welded flashes forming process of damping-tube-gland in continuous drive friction welding.Mater Des 2009;30:353-8.

    [14]Udayakumar T,Raja K,Afsal Husain TM,Sathiya P.Prediction and optimization of friction welding parameters for super duplex stainless steel(UNS S32760)joints.Mater Des 2014;53:226-35.

    [15]Magudeeswaran G,Nair Sreehari R,Sundar L,Harikannan N.Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds.Def Technol 2014;10:251-60.

    [16]Montgomery DC.Design and analysis of experiments.7th ed.Wiley;2009.

    [17]Jain Sanjay K,Archana Sarkar,Vaibhav Garg.Impact of declining trend offlowonHarikeWetland.India.WaterResourManag 2008;22(4):409-21.

    [18]Satyanarayana VV,Madhusudhan Reddy G,Mohandas T.Dissimilar metal friction welding of austenitic-ferritic stainless steels.J Mater Process Technol 2005;160:128-37.

    [19]Satyanarayana VV,Madhusudhan Reddy G,Mohandas T.Continuous drive friction welding studies on AISI 304 austenitic stainless steel welds.MaterManufProcess2004;19:487-505.http://dx.doi.org/ 10.1081/AMP-120038657.

    4 August 2014;revised 16 February 2015;accepted 3 March 2015

    Available online 27 March 2015

    .Tel.:+91 431 2503510;fax:+91 431 2500133.

    E-mail address:psathiya@nitt.edu(P.SATHIYA).

    Peer review under responsibility of China Ordnance Society.

    Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    猜你喜歡
    念書伯父熟人
    校園“老”熟人,我們的成長(zhǎng)大“師”
    理 想
    理想
    和熟人相處之道
    伯父的黃昏戀
    別忘記跟熟人打招呼
    北方人(2018年6期)2018-01-22 19:41:39
    一張油畫
    我們的路
    意林(2013年2期)2013-05-14 16:49:17
    借給伯父一百元
    文苑·感悟(2012年2期)2012-03-22 08:09:44
    叛徒
    av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频| 高清不卡的av网站| 秋霞在线观看毛片| 久久亚洲国产成人精品v| 成人毛片60女人毛片免费| 国产精品亚洲av一区麻豆 | 热99久久久久精品小说推荐| 色精品久久人妻99蜜桃| 亚洲av福利一区| 91精品国产国语对白视频| 一级黄片播放器| 亚洲国产看品久久| 欧美在线一区亚洲| svipshipincom国产片| 在现免费观看毛片| 免费少妇av软件| 色网站视频免费| 久久精品久久久久久噜噜老黄| 中文字幕最新亚洲高清| 黄网站色视频无遮挡免费观看| 国产淫语在线视频| 精品福利永久在线观看| 欧美少妇被猛烈插入视频| 久久久久网色| 国产日韩欧美亚洲二区| 欧美日韩一区二区视频在线观看视频在线| 成人国语在线视频| 一边摸一边抽搐一进一出视频| 亚洲少妇的诱惑av| 黑丝袜美女国产一区| 久久精品久久久久久噜噜老黄| 最近中文字幕高清免费大全6| 在线观看www视频免费| 亚洲人成网站在线观看播放| 国产黄色免费在线视频| 观看美女的网站| 日韩中文字幕欧美一区二区 | 久久免费观看电影| 免费av中文字幕在线| 亚洲一区中文字幕在线| 国产午夜精品一二区理论片| 汤姆久久久久久久影院中文字幕| 黄色怎么调成土黄色| 国产亚洲一区二区精品| 久久久久久久久久久免费av| 女人精品久久久久毛片| 在现免费观看毛片| 久久久欧美国产精品| 母亲3免费完整高清在线观看| 精品久久蜜臀av无| 亚洲欧美一区二区三区国产| 国产一卡二卡三卡精品 | 国产精品久久久久成人av| 97在线人人人人妻| 黑丝袜美女国产一区| 色婷婷av一区二区三区视频| 久久精品亚洲熟妇少妇任你| 秋霞伦理黄片| 国产黄频视频在线观看| 成人18禁高潮啪啪吃奶动态图| 在线免费观看不下载黄p国产| 日韩欧美一区视频在线观看| 午夜日本视频在线| 黄色怎么调成土黄色| 欧美亚洲日本最大视频资源| 欧美日本中文国产一区发布| 亚洲欧洲国产日韩| 欧美 亚洲 国产 日韩一| av在线老鸭窝| 母亲3免费完整高清在线观看| 免费av中文字幕在线| 一级a爱视频在线免费观看| 国产精品国产av在线观看| 中文天堂在线官网| 国产一区二区 视频在线| 日韩中文字幕欧美一区二区 | 国产黄色免费在线视频| 亚洲精品av麻豆狂野| 国产一级毛片在线| 人人妻人人澡人人爽人人夜夜| 在线观看免费午夜福利视频| 一级黄片播放器| 亚洲国产精品999| 如日韩欧美国产精品一区二区三区| 黄片播放在线免费| 久久人人97超碰香蕉20202| 看十八女毛片水多多多| 精品久久蜜臀av无| 一边摸一边做爽爽视频免费| 久热这里只有精品99| 成人毛片60女人毛片免费| 日韩av免费高清视频| 久久久久网色| 日韩电影二区| 成人手机av| 久久久久久久精品精品| 亚洲精品一区蜜桃| 免费观看av网站的网址| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久国产电影| 女人久久www免费人成看片| 日本wwww免费看| 日韩欧美精品免费久久| 精品人妻在线不人妻| av在线观看视频网站免费| 久久综合国产亚洲精品| 韩国精品一区二区三区| 久久精品国产亚洲av高清一级| 国产亚洲欧美精品永久| 日韩中文字幕欧美一区二区 | 最黄视频免费看| 久久韩国三级中文字幕| 国产免费又黄又爽又色| 久久99精品国语久久久| 亚洲成人手机| 成年动漫av网址| 天天躁夜夜躁狠狠久久av| 成人影院久久| 自线自在国产av| 国产精品av久久久久免费| 成人国语在线视频| 国产亚洲一区二区精品| 欧美日韩亚洲综合一区二区三区_| 国产精品亚洲av一区麻豆 | 亚洲一卡2卡3卡4卡5卡精品中文| 最近手机中文字幕大全| 国产成人午夜福利电影在线观看| 亚洲美女视频黄频| 婷婷色综合www| 久久精品熟女亚洲av麻豆精品| 老鸭窝网址在线观看| av一本久久久久| 国产亚洲一区二区精品| 丝袜美腿诱惑在线| 亚洲欧洲日产国产| 纯流量卡能插随身wifi吗| 久久女婷五月综合色啪小说| 男女边吃奶边做爰视频| 超碰97精品在线观看| 色94色欧美一区二区| 日韩大片免费观看网站| 韩国高清视频一区二区三区| 国产成人精品福利久久| 男女边吃奶边做爰视频| 丝瓜视频免费看黄片| 中文字幕人妻丝袜制服| 丰满迷人的少妇在线观看| 亚洲国产欧美日韩在线播放| 制服丝袜香蕉在线| 日本爱情动作片www.在线观看| 久久精品国产a三级三级三级| 亚洲第一区二区三区不卡| 国产成人啪精品午夜网站| 日韩中文字幕欧美一区二区 | 免费不卡黄色视频| 男人爽女人下面视频在线观看| 亚洲视频免费观看视频| 精品一区二区免费观看| 在线免费观看不下载黄p国产| 日本黄色日本黄色录像| 777米奇影视久久| 在线免费观看不下载黄p国产| 岛国毛片在线播放| 夫妻午夜视频| 韩国精品一区二区三区| 日韩人妻精品一区2区三区| 久久精品久久精品一区二区三区| 国产亚洲精品第一综合不卡| 久久天躁狠狠躁夜夜2o2o | 中文字幕制服av| 欧美日韩亚洲综合一区二区三区_| 欧美国产精品一级二级三级| 亚洲少妇的诱惑av| 香蕉国产在线看| 王馨瑶露胸无遮挡在线观看| 国产精品久久久人人做人人爽| 日本午夜av视频| 超碰成人久久| 岛国毛片在线播放| 久久ye,这里只有精品| 在线亚洲精品国产二区图片欧美| 天堂中文最新版在线下载| 国产片内射在线| 欧美日韩亚洲高清精品| 久久精品国产亚洲av高清一级| 青春草亚洲视频在线观看| 亚洲美女搞黄在线观看| 欧美精品人与动牲交sv欧美| 久久精品国产综合久久久| 久久精品熟女亚洲av麻豆精品| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| 久久精品国产亚洲av涩爱| 亚洲免费av在线视频| 国产精品一区二区精品视频观看| 午夜福利在线免费观看网站| 两个人看的免费小视频| 久久精品熟女亚洲av麻豆精品| 免费观看a级毛片全部| 一本久久精品| 精品酒店卫生间| 午夜久久久在线观看| 国产一级毛片在线| 亚洲av国产av综合av卡| 国产在视频线精品| 不卡视频在线观看欧美| 国产激情久久老熟女| 黄色 视频免费看| 国产伦人伦偷精品视频| 久久青草综合色| 日韩视频在线欧美| 亚洲国产av影院在线观看| 少妇 在线观看| 国产免费现黄频在线看| 亚洲情色 制服丝袜| 新久久久久国产一级毛片| 久久99精品国语久久久| 国产 精品1| 午夜福利免费观看在线| 校园人妻丝袜中文字幕| 免费少妇av软件| 别揉我奶头~嗯~啊~动态视频 | 亚洲婷婷狠狠爱综合网| 精品人妻熟女毛片av久久网站| 少妇的丰满在线观看| 丰满饥渴人妻一区二区三| 国产av码专区亚洲av| 国产日韩一区二区三区精品不卡| 国产又爽黄色视频| 999精品在线视频| 免费观看人在逋| 久久午夜综合久久蜜桃| 欧美av亚洲av综合av国产av | 国产在线一区二区三区精| 视频在线观看一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久久久99蜜臀 | 一边摸一边抽搐一进一出视频| 美女高潮到喷水免费观看| 国产男女内射视频| 国产日韩欧美亚洲二区| 国产国语露脸激情在线看| 欧美 亚洲 国产 日韩一| 国产在线视频一区二区| 青春草亚洲视频在线观看| 国产精品久久久av美女十八| 成人国产麻豆网| 亚洲精品第二区| 精品国产露脸久久av麻豆| 亚洲av电影在线观看一区二区三区| 精品人妻一区二区三区麻豆| 人人妻人人澡人人看| 欧美精品亚洲一区二区| 久久99一区二区三区| 一区二区三区四区激情视频| 18禁国产床啪视频网站| 亚洲精品国产一区二区精华液| 999久久久国产精品视频| 久久久亚洲精品成人影院| 99久久综合免费| 1024香蕉在线观看| 一级毛片电影观看| 在线观看一区二区三区激情| 日韩制服骚丝袜av| 欧美日韩亚洲高清精品| 十八禁人妻一区二区| 夜夜骑夜夜射夜夜干| 亚洲在久久综合| 国产激情久久老熟女| 精品亚洲成a人片在线观看| 汤姆久久久久久久影院中文字幕| 色婷婷久久久亚洲欧美| 黄频高清免费视频| 9191精品国产免费久久| 性高湖久久久久久久久免费观看| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区| 午夜激情久久久久久久| 丝袜喷水一区| 性少妇av在线| 男人舔女人的私密视频| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆精品久久久久久蜜桃| 亚洲七黄色美女视频| 亚洲成人手机| 国产免费现黄频在线看| 在线观看免费高清a一片| 久久毛片免费看一区二区三区| 日韩中文字幕视频在线看片| 久久精品国产a三级三级三级| 午夜av观看不卡| 午夜激情av网站| 一级毛片黄色毛片免费观看视频| 嫩草影院入口| www.av在线官网国产| 亚洲欧洲精品一区二区精品久久久 | 久久人妻熟女aⅴ| 精品少妇内射三级| 黄色一级大片看看| 看免费av毛片| 尾随美女入室| 在线观看国产h片| 久久狼人影院| av网站在线播放免费| 精品亚洲成国产av| 国产成人91sexporn| 黄色 视频免费看| 国产精品国产三级专区第一集| 日本欧美国产在线视频| 亚洲欧美一区二区三区黑人| 日本欧美国产在线视频| 大话2 男鬼变身卡| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 久久影院123| 国产精品麻豆人妻色哟哟久久| 久久这里只有精品19| 亚洲精品中文字幕在线视频| 青草久久国产| 亚洲精品在线美女| 亚洲人成电影观看| 建设人人有责人人尽责人人享有的| 午夜福利网站1000一区二区三区| 不卡av一区二区三区| 亚洲人成77777在线视频| 高清不卡的av网站| 看十八女毛片水多多多| 亚洲,一卡二卡三卡| 黄片小视频在线播放| 欧美另类一区| 另类亚洲欧美激情| 成人18禁高潮啪啪吃奶动态图| 成人午夜精彩视频在线观看| 国产亚洲午夜精品一区二区久久| 日韩精品免费视频一区二区三区| 啦啦啦在线观看免费高清www| 精品亚洲成a人片在线观看| 精品国产一区二区久久| 女人高潮潮喷娇喘18禁视频| 日韩大片免费观看网站| 天天影视国产精品| 亚洲国产欧美在线一区| 国产色婷婷99| √禁漫天堂资源中文www| 久久狼人影院| 欧美少妇被猛烈插入视频| 精品一品国产午夜福利视频| 欧美另类一区| a级片在线免费高清观看视频| 男女边吃奶边做爰视频| 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 久久精品aⅴ一区二区三区四区| 国产一区亚洲一区在线观看| 美女午夜性视频免费| 中文字幕色久视频| 亚洲精品国产av蜜桃| 伊人亚洲综合成人网| 国产成人啪精品午夜网站| 18禁裸乳无遮挡动漫免费视频| 国产 精品1| 大香蕉久久网| 国产成人91sexporn| a级毛片黄视频| 成年人免费黄色播放视频| 国产精品亚洲av一区麻豆 | 成人亚洲欧美一区二区av| av一本久久久久| 国产亚洲精品第一综合不卡| 国产精品一国产av| 无限看片的www在线观看| 久久av网站| 亚洲国产av影院在线观看| 欧美成人午夜精品| 免费观看人在逋| 日韩成人av中文字幕在线观看| 亚洲第一av免费看| 日本色播在线视频| 女性被躁到高潮视频| 大香蕉久久网| 国产日韩一区二区三区精品不卡| 国产又爽黄色视频| 日韩不卡一区二区三区视频在线| 天堂俺去俺来也www色官网| 久久性视频一级片| 午夜精品国产一区二区电影| 免费不卡黄色视频| 久久国产精品男人的天堂亚洲| 国产男人的电影天堂91| 少妇被粗大的猛进出69影院| 国产一区二区 视频在线| 欧美黑人欧美精品刺激| 午夜福利视频精品| 人体艺术视频欧美日本| 午夜91福利影院| 99国产综合亚洲精品| 人妻人人澡人人爽人人| 国产女主播在线喷水免费视频网站| 女性被躁到高潮视频| av网站免费在线观看视频| 亚洲欧美日韩另类电影网站| 波多野结衣一区麻豆| 三上悠亚av全集在线观看| 日韩伦理黄色片| 精品亚洲乱码少妇综合久久| xxx大片免费视频| 国产精品一区二区在线观看99| 日韩欧美精品免费久久| 欧美在线一区亚洲| 天堂俺去俺来也www色官网| 亚洲天堂av无毛| 国产精品蜜桃在线观看| 色婷婷av一区二区三区视频| 男人添女人高潮全过程视频| 欧美精品av麻豆av| 亚洲精品美女久久久久99蜜臀 | 黑人巨大精品欧美一区二区蜜桃| 亚洲成国产人片在线观看| 欧美在线黄色| 久久影院123| 亚洲国产日韩一区二区| 亚洲国产欧美网| 免费女性裸体啪啪无遮挡网站| 成年人午夜在线观看视频| 日韩av不卡免费在线播放| 性色av一级| 久久精品久久久久久噜噜老黄| 久久久久久久大尺度免费视频| 久久这里只有精品19| 欧美av亚洲av综合av国产av | 19禁男女啪啪无遮挡网站| 精品卡一卡二卡四卡免费| 欧美日韩亚洲综合一区二区三区_| 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 如何舔出高潮| 成人国产av品久久久| 操美女的视频在线观看| 国产淫语在线视频| 亚洲精品国产色婷婷电影| 欧美人与善性xxx| 国精品久久久久久国模美| 欧美日韩综合久久久久久| 久久久久网色| 亚洲美女黄色视频免费看| 国产精品蜜桃在线观看| 日韩大片免费观看网站| 一级,二级,三级黄色视频| 黄网站色视频无遮挡免费观看| 美女主播在线视频| 亚洲少妇的诱惑av| 国产精品三级大全| 亚洲精品美女久久av网站| 中文字幕高清在线视频| 成人毛片60女人毛片免费| 青春草国产在线视频| 免费在线观看黄色视频的| 日本91视频免费播放| 欧美日韩亚洲国产一区二区在线观看 | 国产野战对白在线观看| 熟女少妇亚洲综合色aaa.| 午夜免费男女啪啪视频观看| 一二三四中文在线观看免费高清| 亚洲七黄色美女视频| 麻豆乱淫一区二区| 国产欧美日韩综合在线一区二区| 一个人免费看片子| 在线观看国产h片| 女人久久www免费人成看片| 老司机深夜福利视频在线观看 | 国产成人精品久久二区二区91 | 电影成人av| 亚洲av综合色区一区| 精品久久久久久电影网| 一区二区日韩欧美中文字幕| 黄色怎么调成土黄色| 人体艺术视频欧美日本| 少妇人妻精品综合一区二区| 美女主播在线视频| 日本欧美视频一区| 国产成人av激情在线播放| 天天添夜夜摸| 国产精品99久久99久久久不卡 | 国产日韩欧美在线精品| 欧美久久黑人一区二区| 久久女婷五月综合色啪小说| 午夜激情av网站| 免费观看a级毛片全部| 国产亚洲av片在线观看秒播厂| 一级毛片电影观看| videosex国产| a 毛片基地| 波多野结衣一区麻豆| 91成人精品电影| 黑人猛操日本美女一级片| 在线天堂中文资源库| 免费在线观看视频国产中文字幕亚洲 | 久久天堂一区二区三区四区| 中文字幕高清在线视频| 老鸭窝网址在线观看| 欧美日韩亚洲高清精品| 午夜激情久久久久久久| 捣出白浆h1v1| www日本在线高清视频| 欧美亚洲 丝袜 人妻 在线| 国产深夜福利视频在线观看| svipshipincom国产片| 精品酒店卫生间| a级毛片黄视频| 免费观看a级毛片全部| 一级爰片在线观看| 天美传媒精品一区二区| 欧美激情高清一区二区三区 | 精品国产一区二区久久| 一区二区日韩欧美中文字幕| 久久韩国三级中文字幕| a级毛片在线看网站| 18禁观看日本| 男女边吃奶边做爰视频| 色94色欧美一区二区| 亚洲欧美一区二区三区国产| 一区二区av电影网| 另类亚洲欧美激情| 9191精品国产免费久久| 汤姆久久久久久久影院中文字幕| 精品人妻一区二区三区麻豆| 丰满迷人的少妇在线观看| 精品国产露脸久久av麻豆| 国产精品国产三级国产专区5o| 久久这里只有精品19| 午夜福利一区二区在线看| 男男h啪啪无遮挡| a级毛片在线看网站| 九九爱精品视频在线观看| 成人国产麻豆网| 精品人妻一区二区三区麻豆| 欧美精品一区二区免费开放| 免费av中文字幕在线| 午夜免费观看性视频| 夫妻午夜视频| 在线观看免费视频网站a站| 久久久精品94久久精品| 赤兔流量卡办理| 精品少妇久久久久久888优播| 午夜福利,免费看| 一区在线观看完整版| 久久精品国产a三级三级三级| 中文字幕色久视频| 久久国产精品男人的天堂亚洲| 狂野欧美激情性xxxx| 精品一区二区三卡| 伦理电影免费视频| 久久鲁丝午夜福利片| 久久热在线av| 色94色欧美一区二区| 久久久久久久久免费视频了| 欧美激情 高清一区二区三区| 人人澡人人妻人| 日韩熟女老妇一区二区性免费视频| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品大桥未久av| 亚洲四区av| 亚洲av中文av极速乱| 国产精品国产三级国产专区5o| 国产精品久久久久久人妻精品电影 | 我的亚洲天堂| 欧美日本中文国产一区发布| 免费av中文字幕在线| 亚洲欧美成人精品一区二区| 久久人人爽av亚洲精品天堂| 91精品三级在线观看| 中文乱码字字幕精品一区二区三区| 69精品国产乱码久久久| 久久狼人影院| 亚洲婷婷狠狠爱综合网| 国产精品成人在线| 美女中出高潮动态图| 男男h啪啪无遮挡| av在线观看视频网站免费| 国产精品久久久av美女十八| 黄色毛片三级朝国网站| 亚洲av中文av极速乱| 波多野结衣av一区二区av| 亚洲 欧美一区二区三区| 天天操日日干夜夜撸| 亚洲精品一区蜜桃| 我的亚洲天堂| 一级片免费观看大全| 亚洲av成人不卡在线观看播放网 | 大片电影免费在线观看免费| 国产免费现黄频在线看| 天堂俺去俺来也www色官网| 自拍欧美九色日韩亚洲蝌蚪91| 日韩熟女老妇一区二区性免费视频| 一边摸一边做爽爽视频免费| 精品久久蜜臀av无| videosex国产| 在线观看www视频免费| 国产男女内射视频| 大陆偷拍与自拍| 亚洲av综合色区一区| 夫妻午夜视频| 欧美日韩一区二区视频在线观看视频在线| 女人被躁到高潮嗷嗷叫费观| 亚洲欧洲精品一区二区精品久久久 | 国产国语露脸激情在线看| 亚洲欧美色中文字幕在线| 伦理电影免费视频| 欧美日韩精品网址| 午夜日本视频在线| 女的被弄到高潮叫床怎么办| 亚洲欧美成人综合另类久久久|