李智方,馮沖,紀(jì)慧麗,石寧寧,宋小鳳,趙勤麗,龍川,潘登科,楊小淦
?
綠色熒光蛋白在α-1,3半乳糖基轉(zhuǎn)移酶敲除豬組織器官的表達(dá)分析
李智方1,2,馮沖2,紀(jì)慧麗1,2,石寧寧2,宋小鳳2,趙勤麗2,龍川2,潘登科2,楊小淦1
1. 廣西大學(xué),亞熱帶農(nóng)業(yè)生物資源保護(hù)與利用國家重點(diǎn)實(shí)驗(yàn)室,南寧 530004;2. 中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部畜禽遺傳資源與種質(zhì)創(chuàng)新重點(diǎn)實(shí)驗(yàn)室,北京 100193
豬是人類異種器官移植的理想供體,然而豬-人的異種器官移植會(huì)產(chǎn)生劇烈的排斥反應(yīng)。雖然已制備的α-1,3半乳糖基轉(zhuǎn)移酶基因敲除(Galactosyltransferase gene knockout, GTKO)豬可有效緩解豬-人異種器官移植引起的超急性免疫排斥,但缺少報(bào)告基因直觀示蹤移植后的細(xì)胞遷移及器官排斥狀態(tài)。本文將CAG啟動(dòng)子驅(qū)動(dòng)增強(qiáng)型綠色熒光蛋白(Enhanced green fluorescent protein, EGFP)的表達(dá)載體導(dǎo)入GTKO豬耳成纖維細(xì)胞,通過體細(xì)胞核移植技術(shù)制備了EGFP豬。利用雙熒光蛋白觀測鏡、熒光顯微鏡及定量PCR擴(kuò)增觀察、檢測和分析克隆豬各組織器官中EGFP蛋白和轉(zhuǎn)錄本的表達(dá)狀況。結(jié)果顯示,EGFP蛋白及轉(zhuǎn)錄本在克隆豬各組織器官中均有表達(dá),但在肝臟和中樞神經(jīng)系統(tǒng)中表達(dá)較弱。本文成功獲得了各組織器官表達(dá)EGFP的GTKO豬,為EGFP示蹤異種細(xì)胞組織移植奠定了基礎(chǔ)。
GTKO;增強(qiáng)型綠色熒光蛋白;豬;異種移植
豬的血液生理生化指標(biāo)及器官大小和人類的接近,是人類異種器官移植的理想供體[1]。豬器官應(yīng)用于人臨床試驗(yàn)面臨著諸多難題,其中首要的障礙是超急性排斥反應(yīng)(Hyperacute rejection, HAR),這種反應(yīng)主要是由α-1,3半乳糖基轉(zhuǎn)移酶(α-1,3 galactosyltransferase)合成的αGal(半乳糖)表位引起的,通過消除或減少半乳糖可有效緩解豬-人異種器官移植引起的超急性免疫排斥反應(yīng)。2002年,Lai等[2]率先獲得了α-1,3半乳糖轉(zhuǎn)移酶基因敲除(α-1,3 galactosyltransferase gene knockout, GTKO)豬。目前,國際上已有多個(gè)課題組通過體細(xì)胞核移植技術(shù)獲得了GTKO豬[3~6]。近10年來,多個(gè)課題組開展了以GTKO豬為供體、非人靈長類動(dòng)物為受體的異種細(xì)胞(骨髓[7]和肝細(xì)胞[8])或器官(腎臟[9]和心臟[10,11])移植研究,在心臟移植領(lǐng)域取得了重要進(jìn)展,異種心臟移植[11]存活時(shí)間可超過1年。雖然GTKO修飾取得了較理想的效果,但缺少報(bào)告基因,不能直觀示蹤移植后的細(xì)胞遷移及器官排斥狀態(tài)。
CAG啟動(dòng)子是人工構(gòu)建的組合啟動(dòng)子,由巨細(xì)胞病毒(Cytomegalovirus, CMV)早期增強(qiáng)子(Early enhancer element)和雞β-肌動(dòng)蛋白(Chicken beta-actin)啟動(dòng)子組成,在多種細(xì)胞中都有較強(qiáng)的表達(dá)活性,經(jīng)體內(nèi)和體外實(shí)驗(yàn)證實(shí)其不易被甲基化。本研究以GTKO五指山小型豬[6]為供體,向其耳成纖維細(xì)胞系中導(dǎo)入CAG啟動(dòng)子驅(qū)動(dòng)的增強(qiáng)型綠色熒光蛋白(Enhanced green fluorescent protein, EGFP),利用體細(xì)胞核移植技術(shù)制備EGFP豬,分析EGFP在克隆豬各組織和器官中的表達(dá),成功獲得了各組織器官表達(dá)EGFP的GTKO豬,為EGFP示蹤異種細(xì)胞組織移植奠定了基礎(chǔ)。
1.1 載體構(gòu)建
以pIRES2-EGFP(購自Clontech公司)質(zhì)粒為模板,使用EGFP-F/R引物擴(kuò)增基因,將擴(kuò)增得到的EGFP以無縫連接技術(shù)連接到pCAGGS-neo載體上,獲得pCAGGS-EGFP-neo表達(dá)載體。引物序列為:
EGFP-F:5'-ATTCGCATGCGGCCGCTAGCATGGTGAGCAAGGGCGAGGA-3';
EGFP-R:5'-CTCGATATCGGTACCTCGAGTTACTTGTACAGCTCGTCCA -3'。
1.2 供核體細(xì)胞系的建立、αGal鑒定和體細(xì)胞轉(zhuǎn)染
剪取GTKO豬耳組織,3~5 h內(nèi)帶回實(shí)驗(yàn)室。采用組織塊貼壁法建立豬耳成纖維細(xì)胞系,原代細(xì)胞的培養(yǎng)采用添加20% 胎牛血清(FBS, Gibco)和5%雙抗DMEM培養(yǎng)基,當(dāng)細(xì)胞達(dá)到接觸抑制狀態(tài)時(shí)冷凍保存或傳代培養(yǎng),以備后續(xù)的基因轉(zhuǎn)染。傳代細(xì)胞采用添加20% FBS的DMEM培養(yǎng)基,在37℃、5%CO2、飽和濕度的培養(yǎng)箱中培養(yǎng)。
αGal鑒定采用免疫熒光染色法,即FITC綠色熒光標(biāo)記的抗αGal抗體染色30 min后,熒光顯微鏡下觀察熒光。
復(fù)蘇GTKO細(xì)胞,待其長至80%匯合時(shí)進(jìn)行電轉(zhuǎn)染,將8 μg pCAGGS-EGFP-neo線性化載體利用Amaxa Nucleofector Ⅱ轉(zhuǎn)染儀進(jìn)行電轉(zhuǎn)染,然后G418篩選10~15 d,獲得EGFP陽性細(xì)胞,為后續(xù)體細(xì)胞核移植提供供核細(xì)胞。
1.3 體細(xì)胞核移植和胚胎移植
按照潘登科等[12]方法進(jìn)行體細(xì)胞核移植操作,即從屠宰場收集卵巢,獲得卵母細(xì)胞,在38.5℃、5% CO2、飽和濕度的培養(yǎng)箱,體外成熟培養(yǎng)40~44 h。然后挑選排出第一極體、卵黃膜完整、卵周隙清晰的卵母細(xì)胞進(jìn)行去核、注核,利用BLS融合儀使GFP陽性細(xì)胞融合到去核的卵母細(xì)胞中,獲得重構(gòu)胚。體外培養(yǎng)胚胎于第2 d、第6 d觀察卵裂和囊胚及熒光觀察。胚胎移植即融合激活后的重構(gòu)胚在培養(yǎng)40 h內(nèi)進(jìn)行,自然發(fā)情第0 d或第1 d的長白或大白的后備母豬作為受體母豬,移植方法為手術(shù)法輸卵管深度移植。
1.4 綠色熒光蛋白在各組織器官中的表達(dá)
EGFP轉(zhuǎn)基因豬出生后,Nightsea DFP-1雙熒光蛋白觀測鏡檢測仔豬,之后解剖取仔豬的心臟、肝臟、脾臟、肺臟、腎臟、脊髓、胃、腸、大腦和小腦等器官檢測綠色熒光蛋白表達(dá)情況。之后石蠟切片,熒光顯微鏡下檢測心臟、肝臟、脾臟、肺臟、腎臟、胰腺、大腦、小腦、脊髓、舌、胃和骨骼肌等組織的綠色熒光表達(dá),并應(yīng)用Image J軟件對熒光切片的熒光強(qiáng)度進(jìn)行定量分析。
1.5 實(shí)時(shí)定量PCR檢測各組織的表達(dá)
常規(guī)方法提取心臟、肝臟、腎臟、脾臟、肺臟、胰腺、大腦、小腦、脊髓、舌、腸、骨骼肌和耳等組織的RNA,以基因序列特異引物進(jìn)行實(shí)時(shí)定量PCR測定EGFP表達(dá)。引物序列為:
上游引物:5'-AAACGGCCACAAGTTCAGCG-3';
下游引物:5'-AAGAAGATGGTGCGCTCCTG-3'。
1.6 數(shù)據(jù)分析
采用Photoshop CS5和Image J處理圖片,SPSS 20.0軟件對實(shí)驗(yàn)數(shù)據(jù)進(jìn)行單因素方差分析,<0.05為差異顯著。
2.1 供核細(xì)胞αGal鑒定和EGFP陽性細(xì)胞
供核細(xì)胞系FITC抗αGal抗體染色結(jié)果如圖1所示。結(jié)果表明,抗αGal抗體與Gal抗原表位結(jié)合顯示綠色,證明其是野生型(WT)豬細(xì)胞(圖1A);染色后未顯示綠色,說明該細(xì)胞Gal抗原表位缺失即該細(xì)胞為GTKO豬細(xì)胞系(圖1B)。轉(zhuǎn)染篩選獲得EGFP陽性供核細(xì)胞結(jié)果見圖2 A。
圖1 供核細(xì)胞系αGal染色分析
A、A′:野生型(WT)豬細(xì)胞,20×;B、A′:GTKO豬細(xì)胞,10×。A、B分別是顯微鏡下熒光觀察;A′、B′為顯微鏡下可見光觀察。
2.2 EGFP克隆胚的體外發(fā)育及胚胎移植
利用EGFP陽性細(xì)胞為供核細(xì)胞進(jìn)行體細(xì)胞核移植實(shí)驗(yàn),獲得208枚重構(gòu)胚進(jìn)行體外觀察,EGFP與未轉(zhuǎn)EGFP的胚胎的卵裂率、囊胚率差異不顯著(79.8%. 80.57%,>0.05和19.23%. 19.42%,>0.05,表1、圖2B和C)。以EGFP陽性細(xì)胞進(jìn)行體細(xì)胞核移植構(gòu)建599枚重構(gòu)胚,移植到3頭受體母豬,其中1頭母豬妊娠并產(chǎn)下2頭克隆仔豬。
圖2 顯微鏡觀察EGFP細(xì)胞和囊胚圖
A:熒光顯微鏡觀察EGFP細(xì)胞,20 ×;B:普通光學(xué)顯微鏡下的囊胚;C:熒光顯微鏡下的囊胚,40 ×。
表1 EGFP克隆胚體外發(fā)育
注:EGFP-EF為GTKO陽性克隆,EF為GTKO細(xì)胞,=3 ;同一列間具有不同字母上標(biāo)為差異顯著,<0.05。
2.3 EGFP在克隆豬各組織器官中的表達(dá)情況
用Nightsea DFP-1雙熒光蛋白觀測鏡檢測心臟、肝臟、脾臟、肺臟、腎臟、胰腺、胃、腸、大腦和小腦等器官,均表達(dá)綠色熒光(圖3),但肝臟中表達(dá)弱或無熒光表達(dá)。在熒光顯微鏡下觀察心臟、肝臟、脾臟、肺臟、腎臟、胰腺、大腦、小腦、脊髓、舌、胃和骨骼肌等組織切片綠色熒光蛋白的表達(dá)情況(圖4),結(jié)果表明骨骼肌肉和舌頭熒光表達(dá)強(qiáng),肝臟中表達(dá)極低。Image J定量分析發(fā)現(xiàn),綠色熒光蛋白在各組織中均有表達(dá),在骨骼肌和舌頭中表達(dá)強(qiáng),但在肝組織和中樞神經(jīng)系統(tǒng)(大腦、小腦和脊髓)中表達(dá)較低(圖5)。
圖3 熒光觀測鏡觀察各器官的熒光圖
A:心臟;B:肝臟;C:肺臟;D:腎臟;E:胃;F:腸;G:大腦;H:小腦;I:脾臟;J:脊髓。左側(cè)為EGFP組,右側(cè)為對照組。
圖4 組織切片熒光圖
:心臟;B:肝臟;C:脾臟;D:肺臟;E:腎臟;F:脊髓;G:大腦;H:小腦;I:胰腺;J:胃;K:舌;L:骨骼肌。標(biāo)尺:100 μm。
圖5 定量分析EGFP在不同組織中的表達(dá)
2.4 實(shí)時(shí)定量分析在各組織中的表達(dá)情況
實(shí)時(shí)定量PCR檢測心臟、肝臟、腎臟、脾臟、肺臟、胰腺、大腦、小腦、脊髓、舌、腸、骨骼肌和耳等組織中的表達(dá),結(jié)果見圖6。在肺臟和耳組織中表達(dá)強(qiáng),但在大腦、小腦和脊髓為代表的中樞神經(jīng)系統(tǒng)中表達(dá)較低。
圖6 qRT-PCR檢測EGFP基因在不同組織中的表達(dá)
GTKO模型豬在異種移植研究中克服了超急性免疫排斥反應(yīng),但是目前所構(gòu)建的GTKO豬都缺少報(bào)告基因,不能直觀示蹤移植后的細(xì)胞及器官的排斥狀態(tài)。目前已有較多的實(shí)驗(yàn)室采用CMV廣譜性表達(dá)的啟動(dòng)子獲得了綠色熒光轉(zhuǎn)基因豬[13~24],但是CMV啟動(dòng)子容易甲基化,可使轉(zhuǎn)入的外源基因沉默。因此,本文選用CAG廣泛性全身表達(dá)的啟動(dòng)子來制備EGFP示蹤的轉(zhuǎn)基因豬。
本研究通過雙熒光蛋白觀測鏡、熒光顯微鏡及定量PCR技術(shù),對EGFP在轉(zhuǎn)基因豬的組織和器官中的表達(dá)進(jìn)行了系統(tǒng)的分析。檢測到豬的組織和器官均有EGFP表達(dá),但是各種組織和器官之間的表達(dá)差異比較大,其中肝臟和中樞神經(jīng)系統(tǒng)熒光表達(dá)弱。這與EGFP示蹤報(bào)告基因模式動(dòng)物(小鼠[25]、大鼠[26]、兔子[27])的研究相似,即各組織均有表達(dá),但組織間表達(dá)差異比較大且均有表達(dá)弱的組織,如在大鼠和兔子中EGFP在肝臟中都有表達(dá)弱的跡象,這與本實(shí)驗(yàn)結(jié)果相似。本文推測EGFP在肝臟表達(dá)弱,這可能是因?yàn)楦闻K對來自體內(nèi)和體外的許多非營養(yǎng)性物質(zhì)如藥物、毒物及體內(nèi)某些代謝產(chǎn)物,具有生物轉(zhuǎn)化作用,通過新陳代謝將它們徹底分解或以原形排出,因此肝臟的這種“解毒功能”不利于綠色熒光蛋白這種報(bào)告基因的表達(dá)。另外,在本實(shí)驗(yàn)中qPCR檢測胰腺組織RNA表達(dá)極弱,這是由于胰腺是一個(gè)混合性分泌腺體,主要有外分泌和內(nèi)分泌兩大功能。其中外分泌腺分泌的主要成分是胰液(含各種消化酶),很容易發(fā)生自溶,且胰腺組織含有大量內(nèi)源性RNA酶,故胰腺組織RNA的提取較為困難,所以推測胰腺中表達(dá)較弱可能是胰腺中RNA較易降解。
總之,本研究成功獲得了各組織器官表達(dá)EGFP的GTKO豬,為EGFP示蹤異種細(xì)胞及組織移植奠定了基礎(chǔ)。
[1] Pierson RN III, Dorling A, Ayares D, Rees MA, Seebach JD, Fishman JA, Hering BJ, Cooper DKC. Current status of xenotransplantation and prospects for clinical application., 2009, 16(5): 263–280.
[2] Lai LX, Kolber-Simonds D, Park K-W, Cheong H-T, Greenstein JL, Im G-S, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. Production of α-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning., 2002, 295(5557): 1089–1092.
[3] Dai YF, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL. Targeted disruption of the αl, 3-galactosyltransferase gene in cloned pigs., 2002, 20(3): 251–255.
[4] Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai YF, Ayares DL. Production of α1, 3-galactosyltransferase-deficient pigs., 2003, 299(5605): 411–414.
[5] Kolber-Simonds D, Lai LX, Watt SR, Denaro M, Arn S, Augenstein ML, Betthauser J, Carter DB, Greenstein JL, Hao YH, Im G-S, Liu ZH, Mell GD, Murphy CN, Park K-W, Rieke A, Ryan DJ, Sachs DH, Forsberg EJ, Prather RS, Hawley RJ. Production of α-1, 3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations., 2004, 101(19): 7335–7340.
[6] 鄭道山, 馮沖, 朱彥賓, 龍川, 馮書堂, 潘登科, 馬文麗. 利用啟動(dòng)子缺陷型打靶載體敲除五指山小型豬基因. 生物技術(shù)通訊, 2011, 22(4): 458–462.
[7] Tseng Y-L, Dor FJMF, Kuwaki K, Ryan D, Wood J, Denaro M, Giovino M, Yamada K, Hawley R, Patience C, Schuurman H-J, Awwad M, Sachs DH, Cooper DKC. Bone marrow transplantation from1, -3galactosyltransferase gene-knockout pigs in baboons., 2004, 11(4): 361–370.
[8] Shigeta T, Hsu H-C, Enosawa S, Matsuno N, Kasahara M, Matsunari H, Umeyama K, Watanabe M, Nagashima H. Transgenic pig expressing the red fluorescent protein kusabira-orange as a novel tool for preclinical studies on hepatocyte transplantation., 2013, 45(5): 1808–1810.
[9] Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M, O'Malley P, Nobori S, Vagefi PA, Patience C, Fishman J, Cooper DKC, Hawley RJ, Greenstein J, Schuurman H-J, Awwad M, Sykes M, Sachs DH. Marked prolongation of porcine renal xenograft survival in baboons through the use of α1, 3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue., 2005, 11(1): 32–34.
[10] Kuwaki K, Tseng YL, Dor FJMF, Shimizu A, Houser SL, Sanderson TM, Lancos CJ, Prabharasuth DD, Cheng J, Moran K, Hisashi Y, Mueller N, Yamada K, Greenstein JL, Hawley RJ, Patience C, Awwad M, Fishman JA, Robson SC, Schuurman H-J, Sachs DH, Cooper DKC. Heart transplantation in baboons using α1, 3-galactosyltransferase gene-knockout pigs as donors: initial experience., 2005, 11(1): 29–31.
[11] Cooper DKC. A milestone in xenotransplantation research., 2014, 21(1): 13–15.
[12] 潘登科, 張莉, 周艷榮, 馮沖, 龍川, 劉曉, 董恩球, 王樹臣, 萬榮, 張健, 陳紅星. 體細(xì)胞核移植生產(chǎn)轉(zhuǎn)ω-3脂肪酸去飽和酶基因s克隆豬. 中國科學(xué)(C輯: 生命科學(xué)), 2009, 39(3): 295–302.
[13] Park K-W, Lai LX, Cheong H-T, Cabot R, Sun QY, Wu GM, Rucker EB, Durtschi D, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS. Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts., 2002, 66(4): 1001–1005.
[14] Naruse K, Ishikawa H, Kawano H-O, Ueda H, Kurome M, Miyazaki K, Endo M, Sawasaki T, Nagashima H, Makuuchi M. Production of a transgenic pig expressing human albumin and enhanced green fluorescent protein., 2005, 51(4): 539–546.
[15] Cabot RA, Kühholzer B, Chan AWS, Lai LX, Park K-W, Chong K-Y, Schatten G, Murphy, CN, Abeydeera LR, Day BN, Prather RS. Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector., 2001, 12(2): 205–214.
[16] Lai LX, Park K-W, Cheong H-T, Kühholzer B, Samuel M, Bonk A, Im G-S, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells., 2002, 62(3): 300–306.
[17] Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A. Efficient transgenesis in farm animals by lentiviral vectors., 2003, 4(11): 1054–1058.
[18] Hyun S, Lee G, Kim D, Kim H, Lee S, Nam D, Jeong Y, Kim S, Yeom S, Kang S, Han J, Lee B, Hwang W. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein., 2003, 69(3): 1060–1068.
[19] Whitelaw CB, Radcliffe PA, Ritchie WA, Carlisle A, Ellard FM, Pena RN, Rowe J, Clark AJ, King TJ, Mitrophanous KA. Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector., 2004, 571(1–3): 233–236.
[20] Watanabe S, Iwamoto M, Suzuki S-I, Fuchimoto D, Honma D, Nagai T, Hashimoto M, Yazaki S, Sato M, Onishi A. A novel method for the production of transgenic cloned pigs: electroporation-mediated gene transfer to non-cultured cells and subsequent selection with puromycin., 2005, 72(2): 309–315.
[21] Webster NL, Forni M, Bacci ML, Giovannoni R, Razzini R, Fantinati P, Zannoni A, Fusetti L, Dalpra L, Bianco MR, Papa M, Seren E, Sandrin MS, Mc Kenzie IFC, Lavitrano M. Multi-transgenic pigs expressing three fluorescent proteins produced with high efficiency by sperm mediated gene transfer., 2005, 72(1): 68–76.
[22] Yong HY, Hao YH, Lai LX, Li RF, Murphy CN, Rieke A, Wax D, Samuel M, Prather RS. Production of a transgenic piglet by a sperm injection technique in which no chemical or physical treatments were used for oocytes or sperm., 2006, 73(5): 595–599.
[23] 劉忠華, 宋軍, 王振坤, 田江天, 孔慶然, 鄭重, 尹智, 高力, 馬海鹍, 孫爽, 李玉田, 王洪斌. 體細(xì)胞核移植生產(chǎn)綠色熒光蛋白轉(zhuǎn)基因豬. 科學(xué)通報(bào), 2008, 53(5): 556–560.
[24] 張鵬, 楊珍珍, 竇紅偉, 李偉杭, 律波, Lars B, 杜玉濤, 譚萍萍, 馬潤林. 利用改進(jìn)的手工克隆技術(shù)生產(chǎn)轉(zhuǎn)GFP基因豬克隆胚胎. 遺傳, 2011, 33(5): 527–532.
[25] Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. Green mice as a source of ubiquitous green cells., 1997, 407(3): 313–319.
[26] Hakamata Y, Tahara K, Uchida H, Sakuma Y, Nakamura M, Kume A, Murakami T, Takahashi M, Takahashi R, Hirabayashi M, Ueda M, Miyoshi I, Kasai N, Kobayashi E. Green fluorescent protein-transgenic rat: a tool for organ transplantation research., 2001, 286(4): 779–785.
[27] Takahashi R-I, Kuramochi T, Aoyagi K, Hashimoto S, Miyoshi I, Kasai N, Hakamata Y, Kobayashi E, Ueda M. Establishment and characterization of CAG/EGFP transgenic rabbit line., 2007, 16(1): 115–120.
Expression analysis of green fluorescent protein in tissues and organs in α-1,3 galactosyltransferase knockout pigs
Zhifang Li1,2, Chong Feng2, Huili Ji1,2, Ningning Shi2, Xiaofeng Song2, Qinli Zhao2, Chuan Long2, Dengke Pan2, Xiaogan Yang1
The pig is an ideal source to provide organs because its organ size and physiology are similar to humans. However, an acute rejection will ensue after pig-to-human xenotransplantation.The α-1,3 galactosyltransferase gene knockout (GTKO) pigs were generated in recent years, and could solve the problem of hyperacute rejection. But due to lack of reporting genes, the rejection status of cells and organs post pig-to-human xenotransplantation cannot be visualized. In this study, we introduced the enhanced green fluorescent protein (EGFP) gene driven by the CAG promoter into GTKO porcine ear fibroblasts. Then we produced transgenic pigs expressing the EGFP gene by nuclear transfer technology. Expression levels of EGFP in different tissues and organs of the cloned pig were investigated by Nightsea DFP-1 Fluorescent Protein Flashlight, fluorescence microscope and quantitative PCR assays. The results showed that the protein and transcript of EGFP were expressed in all tissues and organs of the GTKO pig, but the expression was weak in the liver and central nervous system. In conclusion, we have successfully produced the transgenic GTKO pigs expressing EGFP in all tested tissues and organs, which builds up a good basis to track transplanted cells or tissues.
GTKO; EGFP; pig; xenotransplation
2015-04-15;
2015-07-17
亞熱帶農(nóng)業(yè)生物資源保護(hù)利用國家重點(diǎn)實(shí)驗(yàn)室開放課題(編號(hào):SKL201404)和國家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)項(xiàng)目(編號(hào):2012AA020601)資助
李智方,碩士研究生;專業(yè)方向:動(dòng)物遺傳育種與繁殖。E-mail:LIZHIFANG31@163.com
楊小淦,博士,副研究員;研究方向:動(dòng)物繁殖生物技術(shù)。E-mail:xgyang@gxu.edu.cn潘登科,博士,副研究員;研究方向:轉(zhuǎn)基因豬模型。E-mail:pandengke2002@163.com
10.16288/j.yczz.15-160
網(wǎng)絡(luò)出版時(shí)間: 2015-8-12 9:49:52
URL: http://www.cnki.net/kcms/detail/11.1913.R.20150812.0949.008.html
(責(zé)任編委: 任軍)