李彥生,王光華,金 劍(中國科學院東北地理與農(nóng)業(yè)生態(tài)研究所黑土區(qū)農(nóng)業(yè)生態(tài)重點實驗室,黑龍江哈爾濱150081)
大氣CO2升高與農(nóng)田土壤碳循環(huán)研究
李彥生,王光華,金劍
(中國科學院東北地理與農(nóng)業(yè)生態(tài)研究所黑土區(qū)農(nóng)業(yè)生態(tài)重點實驗室,黑龍江哈爾濱150081)
大氣CO2濃度的升高通過植物-土壤-微生物的相互作用對陸地生態(tài)系統(tǒng)中最大碳庫土壤的穩(wěn)定性產(chǎn)生重要影響。大氣CO2濃度升高,影響許多植物生長發(fā)育過程,進而影響土壤有機碳輸入量。與此同時,土壤微生物的群落與功能也會隨之發(fā)生變化,參與土壤碳的轉化,深刻影響陸地生態(tài)系統(tǒng)的碳循環(huán)。文章分析了大氣CO2濃度升高影響農(nóng)田土壤碳循的有關過程,包括高CO2濃度條件下,作物地下部分的生長響應,以及向土壤中輸入作物光合有機物量和質的變化,探討了土壤碳庫對大氣CO2濃度升高反饋的土壤微生物作用機制,進一步解析了土壤微生物群落結構在土壤碳與大氣CO2濃度之間的相互作用,提出研究土壤有機碳轉化的土壤微生物作用機制是預測全球氣候變化條件下的農(nóng)田土壤碳循環(huán)規(guī)律的關鍵。圖1,參79。
大氣CO2;光合碳;微生物群落結構;碳循環(huán);土壤有機質
土壤是陸地生態(tài)系統(tǒng)最大的碳儲存場所,土壤有機碳在決定土壤理化性質和土壤肥力時起到關鍵作用,同時也是陸地生態(tài)系統(tǒng)碳循環(huán)的重要成員。植物光合作用是陸地和大氣間碳循環(huán)的驅動力,植物生長過程中光合產(chǎn)物以根系分泌物及殘體的形式成為土壤有機碳主要來源。然而全球氣候變化將顯著影響土壤有機碳的轉化和平衡。
在過去的200年間,大氣CO2濃度迅速升高[1-2],對作物生長產(chǎn)生重要影響,如C3植物和豆科植物生物量增加,根冠比升高。許多研究表明,許多植物的根系對CO2響應程度要比其它器官敏感[3-5]。植物根系分泌物及死亡根系的量及其化合物組成在高CO2條件下均發(fā)生改變,所以,CO2升高顯著影響植物向土壤輸送有機物,這種沉積物的變化勢必引起土壤微生物活性及群落結構的響應,而微生物這種響應變化對植物碳向陸地生態(tài)系統(tǒng)碳轉化有重要作用。微生物活性和結構是反映環(huán)境變化對生態(tài)系統(tǒng)功能影響的敏感指標[6]。
然而,在大氣CO2濃度升高后,主要農(nóng)田作物將如何影響土壤有機碳庫,及其微生物的作用機制還尚不清楚。本文分析了大氣CO2升高對作物地下部生長、光合碳在土壤中的轉化的影響,從土壤微生物生態(tài)角度探討了大氣CO2升高條件下土壤碳循環(huán)的生物學機制,提出了應該注重土壤有機碳轉化的土壤微生物作用機制研究,期待對未來我國農(nóng)田土壤有機碳管理以及土壤生產(chǎn)力持續(xù)提高有一定的理論指導意義。
大氣CO2濃度升高是導致全球氣候變化的因素之一。由于人類活動,大氣CO2濃度的迅速升高,其濃度已從工業(yè)革命前的270ppm升高到2013年的390ppm,上升幅度達45%[1]。目前的CO2濃度是過去2000萬年間的最高值[7-10]。以現(xiàn)在上升模式估計,到本世紀中葉,大氣CO2濃度會達到550ppm,本世紀末將達到700ppm[2]。政府間氣候變化專門委員會 (IPPC)第四次評估報告 (AR4)指出,CO2濃度實際的增長速度甚至高于預期[11-13]。
土壤中碳的含量很高,如何管理土壤有機碳對全球氣候變化至關重要。全球0~30cm土壤層的有機碳含量為684Pg~724Pg,0~1m的土層碳含量1462Pg~1548Pg[14]。僅30cm土層內(nèi)的碳含量就為大氣中碳總量的2倍,為植物地上部碳總量的3倍。每年由于森林砍伐而導致的CO2排放就占石油燃燒排放的25%。所以,如何增加土壤有機碳沉積,或減少碳從土壤中的釋放將對抑制氣候變化將起到積極作用,也是近年來研究的熱點。例如,F(xiàn)reibauer等[15]研究了歐洲農(nóng)藝措施變化對土壤碳沉積的量化影響;Smith等[16]對農(nóng)業(yè)系統(tǒng)中,溫室氣體排放和土壤碳沉積的關系進行了研究。
植物光合作用同化的碳是土壤有機碳的主要來源[17],植物通過光合作用同化CO2,轉化為碳水化合物,并以根系、植物殘體形式輸入土壤,經(jīng)土壤微生物作用又以CO2和CH4等氣體返回大氣或以有機質貯藏在土壤庫中[18]。所以,植物光合作用和土壤呼吸這兩個代謝過程,驅動碳的生物地球化學循環(huán)[15,19]。
作物生育期內(nèi),有較大比例的光合碳轉運到地下部,且這種分配比例因生育時期和環(huán)境條件而產(chǎn)生差異[20-21]。研究表明,約有30%~60%小麥光合碳轉運到根系中,且其中的40%~90%進入土壤[22]。Kuzyakov和Domanski[23]發(fā)現(xiàn)玉米光合碳的0.5%~10%被轉運到土壤中[24-25]。生長前期光合碳向地下部分配的碳多于成熟期[26],生育前期有近50%光合碳用于根系建成,但成熟期僅有10%用于根系組織形成,其余碳通過根系呼吸及根系沉積物損失[27-28]。
植株體死亡后,在土壤中進入腐解過程,這一過程主要包括淋溶、組織破碎、化學還原反應釋放CO2和無機養(yǎng)分[29]。腐解過程主要通過細菌、真菌的酶促反應降解有機物[30]。剩下未分解的部分與土壤作用進入土壤有機質庫。
植株生長是一系列碳代謝的過程[31]。大氣CO2濃度對碳在根系-地上部的分配有重要影響[32-34]。約有150種植物,包括作物和野生植物已經(jīng)被用來研究對CO2濃度變化的響應。一般認為,生長在高CO2濃度中的植物,尤其是農(nóng)作物中的塊根和塊莖作物,向地下部分配更多的CO2,根冠比提高[35-37]。許多研究表明,根系對CO2響應程度要比其它器官敏感,然而這種響應程度因植物種類而有所差異[3-5]。Patterson和Flint[38]指出,高CO2可提高C3植物的根冠比,但對C4植物無顯著影響。Klepper[39]和Rogers等[37]對264種植物進行調(diào)查發(fā)現(xiàn),對CO2產(chǎn)生正、負及無效應的植物種類分別占59.5%、37.5%和3.0%。
由于高CO2條件下,碳向根系分配的比例呈增加趨勢,這種碳分配將改變根系的形態(tài),包括根長、根表面積、根體積、根直徑,以及側根的生長速率。高CO2濃度提高大豆根系生物量26%~31%,同時側根數(shù)量也顯著增加,可見,高CO2可刺激大豆根系生長,擴大其根系在土壤空間中的分布[40]。Yang等[41]研究表明,水稻根系在高CO2條件下也發(fā)生明顯變化,根系生物量、根體積、須根數(shù)量、須根根長分別增加45%、44%、31%和37%。在小麥、高粱和棉花上,也發(fā)現(xiàn)相似的趨勢[36,42]。這種根系形態(tài)對CO2響應變化使得根系在土壤中有很強的穿插能力及更廣泛的分布[42-45]。
許多學者在良好的植物生長條件下研究了CO2升高對土壤碳沉積以及碳在土壤碳庫組分分布的影響[46-51]。雖然CO2升高可促進許多植物干物質的積累,但對碳向地下部分配的研究結果差異較大[52]。Ross等[53]研究表明,多年的CO2升高并沒有增加土壤碳庫,然而,連續(xù)8年的CO2富集研究表明,高原草原的土壤碳含量呈增加的趨勢[54]。
CO2濃度變化導致土壤碳沉積的差異原因較多。盡管在高CO2條件下,植物向土壤中釋放的碳量增加,但其成分可能主要是可溶性有機碳,易于被根際微生物,尤其是代謝較快的細菌群落所利用,從而加速植物光合碳的降解,而且可能激發(fā)土壤固有的有機碳的降解[52]。高CO2促進根系碳的釋放與活性微生物的降解相互抵消可能是土壤碳含量維持不變的主要原因。然而,微生物對植物碳的利用程度還受植物類型、土壤理化性質,以及微生物群落結構顯著影響,進而降低植物碳的降解速率,表現(xiàn)為土壤碳積累的趨勢。已有研究表明,大豆光合碳在不同地域的黑土中去向差異顯著,且許多研究證明了不同土壤的微生物群落結構和功能有明顯差別。然而,在高CO2條件下,有關于農(nóng)田作物光合碳在不同土壤中的轉化差異的研究還很少,尤其是在東北不同地域的黑土區(qū)。
高CO2條件促進植物生長可能引起植物化學組成的變化。許多研究表明,高CO2降低植物組織的氮含量[55-57]。由于土壤微生物傾向利用土壤中的氮,而不是植物組織中的氮,那么在高CO2濃度所導致的高碳/氮植株體會降低其降解速率,同時微生物對氮的固定呈增加趨勢[58]。在農(nóng)業(yè)和森林生態(tài)系統(tǒng)中都發(fā)現(xiàn)低氮濃度植物組織一定程度上并不利于降解[55,59]。然而,Liu等[60]指出,高CO2條件下,化學組成改變了的植物并沒有影響土壤碳和氮的循環(huán),植物量的增加卻顯著影響土壤碳/氮循環(huán)。也有研究表明,盡管CO2改變了植物組織的化學組成,但氮的礦化速率并沒有顯著變化[56,59,61-62]。所以,植物化學組成對土壤碳沉積/循環(huán)產(chǎn)生怎樣的影響可能與土壤氮化學特征有關,還需在不同土壤條件下進一步深入研究。
地下部根系代謝對高CO2產(chǎn)生響應,進而影響根際微生物活性、功能及相關代謝過程。根系向土壤中釋放有機物質 (根際沉積物),其中包括根系分泌物、根系脫落物等[6]。這種植物向土壤輸送有機物的模式受到CO2濃度的影響。研究表明,環(huán)境因子影響植物的生長、生理代謝,進而影響根際沉積物的釋放[63-64]。這種沉積物的變化勢必影響微生物活性及群落結構,而根際微生物這種響應變化不僅對植物自身生長有重要意義,包括共生作用、病原菌互作、植物養(yǎng)分的礦化等,而且對陸地生態(tài)系統(tǒng)碳轉化有重要作用。所以,根際微生物活性和結構是反映環(huán)境變化對生態(tài)系統(tǒng)功能影響的敏感指標[6]。
另外,根際微生物也是較強的碳庫,大量的微生物生長在根系表皮細胞周圍,促進根系可溶性的含碳有機物釋放[65]。所以,根際微生物的量和活性是根際碳轉化的橋梁。不同的植物在不同的生態(tài)環(huán)境 (如高CO2)下根系所分泌的含碳化合物種類都發(fā)生變化[66],利用這些化合物的微生物種群也發(fā)生相應變化,并會達到新的平衡,揭示這種新的平衡將可以預測全球氣候變化條件下的土壤生產(chǎn)力,以及回答土壤將成為碳庫還是碳源的問題[67-68]。
研究植物光合碳與微生物群落結構關系是揭示高CO2條件下碳氮循環(huán)規(guī)律的關鍵。Drigo等[69]對生長在高CO2條件下的紅花山玉蘭 (F.rubra)根際微生物研究發(fā)現(xiàn),熒光假單胞桿菌 (Pseudomonas)和伯克霍爾德菌 (Burkholderia)發(fā)生顯著變化,而放線菌 (Actinomycetes)和芽孢桿菌 (Bacillus)并沒有受到顯著影響[70]。一些熒光假單胞桿菌種具有促植物生長功能,且可以分泌抗生素物質如吡咯菌素 (Pyrrolnitrin),進而可以抑制小麥根系的某些真菌病害。
許多研究者指出,高CO2對根際真菌生物量的影響大于細菌[71-72]。Carney等[73]發(fā)現(xiàn)土壤真菌/細菌的比例在高CO2條件下呈上升趨勢。在不同的生態(tài)系統(tǒng)中的研究也發(fā)現(xiàn),CO2升高增加真菌群落的豐度[74-75]。Drigo等[76]利用SIP技術研究表明,CO2升高顯著影響菌根真菌,植物的光合碳釋放到土壤中后迅速被菌根真菌利用,其可能是參與CO2影響光合碳轉化的關鍵成員。
全球氣候變化與土壤碳循環(huán)之間的反饋作用,即氣候變化、大氣CO2濃度上升與土壤碳循環(huán)之間相互影響的研究,已經(jīng)成為碳循環(huán)研究的熱點,但對于我國的農(nóng)業(yè)生態(tài)系統(tǒng),仍然有以下幾個方面值得關注,見圖1。
圖1 大氣CO2升影響農(nóng)田土壤碳循環(huán)的研究熱點Fig.1 Highlights for the effect of elevated CO2on C cycling in arable soils
在自然狀態(tài)下,地上植被通過光合作用固定的碳歸還到土壤的數(shù)量大于土壤碳的分解量,表現(xiàn)為土壤有機質含量累積趨勢,但我國農(nóng)業(yè)糧食生產(chǎn)負擔重,人為活動顯著影響土壤碳庫。我國土壤碳密度總體上低于世界平均值,遠低于歐洲國家,農(nóng)業(yè)系統(tǒng)比較脆弱。以東北黑土區(qū)為例,黑土開墾較早的地區(qū)土壤有機質已由原來的8%~10%下降到2%~4%,開發(fā)較晚的也只有3%~5%[77]。與此同時,土壤中的營養(yǎng)元素氮和磷的儲量也同時下降30%~60%和16%~24%[78]。黑土有機質及質量的下降已顯著影響糧食的產(chǎn)量[79]。然而,大氣CO2的升高將對農(nóng)田土壤有機碳庫產(chǎn)生怎樣的影響,土壤碳庫將成為碳源還是碳庫,都有待于系統(tǒng)研究。所以,對大氣CO2濃度升高條件下的土壤碳庫的平衡點及對土壤碳庫貢獻的問題研究十分迫切。
大氣CO2濃度升高顯著影響植物光合作用向土壤中的轉運,但是植物生育期間光合碳代謝周轉快,以及結構性碳尚未及時形成有機質等,光合碳的去向問題容易被忽視,這部分碳對土壤有機碳庫的貢獻仍需量化研究,在高CO2條件下光合碳在根際區(qū)的代謝機理依舊不清楚,而且不同作物間有何差異還需進一步研究。
土壤有機碳周轉取決于其形成量和分解量的相對大小。研究者已經(jīng)認識到土壤微生物是全球變化中影響碳平衡的重要控制因素,研究植物根際中光合碳及其為微生物所利用的比例是揭示土壤有機碳轉化的重要環(huán)節(jié)。然而,高CO2怎樣影響土壤微生物群落結構,影響程度如何因植物種類和土壤類型而產(chǎn)生顯著差異。大氣CO2升高對參與土壤碳轉化的微生物群落結構的影響還未見報道,而這是解析氣候變化與土壤碳庫關系的核心機制之一 (圖1)。CO2升高可能對不同地域的土壤微生物產(chǎn)生不同影響,對此開展研究可明確農(nóng)田生態(tài)系統(tǒng)碳循環(huán)對CO2升高的區(qū)域響應機制。
[1]Stocker T F,Qin D,Plattner G K,et al.Climate Change 2013:The Physical Science Basis Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M].Switzerland:IPCC,2013.
[2]Prentice I C,F(xiàn)arquhar G D,F(xiàn)asham M J R,et al.The carbon cycle and atmospheric carbon dioxide[M].In:Houghton J T,Ding Y,Griggs D J,et al,eds.Climate Change 2001:The Scientific Basis.Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2001.
[3]Rogers H H,Bingham G E,Cure J D,et al.Responses of selected plant species to elevated carbon dioxide in the field[J].Journal of Environmental Quality,1983,12(4):569-574.
[4]Imai K,Cleman D F,Yanagisawa T.Increase in atmospheric partial pressure of carbon dioxide and growth and yield of rice(Oryza sativa L.) [J].Japanese Journal of Crop Science,1985,54(4):413-418.
[5]Norby R J,Gunderson C A,Wullschleger S D,et al.Productivity and compensatory responses of yellow-poplar trees in elevated CO2[J].Nature,1992,357:322-324.
[6]Paterson E,Hall J M,Rattray E A S,et al.Effect of elevated CO2on rhizosphere carbon flow and soil microbial processes[J].Global Change Biology,1997,3(4):363-377.
[7]Wieser G,Gruber A,Bahn M,et al.Respiratory fluxes in a Canary Islands pine forest[J].Tree physiology,2009,29:457-466.
[8]Leakey A D,Ainsworth E A,Bernacchi C J,et al.Elevated CO2effects on plant carbon,nitrogen,and water relations:six important lessons from FACE[J].Journal of Experimental Botany,2009,60(10):2859-2876.
[9]Pagani M,F(xiàn)reeman K H,Arthur M A.Late Miocene atmospheric CO2concentrations and the expansion of C4grasses[J].Science,1999,285(5429):876-879.
[10]Pearson P N,Palmer M R.Atmospheric carbon dioxide concentrations over the past 60million years[J].Nature,2000,406:695-699.
[11]Dyson T.On development,demography and climate change:The end of the world as we know it?[J].Population and Environment,2005,27(2):117-149.
[12]Canadell J G,Le Quere C,Raupach M R,et al.Contributions to accelerating atmospheric CO2growth from economic activity,carbon intensity,and efficiency of natural sinks[J].Proceedings of the National Academy of Sciences,2007,104(47):18866-18870.
[13]Hansen J,Sato M,Kharecha P,et al.Target atmospheric CO2:Where should humanity aim?[J].The Open Atmospheric Science Journal,2008,2(1):217-231.
[14]Batjes N H.Total carbon and nitrogen in the soils of the world[J].European Journal of Soil Science,1996,47(2):151-163.
[15]Freibauer A,Rounsevell M D A,Smith P,et al.Carbon sequestration in the agricultural soils of Europe[J].Geoderma,2004,122(1): 1-23.
[16]Smith P,Martino D,Cai Z,et al.Greenhouse gas mitigation in agriculture[J].Philosophical Transactions of the Royal Society B-Biological Sciences,2008,363(1492):789-813.
[17]申建波,張福鎖,毛達如.根際微生態(tài)系統(tǒng)中的碳循環(huán)[J].植物營養(yǎng)與肥料學報,2001,7(2):232-240.
[18]王智平,陳全勝.植物近期光合碳分配及轉化[J].植物生態(tài)學報,2005,29(5):845-850
[19]Lal R.Agricultural activities and the global carbon cycle[J].Nutrient Cycling in Agroecosystems,2004,70(2):103-116.
[20]朱永官.土壤-植物系統(tǒng)中的微界面過程及其生態(tài)環(huán)境效應[J].環(huán)境科學學報,2003,23(2):205-210.
[21]Lu Y H,Watanabe A,Kimura M.Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm[J].Biology and Fertility of Soils,2004,36(2):136-142.
[22]Whipps J M.Carbon economy.In:Lynch J M,eds.The rhizosphere[M].Chichester:Wiley,1990.
[23]Kuzyakov Y,Domanski G.Carbon input by plants into the soil.Review[J].Journal of Plant Nutrition and Soil Science,2000,163(4): 421-431.
[24]Johansson G.Release of organic c from growing roots of meadow fescue(Festuca pratensis L.)[J].Soil Biology and Biochemistry,1992,24(5):427-433.
[25]Martin J K,Merckx R.The partitioning of photosynthetically fixed carbon within the rhizosphere of mature wheat[J].Soil Biology and Biochemistry,1992,24(11):1147-1156.
[26]Gregory P J,Atwell B J.The fate of carbon in pulse-labelled crops of barley and wheat[J].Plant and Soil,1991,136(2):205-213.
[27]Swinnen J,Van Veen J A,Merckx R.14Cpulse-labelling of field-grown spring wheat:An evaluation of its use in rhizosphere carbon budget estimations[J].Soil Biology and Biochemistry,1994,26:161-170.
[28]Domanski G,Kuzyakov Y,Siniakina S V,et al.Carbon flows in the rhizosphere of ryegrass(Lolium perenne)[J].Journal of Plant Nutrition and Soil Science,2001,164:381-387.
[29]Chapin F S,Matson P A,Mooney H A.Principles of Terrestrial Ecosystem Ecology[M].New York:Springer Press,2002.
[30]Gavazov K S.Dynamics of alpine plant litter decomposition in a changing climate[J].Plant and Soil,2010,337(1-2):19-32.
[31]Farrar J F.The whole plant:carbon partitioning during development.In:Pollock C J,F(xiàn)arrar J F,Gordon A J,eds.Carbon partitioning within and between organisms[M].Oxford:BIOS Scientific Publishers Press,1992.
[32]陳春梅,謝祖彬,朱建國.大氣CO2濃度升高對土壤碳庫的影響[J].中國生態(tài)農(nóng)業(yè)學報,2008,16(1):217-222.
[33]Gregory J M,Mitchell J F B.The climate response to CO2of the Hadley Centre coupled AOGCM with and without flux adjustment[J].Geophysical Research Letters,1997,24(15):1943-1946.
[34]Pritchard S G,Rogers H H.Spatial and temporal deployment of crop roots in CO2-enriched environments[J].New Phytologist,2000,147: 55-71.
[35]Idso S B,Kimball B A,Mauney J R.Effects of atmospheric CO2enrichment on root:shoot ratios of carrot,radish,cotton and soybean[J].Agriculture,Ecosystems and Environment,1988,21(3-4):293-299.
[36]Rogers H H,Runion G B,Krupa S V.Plant response to atmospheric CO2enrichment with emphasis on roots and the rhizosphere[J].Environmental Pollution,1994,83(1-2):155-189.
[37]Rogers G S,Milham P J,Gillings M,et al.Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO2[J].Australian Journal of Plant Physiology,1996,23:253–264.
[38]Patterson D T,F(xiàn)lint E P.Potential effects of global atmospheric CO2enrichment on the growth and competitiveness of C3and C4weed and crop plants[J].Weed Science,1980,28(1):71-75.
[39]Klepper B.Root-shoot relationships.In:Waisel Y,Eshel A,Kafkafi U,eds.Plant Roots:The Hidden Half[M].New York:Marcel Dekker Inc.,1991.
[40]Del Castillo D,Acock B,Reddy V R,et al.Elongation and branching of roots on soybean plants in a carbon dioxide-enriched aerial environment[J].Agronomy Journal,1989,81(4):692-695.
[41]Yang L X,Wang Y L,Kobayashi K,et al.Seasonal changes in the effects of free air CO2enrichment(FACE)on growth,morphology and physiology of rice root at three levels of nitrogen fertilization[J].Global Change Biology,2008,14(8):1844-1853.
[42]Rogers H H,Prior S A,O’Neill E G.Cotton root and rhizosphere responses to free-air CO2enrichment[J].Critical Reviews in Plant Science,1992,11(2-3):251-264.
[43]Baker J T,Allen L H,Boote K J.Growth and yield responses of rice to carbon-dioxide concentration[J].Journal of Agricultural Science,1990,115(3):313-320.
[44]Idso S B,Kimball B A.Effects of two and a half years of atmospheric CO2enrichment on the root density distribution of three-year-old sour orange trees[J].Agricultural and Forest Meteorology,1991,55(3–4):345–349.
[45]Idso S B,Kimball B A.Effects of atmospheric CO2enrichment on photosynthesis,respiration,and growth of sour orange trees[J].Plant Physiology,1992,99:341-343.
[46]Kimball B A.Carbon dioxide and agricultural yield:an assemblage and analysis of 430prior observations[J].Agronomy Journal,1983,75: 779-788.
[47]Ross D J,Tate K R,Newton P C D.Elevated CO2and temperature effects on soil carbon and nitrogen cycling in ryegrass/white clover turves of an Endoaquept soil[J].Plant and Soil,1995,176(1):37-49.
[48]Ross D J,Saggar S,Tate KR,et al.Elevated CO2effects on carbon and nitrogen cycling in grass/clover turves of a Psammaquent soil[J].Plant and Soil,1996,182:185-198.
[49]Hebeisen T,Lüscher A,Zanetti S,et al.Growth response of Trifolium repens L.and Lolium perenne L.as monocultures and bi‐species mixture to free air CO2enrichment and management[J].Global Change Biology,1997,3(2):149-160.
[50]Daepp M,Suter D,Almeida J P F,et al.Yield response of Lolium perenne swards to free air CO2enrichment increased over six years in a high N input system on fertile soil[J].Global Change Biology,2000,6(7):805-816.
[51]Suter D,F(xiàn)rehner M,F(xiàn)ischer B U,et al.Elevated CO2increases carbon allocation to the roots of Lolium perenne under free air CO2enrichment but not in a controlled environment[J].New Phytologist,2002,154(1):65-75.
[52]曹宏杰,倪紅偉.大氣CO2升高對土壤碳循環(huán)影響的研究進展[J].生態(tài)環(huán)境學報,2013,22(11):1846-1852.
[53]Ross D J,Newton P C D,Tate K R.Elevated CO2effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich,grazed pasture on a seasonally dry sand[J].Plant and Soil,2004,260(1-2):183-196.
[54]Williams M A,Rice C W,Owensby C E.Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2for 8years[J].Plant and Soil,2000,227:127-137.
[55]Norby R J,Cotrufo M F,Ineson P,et al.Elevated CO2,litter chemistry,and decomposition:a synthesis[J].Oecologia,2001,127: 153-165.
[56]King J S,Kubiske M E,Pregitzer K S,et al.Tropospheric O3compromises net primary production in young stands of trembling aspen,paper birch and sugar maple in response to elevated atmospheric CO2[J].New Phytologist,2005,168(3):623-636.
[57]Liu L,King J S,Giardina C P.Effects of elevated atmospheric CO2and tropospheric O3on nutrient dynamics:decomposition of leaf litter in trembling aspen and paper birch communities[J].Plant and Soil,2007,299(1-2):65-82.
[58]Hobbie S E,Chapin F S.The response of tundra plant biomass,aboveground production,nitrogen,and CO2flux to experimental warming [J].Ecology,1998,79(5):1526-1544.
[59]Torbert H A,Prior S A,Rogers H H,et al.Review of elevated atmospheric CO2effects on agro-ecosystems:residue decomposition processes and soil C storage[J].Plant and Soil,2000,224(1):59-73.
[60]Liu L,King J S,Booker F L,et al.Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2:a microcosm study[J].Global Change Biology,2009,15(2):441-453.
[61]King J S,Pregitzer K S,Zak D R,et al.Correlation of foliage and litter chemistry of sugar maple,Acer saccharum,as affected by elevated CO2and varying N availability,and effects on decomposition[J].Oikos,2001,94(3):403-416.
[62]Booker F L,Prior S A,Torbert H A,et al.Decomposition of soybean grown under elevated concentrations of CO2and O3[J].Global Change Biology,2005,11(4):685-698.
[63]Whipps J M.Environmental-factors affecting the loss of carbon from the roots of wheat and barley seedlings[J].Journal of Experimental Botany,1984,35:767-773.
[64]Meharg A A,Killham K.Distribution of assimilated carbon within the plant and rhizosphere ofLolium Perenne influence of termperature[J].Soil Biology and Biochemistry,1989,21(4):487-489.
[65]Jones D L,Darrah P R.Response of organic componds by roots of Zea mays L and its consequence in the rhizosphere.2.experimental and model evidence for simultaneous exduation and reosption of soluble C componds[J].Plant and Soil,1993,153:47-59.
[66]Meharg A A,Killham K.Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms[J].Plant and Soil,1995,170(2):345-349.
[67]Dixon R K,Turner D P.The global carbon cycle and climate change:responses and feedbacks from below-ground systems[J].Environmental Pollution,1991,73(3-4):245-262.
[68]Perry D A,Borchers J G,Turner D P,et al.Biological feedbacks to climate change terrstrial ecosystems as sinks and sources of carbon and nitrogen[J].Northwest Environmental Journal,1991,7:203-232.
[69]Drigo B,Van Veen J A,Kowalchuk G A.Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2[J].The ISME Journal,2009,3(10):1204-1217.
[70]Pritchard S G.Soil organisms and global climate change[J].Plant Pathology,2011,60(1):82-99.
[71]Klironomos J,Rillig M,Allen M,et al.Soil fungal arthropod responses toPopulus tremuloides grown under enriched atmospheric CO2under field conditions[J].Global Change Biology,1997,3(6):473-478.
[72]Rillig M C,Allen M F,Klironomos J N,et al.Plant species-specific changes in root-inhabiting fungi in a California annual grassland:responses to elevated CO2and nutrients[J].Oecologia,1998,113(2):252-259.
[73]Carney K M,Hungate B A,Drake B G,et al.Altered soil microbial community at elevated CO2leads to loss of soil carbon[J].Proceedings of the National Academy of Sciences,2007,104(12):4990-4995.
[74]Janus L R,Angeloni N L,McCormack J,et al.Elevated atmospheric CO2alters soil microbial communities associated with trembling aspen (Populus tremuloides)roots[J].Microbial Ecology,2005,50(1):102-109.
[75]Lipson D A,Wilson R F,Oechel W C.Effects of Elevated Atmospheric CO2on soil microbial biomass,activity,and diversity in a chaparral ecosystem[J].Applied and Environment Microbiology,2005,71:8573–8580.
[76]Drigo B,Pijl A S,Duyts H,et al.Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J].Proceedings of the National Academy of Sciences,2010,107(24):10938-10942.
[77]楊學明,張曉平,方華軍,等.20年來部分黑土耕層有機質和全氮含量的變化[J].地理科學,2004,24(6):710-714.
[78]Heilongjiang Province Bureau of Land Management.Soil of Heilongjiang Province[M].Beijing:Agriculture Press,1992.
[79]潘根興,趙其國.我國農(nóng)田土壤碳庫演變研究:全球變化和國家糧食安全[J].地球科學進展,2005,20(4):385-393.
Elevated Atmospheric CO2in Relation to Farmland Carbon Cycling
LI Yan-sheng,WANG Guang-h(huán)ua,JIN Jian
(Key Laboratory of Mollisols Agroecology,Northeast Institute of Geography and Agroecology,CAS,Harbin 150081,China)
Soil is the largest carbon(C)pool in terrestrial ecosystems.Elevated atmospheric CO2(eCO2)influences the stability of this C pool via the plant-soil-microbe interaction.Many plant species exhibit significant increase of growth in response to eCO2,which is likely to alter organic carbon input to the soil.The community structure and function of soil microorganisms may also change under eCO2and probably have substantial influence on carbon cycling in terrestrial ecosystems as these microorganisms are subjected to be involved in the transformation of soil carbon.This paper summarized the effect of eCO2on soil carbon cycle,which included the root growth of crops in response to eCO2,and quantitative and qualitative alternations on the photosynthates input to the soil under eCO2.The feedback mechanisms of soil carbon pool in response to eCO2were also addressed in the perspective of soil microorganisms.It is proposed that the soil microbial community should be further investigated in order to better understand the relationship between soil carbon and atmospheric CO2.Thus,the mechanism of soil microorganisms being involved in the turnover of soil organ carbon is essential to clarify the pattern of carbon cycling in arable soils under global climate change.
atmospheric CO2;photosynthetic carbon;microbial community and function;carbon cycle;soil organic matter
S154.3
A
10.11689/j.issn.2095-2961.2015.01.003
2095-2961(2015)01-0019-08
2014-10-16;
2014-12-15.
國家自然科學基金 (41271261);中科院重點部署項目 (KZZD-EW-TZ-16-01);中科院百人計劃項目.
李彥生 (1983-),男,吉林長春人,博士,助理研究員,研究方向為作物生理生態(tài).
金劍 (1974-),男,黑龍江方正人,博士,研究員,研究方向為根際微生態(tài).