• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銨根離子在水溶液中的跳躍轉(zhuǎn)動(dòng)機(jī)理

    2015-09-03 07:45:59趙東霞
    物理化學(xué)學(xué)報(bào) 2015年8期
    關(guān)鍵詞:化學(xué)系水溶液氫鍵

    張 強(qiáng) 程 程 張 霞 趙東霞

    (1渤海大學(xué)化學(xué)系,遼寧 錦州 121000; 2遼寧師范大學(xué)化學(xué)系,遼寧 大連 116029)

    銨根離子在水溶液中的跳躍轉(zhuǎn)動(dòng)機(jī)理

    張 強(qiáng)1,*程 程1張 霞1趙東霞2

    (1渤海大學(xué)化學(xué)系,遼寧 錦州 121000;2遼寧師范大學(xué)化學(xué)系,遼寧 大連 116029)

    銨根離子的動(dòng)力學(xué)行為與生命體內(nèi)的生物和化學(xué)過程密切相關(guān).依據(jù)流體力學(xué)理論,由于銨根離子與水分子之間存在多個(gè)強(qiáng)氫鍵,其轉(zhuǎn)動(dòng)應(yīng)較慢,但實(shí)驗(yàn)結(jié)果并非如此,其轉(zhuǎn)動(dòng)的微觀機(jī)理尚不清晰.本文分子動(dòng)力學(xué)模擬研究表明,水溶液中銨根離子主要以快速、大角度的跳躍方式進(jìn)行轉(zhuǎn)動(dòng),像水分子一樣遵從擴(kuò)展分子跳躍轉(zhuǎn)動(dòng)模型.通過微觀轉(zhuǎn)動(dòng)模式的分解和兩種轉(zhuǎn)動(dòng)弛豫時(shí)間的比較發(fā)現(xiàn),相對(duì)其氫鍵骨架的擴(kuò)散轉(zhuǎn)動(dòng),跳躍轉(zhuǎn)動(dòng)對(duì)其轉(zhuǎn)動(dòng)速率貢獻(xiàn)更大,并隨濃度增大不斷強(qiáng)化.與水分子氫鍵交換方式相比,銨根離子更傾向于在非氫鍵相連的水分子間發(fā)生交換.

    銨根離子; 跳躍轉(zhuǎn)動(dòng); 氫鍵; 分子動(dòng)力學(xué)模擬; 擴(kuò)展跳躍模型

    1 Introduction

    Ions have significant impact on the structures and dynamics of water in aqueous solution,which have been extensively explored by the experimental and theoretical methods.1–10The rel-evant phenomena are brought into sharp focus in recent years,such as ion pairing5,6and ion specific effect on the biological systems.1,7–9In recent years,the ion disturbance on the motion of the water molecules has been extensively explored by the modern spectroscopy techniques3,4,10–13and the theoretical methods.14,15But the dynamic properties of ion itself in aqueous solutions are not well addressed at the microscopic level,for example ammonium ion.

    The dynamics of ammonium ion and ammonium moieties plays an important role in the chemical,environmental,and biological processes.16–18Ammonium transport across the membranes is a crucial life-process for growth of plants,fungi,and bacteria.The transport mechanism of ammonium ion and ammonia in the protein channels of the ubiquitous ammonium transporter/methylamine permease/rhesus(Amt/MEP/Rh) family is far from understood.18The previous measurements of the nuclear magnetic resonance(NMR) suggested that the observed solvent dependence of the rotational mobility of ammonium ion showed a poor correlation with the hydrodynamic Stokes-Einstein-Debye(SED) model.19–23There is stronger short-range friction between ammonium ion and water due to the multiple strong hydrogen bonds(HBs) than that between ammonium ion and methanol.However,rotates rather fast in aqueous solutions comparing to that in other solvents such as methanol.This is unexpected for the hydrodynamic theories.The further simulations with the classical,non-additive,and electronic structure methods show that a discontinuous jump rotation possibly contributes to this unexpected fast rotation in aqueous solution.23–31However,the rotational mechanism of ammonium ion at the molecular level,is not well clarified intuitively and quantitatively until now.

    The extended jump model(EJM) developed from Ivanov jump model,32,33shows that the rotation of water in aqueous solutions is determined by a large-amplitude angular jump and a less significant diffusive “frame diffusion”.14,15,32,33It has been applied to explore the rotational mechanism of water in the electrolyte solutions and on the hydrophobic interfaces combined with infrared(IR) spectroscopy and molecular dynamics simulations.32

    In this work,the fast rotation ofin previous experiments was also observed in our simulations.The rotation of ammonium ion in NH4Cl aqueous solutions also follows the EJM like water molecule.It is mainly due to the large-amplitude angular jump during the HB switching processes offrom one acceptor to another in aqueous solutions.Two characteristic jump angles observed in our simulations are 50° and 65° for water and ammonium ion,respectively.Water prefers the former over the later,but conversely for ammonium ion.

    2 Methods

    2.1 Rotational correlation function

    The rotational correlation function,C2(t),of water along OH bond vector oralong NH bond vector,u,can be expressed as:

    where P2is the second-rank Legendre polynomial.C2(t) is usually employed to obtain the rotational relaxation time in simulations,which corresponds to the NMR and the ultrafast IR spectrum measurements.32The rotational correlation functions can be decomposed into two sub-processes(Fig.1),a short-time libration and a long-time rotational relaxation.The rotational relaxation times of two processes can be approximately obtained by fitting the following function:

    where A is a prefactor of the exponential functions.τ1is the librational time.τ2is the rotational relaxation time related to the measurements of the ultrafast IR spectrum.4,12,13,32The integration value of C2(t) within a long-time window is usually used for the rotational relaxation time by NMR measurements.The parameters in Eq.(2),τ1and τ2were determined from a fit of equation(2) within 0–8 ps as previous works.4,12,13,32

    Fig.1 Rotation correlation functions(C(t)),the HB correlation functions(1―CW-W(t)) and the rotation correlation functions of HB frame(Cf(t)) of the water and ammonium for the HB exchange between water molecules in NH4Cl solution at 0.5 mol·L–1

    2.2 Extended jump model

    The jump rotation of water or ammonium is triggered by the HB switching from initial HB acceptor to a new one(Fig.2).32Before a HB exchange(t < 0 for the time window of the HB exchange process),O*H*or N*H*rotates diffusively with its HB frame axis of O*···Oaor N*···Oa.The average direction is assumed to be the same as the frame axis,neglecting the libra-tion of O*H*or N*H*in local HB frame axis.When a new HB acceptor is available,a fast HB switching happens.H*jumps from initial acceptor to a new one within the local frame of OaO*Obor OaN*Ob(Fig.2,Oaand Ob:the HB initial and final acceptors(oxygen atoms of water);H*:the HB donating hydrogen).When a new HB forms,the time window of the HB exchange process takes at t > 0.The middle time between the ending moment of old HB and the beginning time of new HB,is taken as the time origin(t=0) within the HB exchange process.The jump angle φ is the angle between initial HB frame vector and the new HB frame vector at t=0(Fig.2).

    Fig.2 Definitions of the geometric variables along the HB exchange path

    Based on the assumptions above,the rotational correlation function of molecule along the vector u(O*H*and N*H*bond vectors for water and ammonium ion,respectively),C2(t),can be further decomposed into two sub-processes after an initial fast libration decay(Fig.2):32(1) a sudden large-amplitude angular jump rotation of uv(uvis the O*H*or N*H*bond vector within the local HB frame uf,which is the O*···Oaor N*···Oavector of HB pair) and(2) a slow diffusive rotation of the frame vector uf.The correlation functions of two sub-processes(a jump rotational correlation function CJ(t) and a frame rotational correlation function Cf(t)) are both assumed to be exponential.

    In NH4Cl aqueous solutions,the possible HB donors are the hydrogen atoms of water and.The possible HB acceptors are the water oxygen and chloride ion.Four HB exchange processes can be defined according to the types of initial and final HB acceptors:from water to water(W-W),from water to Cl–(W-Cl),from Cl–to water(Cl-W),and from Cl–to Cl–(Cl-Cl).The HB exchange can be traced along the trajectories of simuθH*O*Ob< 30° for water-water HB as previous work,32RO*Oalations,if the HB criteria are defined.The HB criteria:RO*Oa(RO*Ob) < 0.350 nm,RH*Oa(RH*Ob) < 0.245 nm and the HB angle(RO*Ob) < 0.345 nm,RH*Oa(RH*Oa) < 0.235 nm and the angle θH*O*Ob< 30° for the-water HB according to the radial distribution functions.34Rijis the distance between two atoms i and j of two HB connected molecules.θH*O*Obis the angle between the vectors O*H*and O*Ob.

    For a HB exchange of O*H*or N*H*from initial acceptor i to new acceptor j(Fig.2),the rotational relaxation time τi-jaccording to Eq.(3),can be written as

    Ai-jandare the fraction and the rotational time of O*H*or N*H*with an initial acceptor i and a final acceptor j.

    According to the Ivanov model,33the jump rotational relaxation timeis derived from

    fi-j(φi-j) is a function of jump angle φi-jdefined in Fig.2.φi-jis the average value of jump angle during the HB exchange from initial HB acceptor i to final acceptor j.The jump angle has a unsymmetrical distribution around the average value,32so a numerical integration value Fi-j(φ) over φi-jfrom 0 to π,is adopted in this work instead of the average value in previous work,32

    P(φi–j) is the possibility of the HB exchange from i to j with jump angle φ.32

    2.3 Simulation protocol

    The cubic bulks were constructed for pure water and NH4Cl aqueous solutions by inserting the water and ions into the empty box randomly,then the simulations were performed.2000 waters were filled into each sample box,thenand Cl–were inserted into the box until the concentration of solution is approximately equal to 0.5,1,2,and 5 mol·L–1.The SPC/E water model35was used and ammonium force field was taken from the previous publication by Jungwirth and his workfellows(Model I).34In their work,the properties,such as the solvation structures,ion clustering tendency in ammonium halide aqueous solutions,were well presented with the current combined potentials in this work.34Another force field of ammonium(Model II)26was used to explore the effect of force field in simulations on the rotation of ammonium ion.The jump behaviors of ammonium ion and water are similar for two models(see Section 3.1).A little shorter HB relaxation time is observed for Model II than that for Model I.Additionally,previous work suggests that a classical force field is sufficient for the jump rotation behavior of water.14The jump rotation was also found in ab initio simulations.28,29The quantum effect on the rotation of ammonium ion should be further discussed,but the rotational mechanism of ammonium ion is expected to be not changed.

    The bond lengths and angles of water andwere fixed at the equilibrium values by the SHAKE algorithm.36The Lorentz-Berthelot combination rules37were used for the Lennard-Jones interactions.For each sample,a 2 ns isothermal-isobaric ensemble(NPT) equilibration simulation was carried out to generate the proper size of the simulation box,followed by a 2 ns microcanonical ensemble(NVE) simulation to calculate the dynamic properties.For each NPT simulation,the bulk systems were weakly coupled to a bath with the Nose-Hoover thermostats38,39at the goal temperature with the relaxation time of 0.1 ps.The weak coupling Berendsen scheme was used to control the system pressure at 1.01×105Pa with the coupling time constant of 1 ps.40The equations of motion were integrated using the velocity Verlet integration scheme37and a time step of 2 fs.The long-range Coulombic forces were calculated using the particle-mesh Ewald method.41The non-bonded van der Waals interactions were truncated at 1.2 nm using the switching functions.Minimum image conditions were used.37The simulation configures were saved every 20 fs.All simulations were performed with the Tinker simulation code.42

    3 Results and discussion

    3.1 Jump rotation of

    The rotational diffusion constant DRcan be derived from the mean square displacements(MSDs) of the labeled molecule or ion in the solutions,according to the Einstein relation,43

    According to the ideal diffusive fluid model,44the nth-rank rotational time of() along the NH vector would satisfy the relationship with the rotational diffusion constant DR,The ratios τ1/τ2and τ1/τ3should be equal to the constant values,3 and 6.However they are only 1.97 and 2.71 at 0.50 mol·L–1,which is much lower than the ideal constants.The similar case is also found for water with the values of 1.97 and 2.78.The rotation ofapparently does not follow the diffusive Brownian motion picture.44,45

    Does ammonium ion also follow the EJM like water?32,33An instantaneous and large-amplitude angular jump of water is motivated by the HB exchanges.The HB exchange can be considered as a chemical reaction from the reactant state O*H*···Oato the product state O*H*···Ob.This process passes through an dangling or bifurcated HB state of O*H*,which is a transition state with a very short lifetime,much shorter than the stable single HB reactant and product states.32,33Indeed in the NH4Cl solution at 1 mol·L–1,a very fast decay of the HB state correlation function to the value below 0.1 is observed within 0.1 ps for ammonium ion hydrogen with the dangling,and bifurcated HBs comparing to the single HB state(Fig.3).The lifetime ofhydrogen with dangling HB state and bifurcated HBs is evidently shorter than those of water correspondingly.The facts above suggest that a transition state passes during the HB exchanges of ammonium ion like water molecule.

    For ammonium ion,we can construct a similar HB exchange reaction system as water molecule.This exchange reaction systemis made of three molecules(ammonium ion,its initial and final HB acceptors).The configurations of remaining water molecules and ions in bulk solution are considered as the average background effect.The reaction coordinates of the HB exchange(Fig.2),which are the distance between N*and Oa(RN*Oa),the distance between N*and Ob(RN*Oa) and the angle(θ) between the N*H*bond and bisector plane of OaN*Ob,are analyzed from more than 250000 successful HB exchanging events.A·mong the possible HB exchanges in NH4Cl solution at 0.5 molL–1,the fraction of W-W HB exchange of N*H*(Fig.1) has the highest value,0.93(the definitions of HB exchange type in method part).

    Fig.3 HB state correlation functions of the hydrogen atom of water and

    Fig.4 Reaction coordinates Rij,θ,and φalong the path of the W-W HB exchange of ammonium ion and water

    Fig.5 Jump angle populations of W-W HB switching for water and ion

    An intuitive picture is presented in Fig.4 for the HB exchange reaction of ammonium.The departure of initial acceptor Oaand the arrival of new acceptor Obtake place cooperatively during the HB exchange process.A sudden and largeamplitude angular rotation of N*H*within the local HB frame of OaN*Obis observed at t=0.It is reasonable to assume that the local HB frame of OaN*Obdoes not change during the transient jump rotation of N*H*.32This is suggested by the value ofφ(definition in Fig.2),which nearly does not change during the W-W HB exchange(Fig.4).Jump angle populations of water andN H+4are shown in Fig.5.For water,a main peak locates at 50° and a shoulder peak at 65°.However,only one peak is visible at 65° for the jump angle of N H+4.The jump angle distribution of N H+4is almost symmetrical around the average value.The different features for the jump angles of water andNH+4suggest that the configurations at the transition state(t=0) are different.RN*Oaand RN*Obare not sensitive to the configuration of the transition state due to the strong HB interaction,so the jump angle is mainly determined by the distance(ROaOb) of HB acceptors,Oaand Ob.The possibility of jump angle at about 500 is much lower for ammonium ion than that for water,if a hydrogen bond is formed between the initial HB acceptor water and final HB acceptor water.The distances of N*···Oa,N*···Ob,and Oa···Ob,are about 0.31,0.31,and 0.28 nm for N*H*(Figs.2 and 4).The average jump angle at 65° is identified for both waterand ammonium ion for the HB exchange event without hydrogen bond between two HB acceptor water molecules at the transition 46 state.The distances of N*···Oa,N*···Ob,and Oa···Obare about 0.31,0.31,and 0.35 nm for anmonium ion,about 0.33,0.33,and 0.38 nm for the water.The possibility of the HB exchange between two HB water molecules without formation of HB each other,is higher for ammonium ion than that for water.This is mainly due to less available new HB acceptor around N*H*than O*H*.

    3.2 Contributions from the jump and frame rotations

    The rotational relaxation times of water and ammonium directly from equations(1,2) and from the EJM with equations(3)–(5),are presented in Fig.6.The tendency of the rotational relaxation times with concentration is well reproduced by the EJM.The rotational relaxation times are a little underestimated by the EJM relative to the direct measurements.The results from EJM suggest that the water rotation along the OH vector can be divided into two sub-processes.One is the large-amplitude and fast jump rotation.The other is the diffusive rotation of HB frame O*Oa.In NH4Cl solution at the lowest concentration(0.5 mol·L–1) of the samples in this work,the jump rotational times of water and ammonium ion are 3.81 and 4.57 ps,respectively.Their frame rotational times are 5.96 and 9.30 ps,respectively.The jump and diffusive rotational times rise to 7.30 and 18.59 ps at 5 mol·L–1.The contribution from the jump rotation to the rotational mobility of ammonium increases with concentration.The rotation time of ammonium ion and water is mainly determined by the jump rotation over the whole range of concentration.

    As for the underestimation of the EJM,this is mainly due to the invalidation of its assumption and its intrinsic limitation.For the jump rotation,the average direction used in the EJM is assumed to be the same as the frame vector,neglecting the libration of O*H*or N*H*in local HB frame.The jump rotation term in fact covers a part of fast libration contribution in its long-time rotation contribution in equation(2).Additionally,the EJM does not consider the rotations of ammonium and water in local basins suggested in reference.50The fast HB exchange in local basin has bigger contribution on the fast decay of the rotational correlation function than the long-time decay.47A faster jump rotation is expected for the EJM,given its intrinsic limitations above.

    Fig.6 Rotational relaxation times of water and ammonium

    4 Conclusions

    The rotational mechanism of ammonium ion is explored by MD simulations and the extended jump model.The fast rotation of N H+4observed in previous experiments is due to the sudden jump rotation.The jump rotation of N H+4is motivated by the HB exchanges.The rotational behavior can be approximately described with the EJM like water in aqueous solutions.The rotational correlation function can be decomposed into a jump rotation and a diffuse rotation of HB frame based on the EJM.The contribution from the fast jump rotation is bigger than the diffusive part.The jump rotation becomes more and more important with concentration.Comparing to the HB exchange of water,the HB exchange of ammonium ion between two water molecules forming HB each other has a lower possibility than water.

    (1)Nostro,P.L.;Ninham,B.W.Chem.Rev.2012,112,2286.doi:10.1021/cr200271j

    (2)Marcus,Y.Chem.Rev.2009,109,1346.doi:10.1021/cr8003828

    (3)Ohtaki,H.;Radnai,T.Chem.Rev.1993,93,1157.doi:10.1021/cr00019a014

    (4)(a) Bakker,H.J.;Skinner,J.L.Chem.Rev.2010,110,1498.doi:10.1021/cr9001879(b) Bakker,H.J.Chem.Rev.2008,108,1456

    (5)Marcus,Y.;Hefter,G.Chem.Rev.2006,106,4585.doi:10.1021/cr040087x

    (6)Collins,K.D.Biophys.J.1997,72,65.doi:10.1016/S0006-3495(97)78647-8

    (7)Mason,P.E.;Dempsey,C.E.;Vrbka,L.;Heyda,J.;Brady,J.W.;Jungwirth,P.J.Phys.Chem.B 2009,113,3227.

    (8)(a) Yang,L.J.;Fan,Y.B.;Gao,Y.Q.J.Phys.Chem.B 2011,115,12456.doi:10.1021/jp207652h(b) Zhang,Q.;Xie,W.;Bian,H.;Gao,Y.Q.;Zheng,J.;Zhuang,W.J.Phys.Chem.B 2013,117,2992.

    (9)Hofmeister,F.Arch.Exp.Pathol.Pharmakol.1888,24,247.doi:10.1016/j.orgel.2008.12.008

    (10)Heisler,I.A.;Mazur,K.;Meech,S.R.J.Phys.Chem.B 2011,115,1863.doi:10.1007/BF01918191

    (11)Engel,G.;Hertz,H.G.Ber.Bunsen.-Ges.Phys.Chem.1968,72,808.doi:10.1021/j100849a009

    (12)Park,S.;Fayer,M.D.Proc.Natl.Acad.Sci.U.S.A.2007,104,16731.doi:10.1073/pnas.0707824104

    (13)Roberts,S.T.;Ramasesha,K.;Tokmakoff,A.Accoutns Chem.Res.2009,42,1239.doi:10.1021/ar900088g

    (14)Laage,D.;Hynes,J.T.Proc.Natl.Acad.Sci.U.S.A.2007,104,11167.doi:10.1073/pnas.0701699104

    (15)Stirnemann,G.;Wernersson,E.;Jungwirth,P.;Laage,D.J.Am.Chem.Soc.2013,135,11824.doi:10.1021/ja405201s

    (16)Moberg,R.;Bokman,F.;Bohman,O.;Siegbahn,H.O.G.J.Am.Chem.Soc.1991,113,3663.doi:10.1021/ja00010a005

    (17)Anderson,T.L.;Charlson,A.J.;Schwartz,S.E.;Knutti,R.;Boucher,O.;Rodhe,H.;Heintzenberg,J.Science 2003,300,1103.doi:10.1126/science.1084777

    (18)(a) Mason,P.E.;Heyda,J.;Fischer,H.E.;Jungwirth,P.J.Phys.Chem.B 2010,114,13853.doi:10.1021/jp104840g(b) Wang,S.;Orabi,E.A.;Baday,S.;Berne`che,S.;Lamoureux,G.J.Am.Chem.Soc.2012,134,10419.(c) Baday,S.;Wang,S.;Lamoureux,G.;Bernèche,S.Biochemistry 2013,52,7091.

    (19)Perrin,C.L.;Gipe,R.K.J.Am.Chem.Soc.1986,108,1088.doi:10.1021/ja00265a044

    (20)Perrin C.L.;Gipe,R.K.Science 1987,238,1393.doi:10.1126/science.238.4832.1393

    (21)Masuda,Y.J.Phys.Chem.A 2001,105,2989.doi:10.1021/jp003300b

    (22)Einstein,A.Investigations on the Theory of the Brownian Motion;Dover:New York,1956.

    (23)Karim,O.A.;Haymet,A.D.J.J.Chem.Phys.1990,93,5961.doi:10.1063/1.459479

    (24)(a) Chang,T.;Dang,L.X.J.Chem.Phys.2003,118,8813.(b) Dang,L.X.Chem.Phys.Lett.1993,213,541.

    (25)Szasz,G.;Riede,W.O.;Heinzinger,K.Z.Naturforsch.A 1979,34,1083.

    (26)Jorgensen,W.L.;Gao,J.J.Phys.Chem.1986,90,2174.doi:10.1021/j100401a037

    (27)Jensen,K.P.;Jorgensen,W.L.J.Chem.Theory Comput.2006,2,1499.

    (28)Bruge,F.;Bernasconi,M.;Parrinello,M.J.Am.Chem.Soc.1999,121,10883.doi:10.1021/ja990520y

    (29)Bruge,F.;Bernasconi,M.;Parrinello,M.J.Chem.Phys.1999,110,4734.doi:10.1063/1.478360

    (30)Kassab,E.;Evleth,E.M.;Hamou-Tahra,Z.D.J.Am.Chem.Soc.1990,112,103.doi:10.1021/ja00157a016

    (31)Babiaczyk,W.I.;Bonella,S.;Guidoni,L.;Ciccotti,G.J.Phys.Chem.B 2010,114,15018.doi:10.1021/jp106282w

    (32)(a) Laage,D.;Hynes,J.T.Science 2006,311,832.doi:10.1126/science.1122154(b) Laage,D.;Stirnemann,G.;Sterpone,F.;Hynes,J.T.Accoutns Chem.Res.2012,45,53.

    (33)Ivanov,E.N.Sov.Phys.JETP 1964,18,1041.

    (34)Heyda,J.;Lund,M.;On?ák,M.Slaví?ek,P.;Jungwirth,P.J.Phys.Chem.B 2010,114,10843.doi:10.1021/jp101393k

    (35)Berendsen,H.J.C.;Grigera,J.R.;Straatsma,T.P.J.Phys.Chem.1987,91,6269.doi:10.1021/j100308a038

    (36)Andersen,H.C.J.Comput.Phys.1983,52,24.doi:10.1016/0021-9991(83)90014-1

    (37)Allen,M.P.;Tildesley,D.J.Computer Simulation of Liquids;Clarendon Press:Oxford,1987.

    (38)Nosé,S.Mol.Phys.1984,52,255.doi:10.1080/00268978400101201

    (39)Hoover,W.G.Phys.Rev.A 1985,31,1695.doi:10.1103/PhysRevA.31.1695

    (40)Berendsen,H.J.C.;Postma,J.P.M.;van Gunsteren,W.F.;DiNola,A.;Hauk,J.R.J.Chem.Phys.1984,81,3684.doi:10.1063/1.448118

    (41)Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98,10089.doi:10.1063/1.464397

    (42)Ponder,J.W.;Richards,F.M.J.Comput.Chem.1987,8,1016.

    (43)Mazza,M.G.;Giovambattista,N.;Starr,F.W.;Stanley,H.E.;Phys.Rev.Lett.2006,96,057803.doi:10.1103/PhysRevLett.96.057803

    (44)Hansen,J.P.;McDonald,I.R.Theory of Simple Liquids;Academic:London,1986.

    (45)Zasetsky,A.Y.;Petelina,S.V.;Lyashchenko,A.K.;Lileev,A.S.J.Chem.Phys.2010,133,134502.doi:10.1063/1.3486174

    (46)(a) Zhang,X.;Zhang,Q.;Zhao,D.Acta Chim.Sin.2012,70,365.[張 霞,張 強(qiáng),趙東霞.化學(xué)學(xué)報(bào),2012,70,365.](b) Zhang,X.;Zhang,Q.;Zhao,D.X.Acta Phys.-Chim.Sin.2011,27,2547. [張 霞,張 強(qiáng),趙東霞.物理化學(xué)學(xué)報(bào),2011,27,2547.] doi:10.3866/PKU.WHXB20111107

    (47)Qvist,J.;Mattea,C.;Sunde,E.P.;Halleb,B.J.Chem.Phys.2012,136,204505.doi:10.1063/1.4720941

    Jump Rotational Mechanism of Ammonium Ion in Aqueous Solutions

    ZHANG Qiang1,*CHENG Cheng1ZHANG Xia1ZHAO Dong-Xia2
    (1Department of Chemistry,Bohai University,Jinzhou 121000,Liaoning Province,P.R.China;
    2Department of Chemistry,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    The dynamic behavior of the ammonium ion is closely related to the biological and chemical processes of life.A fast rotation ofin aqueous solution has been observed in previous experiments,which is unexpected from hydrodynamic theories because of the multiple strong hydrogen bonds(HBs) between ammonium ion and water.The mechanism behind this rotation is still not well understood.The simulations in this work show that a sudden and large-magnitude angular jump rotation occurs during the hydrogen bond exchange processes of the ammonium ion like water.The rotation of the ammonium ion can be approximately described with the extended jump model,and can be decomposed into two independent contributions∶ the jump rotation and the diffusive rotation of the HB frame.The rotational mobility of the ammonium ion is determined by fast jump rotation compared with the slow diffusive rotation.In addition,the contribution of the jump rotation increases with increasingconcentration.Compared with water,prefers to exchange its HB between two water molecules without forming a HB each other.

    Ammonium ion; Jump rotation; Hydrogen bond; Molecular dynamics simulation;Extended jump model

    April 17,2015;Revised:May 28,2015;Published on Web:June 1,2015.

    O641

    icle]

    10.3866/PKU.WHXB201506013 www.whxb.pku.edu.cn

    *Corresponding author.Email:zhangqiang@bhu.edu.cn.

    The project was supported by the Scientific Research Foundation for Returned Scholars,Ministry of Education of China(No.46) and National Natural Science Foundation of China(21473083).

    教育部留學(xué)回國(guó)人員科研啟動(dòng)基金(46批)和國(guó)家自然科學(xué)基金(21473083)資助項(xiàng)目? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    化學(xué)系水溶液氫鍵
    教材和高考中的氫鍵
    一種鎘基配位聚合物的合成及其對(duì)2,4,6-三硝基苯酚的熒光識(shí)別
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    DMAC水溶液乙酸吸附分離過程
    聚焦水溶液中的三大守恒關(guān)系
    TEA水溶液的流變性研究
    添加酸對(duì)HPP-SO2水溶液熱解吸的影響
    二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
    銥(Ⅲ)卟啉β-羥乙與基醛的碳?xì)滏I活化
    晚上一个人看的免费电影| 欧美老熟妇乱子伦牲交| 三上悠亚av全集在线观看| 亚洲av在线观看美女高潮| 国产深夜福利视频在线观看| 精品久久久噜噜| 午夜福利,免费看| 久久毛片免费看一区二区三区| 亚洲精品久久成人aⅴ小说 | 亚洲人成网站在线观看播放| 亚洲精品一区蜜桃| 国产伦精品一区二区三区视频9| 色94色欧美一区二区| 亚洲av二区三区四区| 熟女电影av网| 男人添女人高潮全过程视频| 欧美一级a爱片免费观看看| 欧美日本中文国产一区发布| 亚洲人成77777在线视频| 中文字幕人妻丝袜制服| 男的添女的下面高潮视频| 成人免费观看视频高清| 免费观看在线日韩| 欧美日韩一区二区视频在线观看视频在线| 精品熟女少妇av免费看| 国产成人精品久久久久久| 精品国产乱码久久久久久小说| 菩萨蛮人人尽说江南好唐韦庄| 777米奇影视久久| 亚洲欧洲国产日韩| 一级a做视频免费观看| 国产免费一区二区三区四区乱码| 曰老女人黄片| 秋霞在线观看毛片| 最近2019中文字幕mv第一页| 免费日韩欧美在线观看| 黑人欧美特级aaaaaa片| 日本色播在线视频| 最近的中文字幕免费完整| 男女国产视频网站| 成人国产麻豆网| 久久久国产精品麻豆| 男人添女人高潮全过程视频| 中文字幕亚洲精品专区| 欧美日韩亚洲高清精品| 另类精品久久| 99热这里只有是精品在线观看| videossex国产| 黄片播放在线免费| 色吧在线观看| 少妇丰满av| 各种免费的搞黄视频| 久久ye,这里只有精品| 99热网站在线观看| 日韩中文字幕视频在线看片| 亚洲国产av影院在线观看| 99久久中文字幕三级久久日本| 中国三级夫妇交换| 日日撸夜夜添| 国产男人的电影天堂91| 夫妻午夜视频| 天堂8中文在线网| 嫩草影院入口| 亚洲精品成人av观看孕妇| 99久久精品一区二区三区| 国产成人精品无人区| av又黄又爽大尺度在线免费看| 亚洲欧美清纯卡通| 一级毛片aaaaaa免费看小| 国产免费一级a男人的天堂| 国产一区亚洲一区在线观看| 一本一本综合久久| 久久久国产精品麻豆| 国产精品 国内视频| 国产国拍精品亚洲av在线观看| 夜夜骑夜夜射夜夜干| 国产亚洲精品第一综合不卡 | 色94色欧美一区二区| 少妇人妻 视频| 中文字幕av电影在线播放| 中文字幕制服av| 日韩,欧美,国产一区二区三区| 中文欧美无线码| 免费大片18禁| 午夜精品国产一区二区电影| 欧美日韩综合久久久久久| 国产成人91sexporn| 精品国产国语对白av| 精品人妻一区二区三区麻豆| 久久99一区二区三区| 国产男人的电影天堂91| 久久久久国产精品人妻一区二区| 亚洲欧美成人精品一区二区| 日本av免费视频播放| 视频中文字幕在线观看| 国产在线一区二区三区精| 免费高清在线观看日韩| 亚洲av男天堂| 2021少妇久久久久久久久久久| 国产精品麻豆人妻色哟哟久久| 精品熟女少妇av免费看| 一级片'在线观看视频| 国产精品久久久久久精品电影小说| 久久这里有精品视频免费| 国产黄色免费在线视频| 免费观看性生交大片5| 纯流量卡能插随身wifi吗| 女人久久www免费人成看片| 亚洲色图 男人天堂 中文字幕 | 日韩欧美精品免费久久| 高清在线视频一区二区三区| 色5月婷婷丁香| 国产在线视频一区二区| 国产精品一区二区三区四区免费观看| 久久女婷五月综合色啪小说| 久久久午夜欧美精品| 十分钟在线观看高清视频www| 五月玫瑰六月丁香| 一级二级三级毛片免费看| 成人无遮挡网站| 国产视频内射| 日韩视频在线欧美| 汤姆久久久久久久影院中文字幕| 91精品国产国语对白视频| 老熟女久久久| 成人毛片a级毛片在线播放| 97在线视频观看| 一边摸一边做爽爽视频免费| videosex国产| 亚洲美女视频黄频| 一级a做视频免费观看| 高清午夜精品一区二区三区| 精品熟女少妇av免费看| 欧美日韩精品成人综合77777| 97超视频在线观看视频| 亚洲成人手机| 久久精品国产亚洲av天美| 亚洲国产日韩一区二区| 免费人妻精品一区二区三区视频| 七月丁香在线播放| a级毛片免费高清观看在线播放| 午夜91福利影院| 婷婷成人精品国产| 久久久国产欧美日韩av| 不卡视频在线观看欧美| 伊人亚洲综合成人网| 午夜激情久久久久久久| 大片免费播放器 马上看| 夜夜骑夜夜射夜夜干| 国产精品偷伦视频观看了| 2018国产大陆天天弄谢| 久久人人爽人人爽人人片va| 欧美日韩国产mv在线观看视频| 日本黄色片子视频| 少妇的逼水好多| 大话2 男鬼变身卡| 国产欧美另类精品又又久久亚洲欧美| 五月伊人婷婷丁香| 亚洲精品久久久久久婷婷小说| 男女边吃奶边做爰视频| 欧美精品亚洲一区二区| 男人添女人高潮全过程视频| 99国产综合亚洲精品| 日韩av在线免费看完整版不卡| 最新中文字幕久久久久| 国产亚洲最大av| 国产精品99久久99久久久不卡 | 亚洲国产最新在线播放| 丝袜在线中文字幕| 亚洲精品一二三| 国产男女超爽视频在线观看| 中文天堂在线官网| 少妇人妻久久综合中文| 色视频在线一区二区三区| 亚洲欧美日韩另类电影网站| 丝袜喷水一区| 亚洲精品视频女| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 久久99蜜桃精品久久| 午夜福利视频精品| 午夜免费男女啪啪视频观看| 我的女老师完整版在线观看| 婷婷色av中文字幕| 亚洲精品aⅴ在线观看| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品久久久久久婷婷小说| 黄色毛片三级朝国网站| av线在线观看网站| 看十八女毛片水多多多| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 两个人免费观看高清视频| 最近中文字幕2019免费版| 少妇的逼好多水| a级毛色黄片| 看十八女毛片水多多多| 免费久久久久久久精品成人欧美视频 | 又大又黄又爽视频免费| 麻豆乱淫一区二区| 国产熟女欧美一区二区| av一本久久久久| 99热这里只有精品一区| 男女啪啪激烈高潮av片| 精品少妇久久久久久888优播| av在线app专区| 午夜日本视频在线| 一区二区三区乱码不卡18| 热99久久久久精品小说推荐| 26uuu在线亚洲综合色| 五月天丁香电影| 亚洲在久久综合| 国产成人免费观看mmmm| 特大巨黑吊av在线直播| 久久久亚洲精品成人影院| 亚洲精品久久午夜乱码| 日韩欧美一区视频在线观看| 日韩制服骚丝袜av| 久久99热6这里只有精品| 国产av精品麻豆| 中国国产av一级| 老女人水多毛片| 2022亚洲国产成人精品| 一本一本综合久久| 国产精品一区二区在线观看99| 高清av免费在线| 特大巨黑吊av在线直播| 超色免费av| 能在线免费看毛片的网站| 亚洲人成网站在线观看播放| 777米奇影视久久| 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 精品国产国语对白av| 亚洲精华国产精华液的使用体验| 久久人人爽人人爽人人片va| 午夜精品国产一区二区电影| 国产午夜精品久久久久久一区二区三区| 我要看黄色一级片免费的| 中国美白少妇内射xxxbb| 国产精品国产三级国产av玫瑰| 热re99久久精品国产66热6| 国产熟女欧美一区二区| 久久韩国三级中文字幕| 国产探花极品一区二区| 亚洲内射少妇av| 成年av动漫网址| 国产精品 国内视频| 一区二区三区免费毛片| 看免费成人av毛片| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久久久免| 免费人妻精品一区二区三区视频| 国产精品久久久久成人av| 国产精品99久久久久久久久| 九色成人免费人妻av| 中文字幕免费在线视频6| 国产永久视频网站| 国产精品久久久久成人av| 亚洲精品美女久久av网站| 国产精品三级大全| 午夜影院在线不卡| 视频区图区小说| 人妻系列 视频| 日本-黄色视频高清免费观看| 视频中文字幕在线观看| 国产精品不卡视频一区二区| √禁漫天堂资源中文www| 亚洲国产精品国产精品| 又大又黄又爽视频免费| 香蕉精品网在线| 22中文网久久字幕| 2021少妇久久久久久久久久久| 国产在线免费精品| 日韩成人av中文字幕在线观看| 美女中出高潮动态图| 搡女人真爽免费视频火全软件| 亚洲五月色婷婷综合| 制服丝袜香蕉在线| 美女内射精品一级片tv| 欧美激情极品国产一区二区三区 | 午夜激情福利司机影院| 永久免费av网站大全| 美女福利国产在线| 伊人久久精品亚洲午夜| 综合色丁香网| 久久毛片免费看一区二区三区| 各种免费的搞黄视频| 久久久久久人妻| 18在线观看网站| 亚洲av免费高清在线观看| 国产精品一区二区三区四区免费观看| 日韩成人av中文字幕在线观看| 久久久精品免费免费高清| 97超视频在线观看视频| 老女人水多毛片| 免费播放大片免费观看视频在线观看| 晚上一个人看的免费电影| 久久久午夜欧美精品| 亚洲精品日本国产第一区| 亚洲经典国产精华液单| 91精品国产国语对白视频| 国产成人一区二区在线| 中国国产av一级| 在线观看免费视频网站a站| 国产成人免费观看mmmm| av黄色大香蕉| 草草在线视频免费看| 热re99久久精品国产66热6| 日韩人妻高清精品专区| 亚洲国产精品成人久久小说| 狠狠婷婷综合久久久久久88av| 日日摸夜夜添夜夜爱| 午夜免费观看性视频| 日韩中字成人| 好男人视频免费观看在线| 亚洲第一av免费看| 免费观看av网站的网址| √禁漫天堂资源中文www| 欧美丝袜亚洲另类| 波野结衣二区三区在线| 一本色道久久久久久精品综合| 国产精品久久久久久精品电影小说| 欧美激情 高清一区二区三区| 少妇丰满av| 亚洲国产色片| 国产在线视频一区二区| 在线观看三级黄色| 国产亚洲精品第一综合不卡 | 久久国产亚洲av麻豆专区| 亚洲无线观看免费| 免费大片18禁| 久久精品国产亚洲av涩爱| 中国国产av一级| 两个人免费观看高清视频| 自拍欧美九色日韩亚洲蝌蚪91| 老女人水多毛片| 亚洲综合色惰| 国产亚洲av片在线观看秒播厂| 日本wwww免费看| 午夜精品国产一区二区电影| 日韩精品有码人妻一区| 18禁观看日本| 国产成人午夜福利电影在线观看| 国产视频首页在线观看| 在线播放无遮挡| 丰满乱子伦码专区| 久久久欧美国产精品| 国产精品欧美亚洲77777| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 新久久久久国产一级毛片| 亚洲国产av新网站| 国产在线一区二区三区精| 亚洲欧洲国产日韩| 伊人久久国产一区二区| 七月丁香在线播放| 少妇精品久久久久久久| 97超视频在线观看视频| 日韩视频在线欧美| 国产精品三级大全| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| 黄色欧美视频在线观看| 免费久久久久久久精品成人欧美视频 | 啦啦啦啦在线视频资源| 一区在线观看完整版| 久久久精品区二区三区| 国产精品成人在线| 亚洲精品中文字幕在线视频| 欧美bdsm另类| av线在线观看网站| 日韩大片免费观看网站| 黄色欧美视频在线观看| 欧美另类一区| 91精品一卡2卡3卡4卡| 青春草亚洲视频在线观看| 日韩成人伦理影院| 免费大片18禁| 国产在线免费精品| 王馨瑶露胸无遮挡在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产精品嫩草影院av在线观看| 国产免费福利视频在线观看| 熟女人妻精品中文字幕| 这个男人来自地球电影免费观看 | 国产伦精品一区二区三区视频9| 黑人巨大精品欧美一区二区蜜桃 | 丰满少妇做爰视频| 亚洲欧美一区二区三区黑人 | 成人无遮挡网站| 人体艺术视频欧美日本| 老司机影院成人| 在线看a的网站| 国产成人a∨麻豆精品| av视频免费观看在线观看| 国产免费现黄频在线看| 日韩一本色道免费dvd| 性色avwww在线观看| 伦理电影大哥的女人| 久久综合国产亚洲精品| 少妇的逼水好多| 一本—道久久a久久精品蜜桃钙片| 999精品在线视频| 欧美精品人与动牲交sv欧美| 99久国产av精品国产电影| 国产白丝娇喘喷水9色精品| xxxhd国产人妻xxx| 国产精品不卡视频一区二区| 国产精品欧美亚洲77777| 美女中出高潮动态图| 国产成人免费观看mmmm| 亚洲国产精品国产精品| 日韩中字成人| 国产乱来视频区| 人体艺术视频欧美日本| xxxhd国产人妻xxx| 亚洲欧美日韩另类电影网站| 久久人人爽人人片av| 看免费成人av毛片| 欧美另类一区| 久久久久久久国产电影| 日韩一本色道免费dvd| 91精品伊人久久大香线蕉| 国产精品人妻久久久久久| 777米奇影视久久| 亚洲图色成人| 制服诱惑二区| 午夜激情福利司机影院| 国产成人精品久久久久久| 午夜福利视频精品| 免费看光身美女| 在线观看免费高清a一片| 夫妻性生交免费视频一级片| 国产老妇伦熟女老妇高清| 亚洲精品乱码久久久久久按摩| 天堂俺去俺来也www色官网| 婷婷色综合大香蕉| 精品亚洲成a人片在线观看| 国产成人免费观看mmmm| 秋霞伦理黄片| 黄色怎么调成土黄色| 久久久国产精品麻豆| 欧美精品一区二区大全| 国产男女超爽视频在线观看| 观看美女的网站| 国产一区有黄有色的免费视频| 欧美日韩在线观看h| 99热全是精品| 亚洲精品亚洲一区二区| 丝袜脚勾引网站| 欧美精品人与动牲交sv欧美| 国产成人aa在线观看| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 全区人妻精品视频| 一区二区三区乱码不卡18| 免费高清在线观看日韩| 18禁在线无遮挡免费观看视频| 欧美激情极品国产一区二区三区 | 亚洲精品乱久久久久久| 十八禁高潮呻吟视频| 一区二区av电影网| 狠狠精品人妻久久久久久综合| 亚洲精品,欧美精品| 熟女人妻精品中文字幕| 制服丝袜香蕉在线| 一本久久精品| 一级毛片黄色毛片免费观看视频| 精品少妇内射三级| 老司机影院毛片| 午夜福利视频精品| 看十八女毛片水多多多| 校园人妻丝袜中文字幕| 国产成人午夜福利电影在线观看| 在线观看三级黄色| 精品亚洲成a人片在线观看| 又大又黄又爽视频免费| 欧美日韩亚洲高清精品| 国产一区二区三区av在线| 少妇熟女欧美另类| 日韩一本色道免费dvd| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 国产精品熟女久久久久浪| 亚洲精品自拍成人| 蜜桃久久精品国产亚洲av| 日韩三级伦理在线观看| 一级毛片aaaaaa免费看小| 国产亚洲欧美精品永久| 国产亚洲精品第一综合不卡 | 国产精品秋霞免费鲁丝片| 亚洲四区av| 大陆偷拍与自拍| 丝袜美足系列| 性高湖久久久久久久久免费观看| 久久久久人妻精品一区果冻| 亚洲丝袜综合中文字幕| 一边亲一边摸免费视频| 日韩 亚洲 欧美在线| 母亲3免费完整高清在线观看 | 日本av手机在线免费观看| 国产av精品麻豆| 狂野欧美白嫩少妇大欣赏| 欧美日韩成人在线一区二区| 在线免费观看不下载黄p国产| 人妻一区二区av| 中文欧美无线码| 麻豆乱淫一区二区| 国产永久视频网站| 亚洲欧美日韩另类电影网站| 一级,二级,三级黄色视频| 99热6这里只有精品| a级毛片在线看网站| 午夜老司机福利剧场| 国产精品一区二区在线观看99| 91久久精品国产一区二区成人| 国产探花极品一区二区| 美女xxoo啪啪120秒动态图| 两个人免费观看高清视频| 男女边吃奶边做爰视频| 精品人妻在线不人妻| 色哟哟·www| 少妇的逼水好多| 国产视频首页在线观看| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| h视频一区二区三区| 少妇的逼好多水| av专区在线播放| 激情五月婷婷亚洲| 考比视频在线观看| 搡老乐熟女国产| 高清视频免费观看一区二区| 观看美女的网站| 人妻制服诱惑在线中文字幕| 中文乱码字字幕精品一区二区三区| 哪个播放器可以免费观看大片| 日本欧美视频一区| 久久99热这里只频精品6学生| 欧美xxⅹ黑人| 欧美 日韩 精品 国产| 国产成人精品婷婷| 少妇高潮的动态图| 狂野欧美激情性bbbbbb| 亚洲伊人久久精品综合| a级片在线免费高清观看视频| 久久午夜福利片| 亚洲精品日韩在线中文字幕| 新久久久久国产一级毛片| 成人18禁高潮啪啪吃奶动态图 | 日韩三级伦理在线观看| 十八禁网站网址无遮挡| 成年人午夜在线观看视频| 欧美人与性动交α欧美精品济南到 | 精品久久蜜臀av无| 亚洲精品美女久久av网站| 成年人午夜在线观看视频| 精品国产乱码久久久久久小说| 日韩一区二区视频免费看| 国产成人a∨麻豆精品| 视频在线观看一区二区三区| 新久久久久国产一级毛片| 亚洲情色 制服丝袜| 天堂中文最新版在线下载| 国产精品久久久久久久久免| 有码 亚洲区| 久久精品人人爽人人爽视色| 韩国av在线不卡| 亚洲av.av天堂| 亚洲性久久影院| 国产精品嫩草影院av在线观看| 日韩中字成人| 成人午夜精彩视频在线观看| 99久久综合免费| 久久99精品国语久久久| 午夜福利视频在线观看免费| 国产综合精华液| 久久99一区二区三区| 久久久久久人妻| av天堂久久9| 成年美女黄网站色视频大全免费 | xxx大片免费视频| 国产精品一区二区三区四区免费观看| 一区二区三区乱码不卡18| 久久久亚洲精品成人影院| 欧美3d第一页| 菩萨蛮人人尽说江南好唐韦庄| 免费少妇av软件| 美女xxoo啪啪120秒动态图| 亚洲经典国产精华液单| 国产老妇伦熟女老妇高清| 只有这里有精品99| 欧美日韩亚洲高清精品| 亚洲精品乱久久久久久| 免费大片黄手机在线观看| 水蜜桃什么品种好| 成人国产av品久久久| 男女高潮啪啪啪动态图| 女人久久www免费人成看片| 午夜福利影视在线免费观看| 永久免费av网站大全| 亚洲精品中文字幕在线视频| 一级毛片 在线播放| 热99久久久久精品小说推荐| 卡戴珊不雅视频在线播放| 在线看a的网站| 婷婷色av中文字幕| 国产精品国产三级国产av玫瑰| 国产精品人妻久久久久久| 免费观看无遮挡的男女| 免费观看在线日韩| 少妇熟女欧美另类| 欧美日韩精品成人综合77777| 91成人精品电影|