• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project

    2015-09-03 07:29:29YuZhangWeiyaXuJianfuShaoHaiinZhaoWeiWangaCollegeofPipelineandCivilEngineeringChinaUniversityofPetroleumQingdao266555PRChinaGeotehnialResearhInstituteHohaiUniversityNanjing210098PRChinaHunanProvinialKeyLaoratoryofKeyTehno
    Water Science and Engineering 2015年1期

    Yu Zhang*,Wei-ya Xu,Jian-fu Shao,Hai-in Zhao,WeiWangaCollege of Pipeline and Civil Engineering,China University of Petroleum,Qingdao 266555,PRChinaGeotehnial Researh Institute,HohaiUniversity,Nanjing 210098,PRChinaHunan Provinial Key Laoratory of Key Tehnology on Hydropower Development,Changsha 410014,PRChina Reeived 10 April 2014;aepted 2 Deemer 2014Availale online 21 January 2015

    ?

    Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project

    Yu Zhanga,b,*,Wei-ya Xub,Jian-fu Shaob,Hai-bin Zhaoc,WeiWangbaCollege of Pipeline and Civil Engineering,China University of Petroleum,Qingdao 266555,PRChinabGeotechnical Research Institute,HohaiUniversity,Nanjing 210098,PRChinacHunan Provincial Key Laboratory of Key Technology on Hydropower Development,Changsha 410014,PRChina Received 10 April 2014;accepted 2 December 2014
    Available online 21 January 2015

    Abstract

    There aremany fracture zones crossing the dam foundation of the X iangjiaba Hydropow er Project in southw estern China.Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties.In order to investigate the creep behavior of clastic rock,triaxial creep testsw ere conducted using a rock servo-controlling rheological testingmachine.The results show that the creep behavior of clastic rock issignificantatahigh levelof deviatoric stress,and less time-dependentdeformation occursathigh confining pressure.Based on the creep test results,the relationship between axialstrain and timeunder differentconfining pressureswas investigated,and the relationship between axial strain rate and deviatoric stresswas also discussed.The strain rate increases rapidly,and the rock sample failseventually underhigh deviatoric stress.Moreover,the creep failuremechanism under different confining pressureswas analyzed.Themain failuremechanism of clastic rock is p lastic shear,accompanied by a significant com pression and ductile dilatancy.On the other hand,w ith the determ ined parameters,the Burgers creepmodelw asused to fit the creep curves.The results indicate that the Burgersmodel can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project. ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Rock mechanics;Clastic rock;Creep behavior;Triaxial creep test;Burgers creep model;Xiangjiaba Hydropower Project

    1.Introduction

    The time-dependent(creep)behavior of rock refers to the continued deformation under the effects of constant stress,including deformations,slips,and failures(Sun,2007;M a,2004;Brantut et al.,2013).It is one of the most important m echanical properties of rockmaterial,and can be considered an importantbasis forexplaining and analyzing thephenomena of geological tectonic movement,as well as predicting longterm stability for rock engineering(Tsaietal.,2008;Yang and Jiang,2010;Zhang etal.,2013).Therefore,the time effectof geotechnical engineering stability is increasingly considered. Taking into accountdelayed deformations,it isconsidered that failure can take p lace over a large span of tim e in many geotechnical projects(Bayraktar et al.,2009;Yin et al.,2013;Yang et al.,2014).A lot of deformation failures and losses of stability in geotechnical projectsare not instancesof transient destruction,but develop over time(Dusseault and Fordham,1993;Boukharov etal.,1995;Dam janac and Fairhurst,2010). Deformation of thedam foundationsand abutmentscan last for severaldecades,and creep failureof rock tunnelscanoccurafter construction for several decades(Fan,1993;Gudmundsson etal.,2010;Zhang etal.,2012,2014b).Therefore,itisessential to study the creep propertiesof rocks.

    Laboratory testing is the most importantmethod of studying rock mechanical properties(Maranini and Brignoli,1999;Li and Xia,2000).It is also used to analyze rock creep constitutive relations and parameters meant to evaluate the long-term stability of rock engineering(Dahou et al.,1995;Pietruszczak et al.,2002;Barla et al.,2012).Many achievements in the experimental study of creep behavior of different types of rocks have been made in China and other countries. Based on a number of uniaxial and triaxial creep test results,the effects of confining pressure and axial pressure on the creep stress-strain behavior of salt rock were analyzed by Yang etal.(1999),and an exponential function was suggested tomodel the creep strain from transient to steady states.Carter etal.(1993)investigated the influence of temperature on creep behavior and found that the time-dependent properties of salt rock were strongly dependent on temperature.Chan et al.(1997)reported a large number of uniaxial and triaxial test resultsand analyzed the confining pressureeffectson the creep strain.Li et al.(2008)studied the relation of complete creep processesand triaxial stress-strain curves of rocks.Fabre and Pellet(2006)demonstrated the creep behavior of three kinds of rocks characterized by a high proportion of clay particles,and theviscosity of thesesedimentary rockswasstudied under different loading conditions.However,concerning thestudy of creepmechanical properties of rocks in some specific projects such as hydropower projects,little experimental data have been reported.

    There aremany existing large-scale hydropower projects in southwestern China,which create severe challenges for experiments and the theoretical and numerical research on the creep behavior of rocks and long-term stability of rock engineering.This study focused on the creep behavior of the clastic rock core from the Limeiwan fracture zone in the dam foundation of the Xiangjiaba Hydropower Project,which is located on the lower pool of the Jinsha River,at the border of Sichuan and Yunnan provinces.The dam is a concrete gravity dam w ith amaximum height of 161m and a length of 909m. The fracture zone crosses the dam foundation,and the area and thicknessof the fracture zone are relatively large(Fig.1). Clastic rock is themainmedia of the fracture zone and ithas poor physical and mechanical properties.The creep mechanical behavior of such rock has an important impact on the long-term stability of engineering structures and should be investigated carefully.This paper presents the results of triaxial creep tests on this clastic rock.Based on creep experim ents under different confining pressures,the creep constitutive relation and param eters have been determ ined.

    Fig.1.Xiangjiaba Hydropower Project and fracture zone in dam foundation.

    Fig.2.Geological distribution of clastic rock in Xiangjiaba Hydropower Project.

    2.Lithologic characteristics and experim ental p rogram

    2.1.Lithologic characteristics of rock samples

    The clastic rock materials were obtained from the T32-6sub-petrofabric in the fracture zone in cataclastic and clastic shapes(Fig.2).They were soft rocks w ith poor integrity,which were highly weathered and had the characteristics of low specific gravity,medium porosity,loose organizational structure,and high moisture content.The results of basic physical property tests showed that the averages of natural density and dry density were 2.375 g/cm3and 2.225 g/cm3,respectively.The averages of moisture content and porosity were 6.59%and 18.23%,respectively.Furthermore,the flow behavior showed that the permeability coefficient varied from 0.14×10-5to 16.3×10-5cm/s in the natural state,and its values were alm ost the sam e in the directions parallel and perpendicular to the bedding plane.In view of this,it can be concluded that at the sample scale,the rock wasmid-permeablew ith isotropic permeability(Zhang etal.,2014a).

    Opticalmicroscopic tests were performed to analyze the m icrostructure and mineral composition of the clastic rock(Fig.3).The results indicated that the clastic rock retained fine-grained texture w ith an extremely complex microstructure.Also,themainmineral composition consisted of quartz,chalcedony,feldspar(K-feldspar and plagioclase),sericite,chlorite,a small amount of iron com pounds,and tracem inerals.The trace minerals mainly included tourmaline,zircon,phosphorites,zoisite,and glauconite.The main chemical constituent was SiO2(accounting for 80.75%-83.52%),followed by Al2O3,and asmallamountofmixtureof Fe2O3,CaO,and MgO.

    2.2.Test equipment and procedure

    The experiments were performed w ith the rock servocontrolling rheological testingmachine(Zhang etal.,2014b). This equipment can be used to carry out conventional compression testsand rheological tests such asuniaxial creep tests and triaxial creep tests.The confining pressure ranged from 0 to 60 MPa,and themaximum deviatoric stress could reach 500MPa.Themulti-step loadingmethod wasadopted in axial loading,with steps ranged from 4 to 6.The temperature and hum idity were kept constant during all tests.The sam ples were standard cylindrical,50 mm in diameter and 100 mm in height.Due to the poor quality of some rock samples,extreme care was necessary in handling of the samples,and some special preparationswere required.For instance,the samples were stored with a sealing technique.Thesame testprocedures were described in Zhang et al.(2013).

    Fig.3.Opticalm icroscopic test results of clastic rock sample.

    Fig.4.Typical com pression stress-strain curves under different confining pressures.

    3.Behavior of conventional triaxial com pression tests

    In order to confirm multi-step stress levels of triaxial creep tests,conventional triaxial compression tests on clastic rock samples under the confining pressures of 1.0 MPa,1.5 MPa,and 2.0 MPa were carried out first.Typical conventional compression stress-strain curvesof the clastic rock are shown in Fig.4,whereσandεare the deviatoric stress and strain of rock,respectively,and mechanical parameters are listed in Table 1.The stress-strain curves show approximate plastic platforms when the strain exceeds a limit value.It is also worthwhile to point out that the samp le fails when the axial strain exceeds 5.0%,which ismuch larger than that for hard rock.We can conclude that the peak strength increases gradually with the confining pressure.It can be seen that the sample is not at an obvious stage of crack closure.

    In general,the response can be decomposed into four phases for all tests.During the initial loading,a quasi-linear and reversible stress-strain relation is obtained,indicating the elastic compressibility of the rock skeleton,and the elastic modulus can be determined from the slope of the stress-strain curve in this phase.W hen the stress reaches a certain value,called the yield stress,a nonlinear p lastic phase is observed,w ith significant increase of strain,and the slope of the curve decreases.Under different confining pressures,nonlinear behavior begins at axial strains of about 1.0%.With the incremental stress,a general strain-hardening phase is produced w ith the increase of the contact surface among grains.Followed by a large axial strain,the phase of plastic failure occurs,in which cracks coalesce.These phases are similar to plastic consolidation in soilmechanics.Due to the hardening behavior of stress-strain curves of the clastic rock,the deformationmodulus is slightly lower than the elasticmodulus.The deformation modulus of the rock sample has a close relation w ith the nonlinear deformation under prim ary loading.

    Table 1 Conventionalmechanical parameters of compression tests of clastic rock(MPa).

    4.Results of triaxial creep tests

    4.1.Analysis of creep strain

    Triaxial creep tests were performed at ambient temperatures of(20.0±1.5)°C.The confining pressures in the creep tests were the same as those in the conventional triaxial compression tests.Under the confining pressure of 1.0 MPa,the deviatoric stresses of 1.00,1.50,2.50,and 3.00 MPawereselected,while under the confining pressures of 1.5 and 2.0 MPa,the deviatoric stress was increased by 0.75 MPa per step from 1.00 to 4.75MPa until failure of laboratory samp les occurred.Ateach loading step,the deviatoric stresswas kept constant for a time interval ofmore than 48 h w ith the axial strain continuously recorded.

    The axial strain-time curves under different confining pressures are presented in Fig.5.Creep curves are smooth w ithout fluctuation,indicating that the creep strain has continuity over time.The resultsshow thatata low deviatoric stress level,the axial creep strain is unnoticeable,while the creep phenomenon of the clastic rock becom es significantw ith the increase of the deviatoric stress.The main feature associated w ith the failure is the high axial plastic strain as well as the high strain ratedue to long-term accumulation of creep effects. Therefore,no brittle damage is observed in the rock samples.

    As shown in Fig.5(a),under the confining pressure of 1.0 MPa,when the deviatoric stress is less than 2.5MPa,the creep strain is unnoticeable.When the deviatoric stress increases to 2.5 MPa,the increment of axial creep strain is 0.71%.W hen the deviatoric stress reaches 3.00MPa,the creep strain isgreater than at previous stress levels.After five hours of constant loading,the creep strain increases by 0.83%,and,eventually,the rock sample fails via the large creep strain.

    As shown in Fig.5(b),under the confining pressure of 2.0MPa,when the deviatoric stress is less than 3.25MPa,the creep strain is unnoticeable.When the deviatoric stress reaches 4.75 MPa,the creep strain increasesmore quickly than before.After three hours of constant loading,the creep strain increases by 0.82%,and the rock samp le fails eventually.In general,the confining pressure has a significant influence on the creep strain of rock samples.Under the same condition,the greater the confining pressure is,the lesser the corresponding creep strain w ill be.

    Fig.5.Relation between creep strain and time under different confining pressures.

    4.2.Analysis of creep strain rate

    It can be deduced from Fig.(5)that for a certain value of the deviatoric stress,the strain rate increases first and then gradually decreases to a constant value after a period of time. According to the evolution of the creep strain rate,the creep curve can be divided into transient and steady stages.The creep strain rate tends to be a value close to zero at low deviatoric stress.Athigh deviatoric stress,the evolution of the creep strain rate is similar to itsperformance at low deviatoric stress,but thevalue isgreater.Under the confining pressure of 2.00MPa,the creep strain rate tends to be a constant value of 0.8×10-3h-1ata deviatoric stressof 1.0MPa,and thevalue increases to 5.53×10-3h-1atadeviatoric stressof 4.00MPa. After the stressof 4.75MPa isapplied at the last loading step,the strain rate significantly increases until the rock sam ple fails,and the process lasts about three hours.Therefore,the strain rate increases w ith the deviatoric stress.

    4.3.Creep failuremode and mechanism

    The creep failure patterns under different confining pressuresare shown in Fig.6.Themain failuremechanism of the rock sample is plastic shear accompanied by a significant compression and ductile dilatancy.Sample failure is classically produced by the pore compression and crack coalescence.It can be said that the essential failure is the result of synthetic effects of the material defects,heterogeneity,and long-term accum ulation of m icrocrack dam age.Under time and loading effects,micromovement is caused by the crystal displacement and m ineral cleavage.Thus,the rock deformation includes the diffusion of lattice dislocations,crack expansion,and compatible deformation among grains.The rock has different scales of initialmicrodefects,such as fissures,joints,dislocations,etc.,which determine the macroscopic behavior of the rock.It is very easy form icrodefects to develop and dislocate between grains and cleavages under constant loading.Then,ductile deform ation accom panied by m oderate dilation or even com paction results in a number of smallmacrocracks on the sample surface.

    Fig.6.Typical creep failure patterns of clastic rock.

    Based on the m icroscale and m esoscale analyses,this section discusses the shapes of internal m icrodefects after creep failure.The sampleswere selected along the surface of the fracture zone in this study.From the scanning electron m icroscope(SEM)observations(Fig.7),itcan be seen that the m icroscopic failure patterns are slightly different under various confining pressures.There aremore grow ing cracks,and the fracture surface is coarsew ith lessmicro grainsunder low confining pressures.With the increase of the confining pressure,the porosity decreasesw ithmoremicro grainson the fracture surface.During the testing process,m icrofissure damage inside the rock sample continuously accumulates,and then,the cracks,originating from the defectsof initial internal voids,extend and interpenetrate,and eventually lead to the failure.

    Fig.7.SEM observations of rock samples after creep failure at magnification of 1000.

    5.Creep m odel and param eter identification

    The creep curves in Fig.5 show that the clastic rock sample experiences a transient creep stage and a steady creep stage under each step of loading,and the creep strain rate first increasesand then decreases toward a constantvalue.According to the creep behaviorshown by these curves,the Burgerscreep model,which can be regarded as the combination of the Maxwell m odel and Kelvin model,was chosen to describe those results(Fig.8).

    Fig.8.Illustration of Burgers creep model.

    The constitutive equation of the Burgers creepmodel isas follows:

    whereσM,εM,and˙εMare thedeviatoricstress,strain,and strain rate of the Maxwell body,respectively;σK,εK,and˙εKare the deviatoric stress,strain,and strain rate of the Kelvin body,respectively;EMandηMare the elastic modulus and viscosity coefficientof the Maxwellbody;and EKandηKare the elastic modulusand viscosity coefficientof the Kelvin body.

    Using the Laplace transform to solve Eq.(1),the corresponding creep constitutive equation can be expressed:

    The datameasured undermulti-step loading in the testwere processed using Boltzmann superposition(Zhang,2012).In order to determ ine creep m echanical parameters at different deviatoric stresses,an iteration procedure was used based on the Quasi-New ton searchmethod.The relevant parametersof the Burgerscreepmodelwere identified from data processing,as shown in Table 2,and the fitted curves could be obtained w ith the required precision.Through analysis of the obtained creep mechanical parameters(Table 2),it can be determ ined that the Burgersmodel parameters vary w ith the deviatoric stress and the time-dependent deformation of the clastic rock increases w ith the long-term constant deviatoric stress.

    Table 2 Creep parameters of clastic rock under different confining pressures.

    As shown in Table 2,under the confining pressures of 1.5 MPa and 2.0MPa,the elastic modulus EMis high at the first deviatoric stress.Then,EMgradually decreases w ith the increase of the deviatoric stress.The rock is linear elastic in this stage.W hen the deviatoric stress increases to a certain value,the rock sample enters the plastic phase and,at this stage,eventually fails.During this stage,EMshows a further decrease.Therefore,by analyzing the evolutions of EM,we observe that the degradation of the elastic modulus is decelerated w ith the increase of the deviatoric stress,and the value of EMvaries by a power function w ith the deviatoric stress during creep tests(Fig.9(a)).Because of the high heterogeneity of the rock sample,the evolution of the elasticmodulus is insignificant under the confining pressure of 1.0MPa.

    The viscosity coefficientηMcan reflect the variation of the strain rate of steady creep.Generally,the strain rateof thisstage isquasi-independentof the loading history and dependsonly on the currentstressstate(Yang etal.,1999).Asshown in Table2,ηMdemonstratesan overall increasing trendw ith thedeviatoric stress,indicating thatthestrain rateofsteady creep continues to increase until the deviatoric stress reaches itsmaximum.The relationships betweenηMand deviatoric stress can also be expressed by a power function(Fig.9(b)).EK/ηKreflects the duration from the transient creep to steady creep.It takes the rock more time to reach a steady statewhen EK/ηKis lower. Results show that relationship between EK/ηKand deviatoric stress can be expressed by an exponential function(Fig.9(c)).

    The comparison between the Burgersmodel's predictionsof creep curvesand tested creep resultsunder different confining pressures is shown in Fig.10.The Burgersmodel can describe well the time-dependentbehaviorof the clastic rock aswell as transient and steady creeps.

    Fig.9.Relations between Burgersmodel parameters and deviatoric stress.

    6.Conclusions

    (1)The creep behavior of clastic rock is not significant at low deviatoric stress.However,at high deviatoric stress,the creep behavior is very significant,and the time-dependent deformation is large.Two creep phases,the transient and steady stages,appear to a significant degree when the deviatoric stress ishigh.The time-dependent deformation decreases w ith the increase of the confining pressure,indicating that less creep of the rock samp lemay occur athigh confining pressure.

    (2)The creep strain rate of the rock sam ple varies w ith the deviatoric stress.The strain rate tends to be a value close to zero over timeat low deviatoric stress.However,the strain rate increasesw ith the deviatoric stress.When the deviatoric stress is increased to a certain value,the strain rate increases rapidly,and the rock sample fails eventually.

    (3)Themain failure mechanism of clastic rock is plastic shear,accompanied by a significant compression and ductile dilatancy.The failure may be due to the occurrence,development,and coalescence of m icrocracks under long-term constant stresses.As shown by SEM experiments,creepstrains and microscopic failure patterns are different under different confining pressures.The reason is that the microfissure damages inside the rock sample continuously accumulate in the process of creep testing.

    (4)Based on the tested results,the creep parametersof the Burgers creep model are determ ined through curve fitting of measured data.The results demonstrate a high precision of the Burgers creep model in prediction of the creep curve as compared w ith the measured curve.Thus,the model can describe the overall time-dependentbehaviorof clastic rock.It can provide a basis for creep numerical simulation,which is vital for predicting the long-term stability of the Xiangjiaba Hydropower Project.

    Fig.10.Comparison between Burgers model's prediction of creep curves and tested results.

    References

    Barla,G.,Debernardi,D.,Sterpi,D.,2012.Time-dependent modeling of tunnels in squeezing conditions.Int.J.Geomech.12(6),697-710.http:// dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000163.

    Bayraktar,A.,Kartal,M.E.,Basaga,H.B.,2009.Reservoirwater effects on earthquake performance evaluation of Torul Concrete-faced Rockfill Dam. Water Sci.Eng.2(1),43-57.http://dx.doi.org/10.3882/j.issn.1674-2370.2009.01.005.

    Boukharov,G.N.,Chanda,M.W.,Boukharov,N.G.,1995.The three processes of brittle crystalline rock creep.Int.J.Rock M ech.M in.Sci.32(4),325-335.http://dx.doi.org/10.1016/0148-9062(94)00048-8.

    Brantut,N.,Heap,M.J.,Meredith,P.G.,Baud,P.,2013.Time-dependent cracking and brittle creep in crustal rocks:a review.J.Struct.Geol.52,17-43.http://dx.doi.org/10.1016/j.jsg.2013.03.007.

    Carter,N.L.,Horseman,S.T.,Russell,J.E.,Handin,J.,1993.Rheology of rocksalt.J.Struct.Geol.15(9-10),1257-1271.http://dx.doi.org/10.1016/ 0191-8141(93)90168-A.

    Chan,K.S.,Bodner,S.R.,F(xiàn)ossum,A.F.,M unson,D.E.,1997.A damage mechanics treatment of creep failure in rock salt.Int.J.Damage M ech. 6(2),122-152.http://dx.doi.org/10.1177/105678959700600201.

    Dahou,A.,Shao,J.F.,Bederiat,M.,1995.Experimental and numerical investigations on transient creep of porous chalk.M ech.Mater.21(1),147-158.http://dx.doi.org/10.1016/0167-6636(95)00004-6.

    Dam janac,B.,F(xiàn)airhurst,C.,2010.Evidence fora long-term strength threshold in crystalline rock.Rock Mech.Rock Eng.43(5),513-531.http:// dx.doi.org/10.1007/s00603-010-0090-9.

    Dusseault,M.B.,F(xiàn)ordham,C.J.,1993.Time dependentbehaviour of rocks.In: Comprehensive Rock Engineering:Principles,Practice and Projects.Pergamon Press,Oxford,pp.119-149.

    Fabre,G.,Pellet,F(xiàn).,2006.Creep and time-dependent damage in argillaceous rocks.Int.J.Rock Mech.M in.Sci.43(6),950-960.http://dx.doi.org/ 10.1016/j.ijrmms.2006.02.004.

    Fan,G.Q.,1993.RheologicalMechanicsof Geotechnical Engineering.China Coal Industry Publishing House,Beijing(in Chinese).

    Gudmundsson,A.,Simmenes,T.H.,Belinda,L.,Sonja,L.P.,2010.Effects of internalstructure and localstresseson fracturepropagation,deflection,and arrest in faultzones.J.Struct.Geol.32(11),1643-1655.http://dx.doi.org/ 10.1016/j.jsg.2009.08.013.

    Li,Y.P.,Wang,Z.Y.,Tang,M.M.,Wang,Y.,2008.Relations of comp lete creep processes and triaxial stress-strain curves of rock.J.Cent.South Univ. Technol.15(1),311-315.http://dx.doi.org/10.1007/s11771-008-0370-7.

    Li,Y.S.,Xia,C.C.,2000.Time-dependent tests on intact rocks in uniaxial compression.Int.J.Rock M ech.M in.Sci.37(3),467-475.http:// dx.doi.org/10.1016/S1365-1609(99)00073-8.

    Ma,L.,2004.Experimental Investigation of Time DependentBehavior ofWelded Topopah Spring Tuff.Ph.D.dissertation.University of Nevada,Reno.

    Maranini,E.,Brignoli,M.,1999.Creep behaviour of a weak rock:experimental characterization.Int.J.Rock Mech.M in.Sci.36(1),127-138. http://dx.doi.org/10.1016/S0148-9062(98)00171-5.

    Pietruszczak,S.,Lydzba,D.,Shao,J.F.,2002.Modelling of inherent anisotropy in sedimentary rocks.Int.J.Solids Struct.39(3),637-648.http:// dx.doi.org/10.1016/S0020-7683(01)00110-X.

    Sun,J.,2007.Rock rheologicalmechanics and its advance in engineering applications.Chin.J.Rock Mech.Eng.26(6),1081-1106(in Chinese).

    Tsai,L.S.,Hsieh,Y.M.,Weng,M.C.,Huang,T.H.,Jeng,F(xiàn).S.,2008.Timedependent deformation behaviors of weak sandstones.Int.J.Rock M ech. Min.Sci.45(2),144-154.http://dx.doi.org/10.1016/j.ijrmms.2007.04.008.

    Yang,C.H.,Daemen,J.J.K.,Yin,J.H.,1999.Experimental investigation of creep behavior of salt rock.Int.J.Rock M ech.M in.Sci.36(2),233-242. http://dx.doi.org/10.1016/S0148-9062(98)00187-9.

    Yang,S.Q.,Jiang,Y.Z.,2010.Triaxialmechanical creep behavior of sandstone.M in.Sci.Technol.20(3),339-349.http://dx.doi.org/10.1016/ S1674-5264(09)60206-4.

    Yang,W.D.,Zhang,Q.Y.,Li,S.C.,Wang,S.G.,2014.Time-dependent behavior of diabase and a nonlinear creepmodel.Rock Mech.Rock Eng. 47,1211-1224.http://dx.doi.org/10.1007/s00603-013-0478-4.

    Yin,D.S.,Li,Y.Q.,Wu,H.,Duan,X.M.,2013.Fractional description of mechanical property evolution of soft soils during creep.Water Sci.Eng. 6(4),446-455.http://dx.doi.org/10.3882/j.issn.1674-2370.2013.04.008.

    Zhang,Y.,2012.Experimental InvestigationonRheologicalMechanicsofDam Foundation Deflection ZoneCataclastic Rock and its Study of Constitutive Model.Ph.D.dissertation.HohaiUniversity,Nanjing(in Chinese).

    Zhang,Y.,Xu,W.Y.,Gu,J.J.,Wang,W.,2013.Triaxial creep tests of weak sandstone from the deflection zone of high dam foundation.J.Cent.South Univ.Technol.20(9),2528-2536.http://dx.doi.org/10.1007/s11771-013-1765-7.

    Zhang,Y.,Shao,J.F.,Xu,W.Y.,Zhao,H.B.,Wang,W.,2014a.Experimental and numerical investigations on strength and deformation behavior of cataclastic sandstone.Rock M ech.Rock Eng.http://dx.doi.org/10.1007/ s00603-014-0623-8.Published online athttp://link.springer.com/article/10. 1007%2Fs00603-014-0623-8#page-1 on July 11,2014.

    Zhang,Y.,Shao,J.F.,Xu,W.Y.,Jia,Y.,Zhao,H.B.,2014b.Creep behaviourand permeability evolution of cataclastic sandstone in triaxial rheological tests. Eur.J.Environ.Civ.Eng.http://dx.doi.org/10.1080/19648189.2014.960103. Published online at http://www.tandfonline.com/doi/abs/10.1080/ 19648189.2014.960103#.VMsZIvRAXlA on September19,2014.

    Zhang,Z.L.,Xu,W.Y.,Wang,W.,2012.Triaxial creep tests of rock from the compressive zone of dam foundation in Xiang-jiaba Hydropower Station. Int.J.Rock Mech.M in.Sci.50(1),133-139.http://dx.doi.org/10.1016/ j.ijrmms.2012.01.003.

    This work was supported by the National Natural Science Foundation of China(Grants No.51409261 and 11172090),the Natural Science Foundation of Shandong Province(Grants No.ZR2014EEQ014),and the Applied Basic Research Programs of Qingdao City(Grant No.14-2-4-67-jch).

    *Corresponding author.

    E-mail address:zhangyuhohai@gmail.com(Yu Zhang).

    Peer review under responsibility of HohaiUniversity.

    http://dx.doi.org/10.1016/j.w se.2015.01.005

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    久久免费观看电影| 国产精品久久久久久久久免| 男的添女的下面高潮视频| 日韩大片免费观看网站| 国产成人精品久久久久久| 午夜福利一区二区在线看| 国产精品蜜桃在线观看| 亚洲欧美清纯卡通| 咕卡用的链子| 日韩成人av中文字幕在线观看| 成人国产av品久久久| 91精品三级在线观看| 男女午夜视频在线观看| 久久人人97超碰香蕉20202| 在线免费观看不下载黄p国产| 不卡av一区二区三区| 亚洲精品中文字幕在线视频| 水蜜桃什么品种好| 国产精品久久久久成人av| 亚洲,一卡二卡三卡| 激情五月婷婷亚洲| 欧美精品av麻豆av| 久久热在线av| 欧美精品国产亚洲| av免费在线看不卡| 成人国语在线视频| 日韩制服骚丝袜av| 精品国产乱码久久久久久小说| 只有这里有精品99| 熟女电影av网| 成人免费观看视频高清| 亚洲久久久国产精品| 中文字幕制服av| 热re99久久精品国产66热6| 五月天丁香电影| 国产精品女同一区二区软件| 男女国产视频网站| 国产精品三级大全| 91久久精品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 国产高清不卡午夜福利| 亚洲国产精品999| 黄片小视频在线播放| av视频免费观看在线观看| 亚洲伊人色综图| 亚洲av在线观看美女高潮| 黄网站色视频无遮挡免费观看| 欧美精品亚洲一区二区| av女优亚洲男人天堂| 日韩 亚洲 欧美在线| 99久久综合免费| 少妇被粗大猛烈的视频| 天天躁夜夜躁狠狠久久av| av有码第一页| 80岁老熟妇乱子伦牲交| 国产日韩欧美在线精品| 欧美成人午夜免费资源| 久久精品久久久久久久性| 久久久久网色| 卡戴珊不雅视频在线播放| 我的亚洲天堂| 亚洲精品国产一区二区精华液| 色吧在线观看| 午夜日本视频在线| 精品国产乱码久久久久久男人| 在线观看一区二区三区激情| 免费看av在线观看网站| 久久久久国产精品人妻一区二区| 亚洲国产色片| 天天躁日日躁夜夜躁夜夜| 国产成人aa在线观看| 久久人人爽人人片av| 最近的中文字幕免费完整| 晚上一个人看的免费电影| 亚洲图色成人| 精品亚洲成国产av| 亚洲精品国产av蜜桃| 91精品伊人久久大香线蕉| 色视频在线一区二区三区| 久久久精品94久久精品| 成年女人毛片免费观看观看9 | 新久久久久国产一级毛片| 男女高潮啪啪啪动态图| 校园人妻丝袜中文字幕| 国产综合精华液| 午夜老司机福利剧场| 韩国av在线不卡| 伊人久久国产一区二区| 少妇被粗大的猛进出69影院| 午夜福利在线免费观看网站| 日韩av在线免费看完整版不卡| 精品国产一区二区久久| 色哟哟·www| 少妇猛男粗大的猛烈进出视频| 免费黄色在线免费观看| 男女午夜视频在线观看| 亚洲久久久国产精品| 纵有疾风起免费观看全集完整版| 最新中文字幕久久久久| 国产视频首页在线观看| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区蜜桃| 午夜福利网站1000一区二区三区| 黄色怎么调成土黄色| 亚洲国产成人一精品久久久| 成人免费观看视频高清| 高清av免费在线| 丝袜脚勾引网站| 欧美成人午夜免费资源| 亚洲欧美日韩另类电影网站| 人妻 亚洲 视频| 国产一级毛片在线| 婷婷色av中文字幕| 91成人精品电影| 欧美最新免费一区二区三区| 亚洲av成人精品一二三区| 日产精品乱码卡一卡2卡三| 91国产中文字幕| 99香蕉大伊视频| 免费人妻精品一区二区三区视频| 免费人妻精品一区二区三区视频| 啦啦啦在线观看免费高清www| 日日爽夜夜爽网站| 成人二区视频| 一区二区日韩欧美中文字幕| kizo精华| 国产熟女午夜一区二区三区| 少妇人妻久久综合中文| 999久久久国产精品视频| 久久久久久免费高清国产稀缺| 日韩免费高清中文字幕av| 黄色视频在线播放观看不卡| 亚洲欧美精品综合一区二区三区 | av线在线观看网站| 宅男免费午夜| 国产av码专区亚洲av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品乱久久久久久| 99热全是精品| 国产一区二区激情短视频 | 久久久精品免费免费高清| 国产精品成人在线| 嫩草影院入口| 18禁国产床啪视频网站| 精品国产乱码久久久久久小说| av电影中文网址| 一区二区日韩欧美中文字幕| 国产精品秋霞免费鲁丝片| 最近手机中文字幕大全| 亚洲成av片中文字幕在线观看 | 热re99久久精品国产66热6| 性高湖久久久久久久久免费观看| 爱豆传媒免费全集在线观看| 国产精品蜜桃在线观看| 电影成人av| 国产成人av激情在线播放| 天天躁夜夜躁狠狠躁躁| 久久久久久久久久久久大奶| 欧美日韩视频高清一区二区三区二| 自线自在国产av| 免费女性裸体啪啪无遮挡网站| 免费av中文字幕在线| 晚上一个人看的免费电影| 免费女性裸体啪啪无遮挡网站| 国产人伦9x9x在线观看 | 最近最新中文字幕大全免费视频 | 丰满乱子伦码专区| av天堂久久9| 最近手机中文字幕大全| 99久久人妻综合| 亚洲中文av在线| 午夜av观看不卡| 国产人伦9x9x在线观看 | 亚洲av欧美aⅴ国产| 亚洲综合色惰| 久久综合国产亚洲精品| 99九九在线精品视频| 亚洲精品中文字幕在线视频| 午夜免费观看性视频| 黄色一级大片看看| 在线看a的网站| 99热国产这里只有精品6| 啦啦啦在线观看免费高清www| 午夜福利视频精品| 婷婷成人精品国产| 欧美97在线视频| 波野结衣二区三区在线| 国产精品成人在线| 国产精品 欧美亚洲| 久久午夜福利片| 成人二区视频| 国产精品不卡视频一区二区| 男女下面插进去视频免费观看| 中文字幕人妻熟女乱码| 一级毛片 在线播放| 日韩成人av中文字幕在线观看| 久久人妻熟女aⅴ| 如日韩欧美国产精品一区二区三区| 国产精品人妻久久久影院| 日韩成人av中文字幕在线观看| 99久久精品国产国产毛片| 成年av动漫网址| 99re6热这里在线精品视频| 精品人妻偷拍中文字幕| 久久久久久伊人网av| 国产免费视频播放在线视频| 黄网站色视频无遮挡免费观看| 十八禁高潮呻吟视频| 国产一区二区三区综合在线观看| 久久精品亚洲av国产电影网| 国产精品欧美亚洲77777| 久久久久精品性色| 欧美在线黄色| 在线天堂最新版资源| 久久久久精品久久久久真实原创| 黄色毛片三级朝国网站| 超碰97精品在线观看| 99re6热这里在线精品视频| 亚洲精品日韩在线中文字幕| 欧美国产精品一级二级三级| 亚洲四区av| 97在线人人人人妻| 黄色一级大片看看| 如日韩欧美国产精品一区二区三区| 中国国产av一级| av女优亚洲男人天堂| 久久精品熟女亚洲av麻豆精品| 亚洲第一区二区三区不卡| 十分钟在线观看高清视频www| 啦啦啦在线免费观看视频4| 亚洲av综合色区一区| 老汉色av国产亚洲站长工具| 国产熟女午夜一区二区三区| 国精品久久久久久国模美| 国产成人欧美| 日韩在线高清观看一区二区三区| 美女大奶头黄色视频| 性少妇av在线| 中国国产av一级| 国产乱来视频区| 美女视频免费永久观看网站| 青春草视频在线免费观看| 夫妻性生交免费视频一级片| 精品一区二区免费观看| 久久久久久久精品精品| 久久久久精品性色| 丝袜喷水一区| 久久国产精品大桥未久av| 亚洲美女黄色视频免费看| 观看美女的网站| 亚洲av综合色区一区| 尾随美女入室| 午夜福利网站1000一区二区三区| 91aial.com中文字幕在线观看| 欧美日韩视频高清一区二区三区二| 久久久久久免费高清国产稀缺| 午夜免费男女啪啪视频观看| 2022亚洲国产成人精品| 免费观看无遮挡的男女| 国产亚洲av片在线观看秒播厂| 纵有疾风起免费观看全集完整版| 一边亲一边摸免费视频| av女优亚洲男人天堂| 精品亚洲成a人片在线观看| 成年人免费黄色播放视频| 男女啪啪激烈高潮av片| 欧美亚洲 丝袜 人妻 在线| 免费久久久久久久精品成人欧美视频| 咕卡用的链子| 亚洲av在线观看美女高潮| 人妻一区二区av| 亚洲一区二区三区欧美精品| 亚洲内射少妇av| a 毛片基地| 国产色婷婷99| 亚洲激情五月婷婷啪啪| 我的亚洲天堂| 国产精品久久久久久久久免| 91精品三级在线观看| 日本av免费视频播放| 国产成人av激情在线播放| 超碰97精品在线观看| 看免费成人av毛片| 国产极品粉嫩免费观看在线| 99久久综合免费| 日韩电影二区| 久久精品国产亚洲av高清一级| 亚洲综合色惰| 亚洲国产色片| 99re6热这里在线精品视频| 26uuu在线亚洲综合色| 亚洲国产欧美网| 欧美97在线视频| 男女边摸边吃奶| 亚洲成国产人片在线观看| 咕卡用的链子| 丝瓜视频免费看黄片| www.av在线官网国产| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人手机| 亚洲精品一区蜜桃| 国产精品.久久久| 成人国产av品久久久| 伊人久久国产一区二区| 国产成人精品福利久久| 亚洲国产av新网站| 王馨瑶露胸无遮挡在线观看| 亚洲国产毛片av蜜桃av| 美女大奶头黄色视频| 美女xxoo啪啪120秒动态图| 香蕉精品网在线| 免费观看在线日韩| 亚洲欧洲精品一区二区精品久久久 | 国产男女超爽视频在线观看| 在线观看三级黄色| 亚洲精品av麻豆狂野| 国产野战对白在线观看| 肉色欧美久久久久久久蜜桃| 大片电影免费在线观看免费| 下体分泌物呈黄色| 国产免费现黄频在线看| 亚洲av国产av综合av卡| 一边亲一边摸免费视频| 欧美精品亚洲一区二区| 国产精品不卡视频一区二区| 美女大奶头黄色视频| 亚洲欧洲日产国产| 国产精品国产三级国产专区5o| 国产在线视频一区二区| 国产精品秋霞免费鲁丝片| 丝袜脚勾引网站| 欧美日本中文国产一区发布| 免费播放大片免费观看视频在线观看| 美国免费a级毛片| 亚洲久久久国产精品| 国产片内射在线| 国产一区有黄有色的免费视频| 在线观看免费日韩欧美大片| 午夜福利视频精品| 国产无遮挡羞羞视频在线观看| av天堂久久9| 欧美精品高潮呻吟av久久| 十八禁网站网址无遮挡| 国产精品偷伦视频观看了| 夜夜骑夜夜射夜夜干| 日本91视频免费播放| 汤姆久久久久久久影院中文字幕| 91精品国产国语对白视频| 少妇精品久久久久久久| 中文欧美无线码| 久久久久网色| 亚洲经典国产精华液单| 久久午夜综合久久蜜桃| 五月天丁香电影| 亚洲精品一二三| 亚洲欧洲国产日韩| 咕卡用的链子| 日韩视频在线欧美| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| 日韩av在线免费看完整版不卡| 国产成人aa在线观看| 久久免费观看电影| 国产精品99久久99久久久不卡 | 国产女主播在线喷水免费视频网站| 在现免费观看毛片| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 一级片免费观看大全| 97人妻天天添夜夜摸| 国产精品 国内视频| 国产黄色视频一区二区在线观看| 国产精品 国内视频| 最近2019中文字幕mv第一页| 婷婷色麻豆天堂久久| 人妻系列 视频| av在线观看视频网站免费| 三级国产精品片| 国产精品成人在线| 在线亚洲精品国产二区图片欧美| 26uuu在线亚洲综合色| 999久久久国产精品视频| 久久精品久久久久久噜噜老黄| 男人舔女人的私密视频| 精品久久久久久电影网| 午夜福利视频在线观看免费| 成年女人毛片免费观看观看9 | 亚洲欧美清纯卡通| 纵有疾风起免费观看全集完整版| 久久久久国产精品人妻一区二区| 成人手机av| 久热久热在线精品观看| 搡女人真爽免费视频火全软件| 亚洲图色成人| 大码成人一级视频| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 精品人妻在线不人妻| 亚洲欧洲精品一区二区精品久久久 | 在线亚洲精品国产二区图片欧美| 亚洲国产av影院在线观看| 极品少妇高潮喷水抽搐| 啦啦啦在线观看免费高清www| 精品一品国产午夜福利视频| 久久影院123| 99re6热这里在线精品视频| 久久精品久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 一级毛片我不卡| 亚洲欧美精品自产自拍| 最近的中文字幕免费完整| 免费人妻精品一区二区三区视频| 女人被躁到高潮嗷嗷叫费观| 色婷婷av一区二区三区视频| 青春草视频在线免费观看| 欧美另类一区| 亚洲,欧美,日韩| 免费观看无遮挡的男女| 你懂的网址亚洲精品在线观看| 色婷婷久久久亚洲欧美| 亚洲精品久久久久久婷婷小说| 亚洲精品在线美女| 久久久精品国产亚洲av高清涩受| 天天影视国产精品| 国产人伦9x9x在线观看 | 天天躁日日躁夜夜躁夜夜| 欧美xxⅹ黑人| 一二三四在线观看免费中文在| 亚洲av中文av极速乱| 国产乱来视频区| 亚洲美女黄色视频免费看| 在线亚洲精品国产二区图片欧美| 色吧在线观看| 午夜福利乱码中文字幕| 成人漫画全彩无遮挡| 91精品三级在线观看| 中文字幕av电影在线播放| 久久久久久久久久久免费av| 亚洲综合精品二区| 国产成人精品无人区| 狂野欧美激情性bbbbbb| 国产精品一国产av| 国产深夜福利视频在线观看| av又黄又爽大尺度在线免费看| 男女无遮挡免费网站观看| 男女国产视频网站| 久久精品国产亚洲av涩爱| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频| 成年动漫av网址| 免费av中文字幕在线| 久久亚洲国产成人精品v| 日韩成人av中文字幕在线观看| 国产成人精品在线电影| 国产精品熟女久久久久浪| 日韩人妻精品一区2区三区| 麻豆乱淫一区二区| 欧美人与性动交α欧美精品济南到 | 日韩,欧美,国产一区二区三区| 国产精品久久久久久av不卡| av.在线天堂| 水蜜桃什么品种好| 日本av免费视频播放| 亚洲伊人色综图| 在线观看三级黄色| 亚洲精品一二三| 国产1区2区3区精品| 免费女性裸体啪啪无遮挡网站| 日韩 亚洲 欧美在线| 男人操女人黄网站| 精品人妻一区二区三区麻豆| 激情五月婷婷亚洲| 亚洲精品美女久久av网站| 男男h啪啪无遮挡| 在线看a的网站| 天堂俺去俺来也www色官网| 久久精品国产自在天天线| 涩涩av久久男人的天堂| 黑人猛操日本美女一级片| 国产精品二区激情视频| 性色avwww在线观看| 日韩一本色道免费dvd| 晚上一个人看的免费电影| 色吧在线观看| kizo精华| av国产久精品久网站免费入址| 午夜福利网站1000一区二区三区| 老汉色∧v一级毛片| 精品国产一区二区久久| 午夜免费观看性视频| 最近中文字幕高清免费大全6| 熟女电影av网| 黄网站色视频无遮挡免费观看| 国产精品秋霞免费鲁丝片| 男女无遮挡免费网站观看| 免费久久久久久久精品成人欧美视频| 宅男免费午夜| 一个人免费看片子| 中文字幕最新亚洲高清| 亚洲人成77777在线视频| 午夜激情av网站| 亚洲美女黄色视频免费看| 成人二区视频| 亚洲av欧美aⅴ国产| 欧美bdsm另类| 如何舔出高潮| 成人黄色视频免费在线看| 建设人人有责人人尽责人人享有的| 免费观看在线日韩| 99久久综合免费| 人体艺术视频欧美日本| 男男h啪啪无遮挡| 尾随美女入室| 久久ye,这里只有精品| 久久狼人影院| 久久这里只有精品19| 久久久久久久大尺度免费视频| 街头女战士在线观看网站| 国产乱来视频区| 亚洲精品久久久久久婷婷小说| 亚洲五月色婷婷综合| 麻豆av在线久日| 国产精品久久久久久精品电影小说| 男女下面插进去视频免费观看| 99久国产av精品国产电影| a级片在线免费高清观看视频| 成年女人毛片免费观看观看9 | 日韩制服丝袜自拍偷拍| 久久精品国产自在天天线| 美女视频免费永久观看网站| 国产成人91sexporn| 人妻 亚洲 视频| 日本爱情动作片www.在线观看| 欧美日韩一区二区视频在线观看视频在线| 日韩一区二区三区影片| 亚洲欧美成人综合另类久久久| 丁香六月天网| 亚洲欧洲精品一区二区精品久久久 | 女人高潮潮喷娇喘18禁视频| 男女高潮啪啪啪动态图| 久久国产精品大桥未久av| 一级a爱视频在线免费观看| 国产精品秋霞免费鲁丝片| 午夜福利乱码中文字幕| 热re99久久国产66热| 永久免费av网站大全| 晚上一个人看的免费电影| 国产精品亚洲av一区麻豆 | 黄片无遮挡物在线观看| 午夜精品国产一区二区电影| 精品久久久久久电影网| 新久久久久国产一级毛片| 十分钟在线观看高清视频www| 中文字幕亚洲精品专区| 69精品国产乱码久久久| 一区二区三区激情视频| 亚洲精品日韩在线中文字幕| 最近的中文字幕免费完整| 一区二区三区精品91| 麻豆精品久久久久久蜜桃| 91aial.com中文字幕在线观看| 国产成人欧美| 日韩制服骚丝袜av| 国产成人午夜福利电影在线观看| 精品少妇内射三级| 亚洲精品视频女| 老熟女久久久| 国产高清国产精品国产三级| 美女脱内裤让男人舔精品视频| 97精品久久久久久久久久精品| 免费播放大片免费观看视频在线观看| 久久这里有精品视频免费| 国精品久久久久久国模美| 天天操日日干夜夜撸| 午夜精品国产一区二区电影| 午夜久久久在线观看| 捣出白浆h1v1| 日韩 亚洲 欧美在线| 一区二区av电影网| 尾随美女入室| 婷婷色综合www| 欧美日韩精品成人综合77777| 亚洲欧美色中文字幕在线| 欧美国产精品一级二级三级| 国产不卡av网站在线观看| 综合色丁香网| 亚洲,欧美,日韩| 高清不卡的av网站| 国产成人精品在线电影| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| 我要看黄色一级片免费的| 男女免费视频国产| 9热在线视频观看99| 制服丝袜香蕉在线| 欧美日韩精品网址| 久久久精品国产亚洲av高清涩受| 乱人伦中国视频| 国产精品人妻久久久影院| 美女中出高潮动态图| 激情五月婷婷亚洲| 在线精品无人区一区二区三| 男男h啪啪无遮挡| 免费观看在线日韩| av女优亚洲男人天堂| 日韩av在线免费看完整版不卡| 婷婷成人精品国产| 视频区图区小说| 欧美av亚洲av综合av国产av | 最新中文字幕久久久久| 午夜福利视频在线观看免费| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品久久成人aⅴ小说| av天堂久久9| 亚洲精品美女久久av网站|