• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      具有臨界非線性項(xiàng)的p-雙調(diào)和方程無(wú)窮多小解的存在性

      2015-08-16 09:20:35苗鳳華宋玥薔周晨星
      關(guān)鍵詞:山路師范大學(xué)長(zhǎng)春

      苗鳳華,宋玥薔,周晨星

      (1.長(zhǎng)春師范大學(xué) 數(shù)學(xué)學(xué)院,長(zhǎng)春 130032;2.長(zhǎng)春師范大學(xué) 科研處,長(zhǎng)春 130032)

      ?

      具有臨界非線性項(xiàng)的p-雙調(diào)和方程無(wú)窮多小解的存在性

      苗鳳華1,宋玥薔2,周晨星1

      (1.長(zhǎng)春師范大學(xué) 數(shù)學(xué)學(xué)院,長(zhǎng)春 130032;2.長(zhǎng)春師范大學(xué) 科研處,長(zhǎng)春 130032)

      利用一個(gè)新的對(duì)稱山路引理研究一類具有臨界非線性項(xiàng)的p-雙調(diào)和方程,得到了該問(wèn)題無(wú)窮多個(gè)非平凡解的存在性,并證明了這些解序列趨近于零.

      p-雙調(diào)和方程;對(duì)稱山路引理;無(wú)窮多解

      0 引 言

      考慮如下p-雙調(diào)和方程:

      (1)

      其中:Ω?N是一個(gè)有界光滑區(qū)域稱為p-雙調(diào)和算子,當(dāng)p=2時(shí)為通常的雙調(diào)和算子;p*=Np/(N-2p)為如下Sobolev嵌入的臨界指標(biāo):

      (2)

      目前,關(guān)于臨界指數(shù)增長(zhǎng)問(wèn)題解的研究已取得了許多結(jié)果[1-7].但對(duì)含有p-雙調(diào)和算子問(wèn)題的研究報(bào)道較少[8-10],特別是對(duì)帶有臨界非線性項(xiàng)的p-雙調(diào)和算子無(wú)窮多個(gè)小解存在性的研究目前尚未見(jiàn)報(bào)道.本文利用一個(gè)新的對(duì)稱山路引理[11]研究問(wèn)題(1),獲得了問(wèn)題(1)無(wú)窮多個(gè)小解的存在性,并且這些解趨近于零.利用集中緊性原理[12]克服嵌入失去緊性條件所帶來(lái)的困難,利用文獻(xiàn)[13]中截?cái)喾椒朔疚闹蟹蔷€性項(xiàng)是強(qiáng)不定的導(dǎo)致對(duì)稱山路引理不能直接應(yīng)用的困難.

      假設(shè)f(x,u)滿足下列條件:

      (H1)f(x,u)∈C(Ω×,),對(duì)任意的u∈,f(x,-u)=-f(x,u);

      成立,則稱u∈H是問(wèn)題(1)的一個(gè)弱解.

      利用標(biāo)準(zhǔn)證明方法,可以證明泛函I∈C1(H,),并且泛函I對(duì)應(yīng)的臨界點(diǎn)正好對(duì)應(yīng)問(wèn)題(1)的解.

      1 緊性條件

      (3)

      進(jìn)而存在某個(gè)依賴于ε的正常數(shù)c(ε)>0,使得下列不等式成立:

      (4)

      引理1假設(shè)條件(H1)~(H3)成立,則對(duì)任意的λ>0,泛函I滿足(PS)c條件,這里

      證明:令{un}為函數(shù)空間H中的(PS)序列,則由式(4)可得

      于是,取定ε=(p*-p)/(2pp*λ)可知

      (5)

      其中o(1)→0,且M是某個(gè)正常數(shù).另一方面,由式(3)可得

      (6)

      不等式(5),(6)表明,(PS)序列{un}在空間H中有界.從而可抽取子列,不妨仍記為{un},使得un?u弱收斂于H,un→u幾乎處處收斂于Ω,

      (7)

      (8)

      另一方面,由H?lder不等式和序列{un}的有界性可知

      (9)

      類似地,下列極限成立:

      (10)

      因此,由估計(jì)式(8)~(10)可得

      (11)

      這里用到I′(u)=0,從而可知序列{un}在空間H中強(qiáng)收斂到u.

      2 主要結(jié)果

      設(shè)X是一個(gè)Banach空間,記

      Σ∶={A?X{0}:A是閉的并且在X中關(guān)于原點(diǎn)對(duì)稱}.

      若A∈Σ,定義虧格γ(A)為

      γ(A)∶=inf{m∈:?φ∈C(A,Rm{0}),-φ(x)=φ(-x)}.

      如果對(duì)任意的m∈,不存在如上定義的φ,則約定γ(A)=+∞.令Σk為X中所有閉對(duì)稱子集A的全體,使得0?A且γ(A)≥k.

      引理2(對(duì)稱山路引理)[11]設(shè)E是一個(gè)無(wú)限維空間,I∈C1(E,),如果下列條件成立:

      2)對(duì)每個(gè)k∈,存在Ak∈Σk,使得

      則下列結(jié)論成立:

      (i)存在序列{uk},使得I′(uk)=0,I(uk)<0,并且{uk}趨于零;

      其中A,B,C是某些正的常數(shù).

      則易知χ(t)∈[0,1],并且χ(t)是C∞.令φ(u)=χ(‖u‖),考慮I(u)的擾動(dòng):

      (12)

      因此,可得:

      引理3設(shè)G(u)由式(12)定義,則下列結(jié)論成立:

      1)G∈C1(H,),G是偶的并且有下界;

      引理4假設(shè)條件(H3)成立,則對(duì)任意的k∈,存在δ=δ(k)>0,使得γ({u∈H:G(u)≤-δ(k)}{0})≥k成立.

      證明:證明方法類似于文獻(xiàn)[4],故略.

      定理1假設(shè)條件(H1)~(H3)成立,則存在λ*>0,使得對(duì)任意的λ∈(0,λ*),問(wèn)題(1)有一列非平凡解{un},且當(dāng)n→∞時(shí),un→0.

      注1如果定理1中沒(méi)有對(duì)稱性條件(即f(x,-u)=-f(x,u)),則可利用本文方法得到至少一個(gè)非平凡解的存在性.

      [1] Brezis H,Nirenberg L.Positive Solutions of Nonlinear Elliptic Equations Involving Critical Exponents [J].Commun Pure Appl Math,1983,36(4):437-477.

      [2] LI Shujie,ZOU Wenming.Remarks on a Class of Elliptic Problems with Critical Exponents [J].Nonlinear Anal,1998,32(6):769-774.

      [3] CHEN Jianqing,LI Shujie.On Multiple Solutions of a Singular Quasilinear Equation on Unbounded Domain [J].J Math Anal Appl,2002,275(2):733-746.

      [4] HE Xiaoming,ZOU Wenming.Infinitely Many Arbitrarily Small Solutions for Sigular Elliptic Problems with Critical Sobolev-Hardy Exponents [J].Proc Edinb Math Soc,2009,52(1):97-108.

      [5] Silva E A B,Xavier M S.Multiplicity of Solutions for Quasilinear Elliptic Problems Involving Critical Sobolev Exponents [J].Ann Inst H Poincaré Anal Non Linéaire,2003,20(2):341-358.

      [6] Ghoussoub N,Yuan C.Multiple Solutions for Quasi-linear PDEs Involving the Critical Sobolev and Hardy Exponents [J].Trans Amer Math Soc,2000,352:5703-5743.

      [7] Chabrowski J.On Multiple Solutions for the Nonhomogeneousp-Laplacian with a Critical Sobolev Exponent [J].Differ Integ Equ,1995,8(4):705-716.

      [8] Candito P,Li L,Livrea R.Infinitely Many Solutions for a Perturbed Nonlinear Navier Boundary Value Problem Involving thep-Biharmonic [J].Nonlinear Anal,2012,75(17):6360-6369.

      [9] LI Chun,TANG Chunlei.Three Solutions for a Navier Boundary Value Problem Involving thep-Biharmonic [J].Nonlinear Anal,2010,72(3/4):1339-1347.

      [10] WANG Weihua,ZHAO Peihao.Nonuniformly Nonlinear Elliptic Equations ofp-Biharmonic Type [J].J Math Anal Appl,2008,348(2):730-738.

      [11] Kajikiya R.A Critical Point Theorem Related to the Symmetric Mountain Pass Lemma and Its Applications to Elliptic Equations [J].J Funct Analysis,2005,225(2):352-370.

      [12] Lions P L.The Concentration Compactness Principle in the Calculus of Variations.The Locally Compact Case Ⅰ [J].Ann Inst H Poincaré Anal Non Linéaire,1984,1(2):109-145.

      [13] Garcia A J,Peral A I.Multiplicity of Solutions for Elliptic Problems with Critical Exponent or with a Nonsymmetric Term [J].Trans Amer Math Soc,1991,323(2):877-895.

      [14] Willem M.Minimax Theorems [M].Boston:Birkh?luser Boston,Inc,1996.

      (責(zé)任編輯:趙立芹)

      ExistenceofInfinitelyManySmallSolutionsforp-BiharmonicEquationwithCriticalNonlinearity

      MIAO Fenghua1,SONG Yueqiang2,ZHOU Chenxing1

      (1.CollegeofMathematics,ChangchunNormalUniversity,Changchun130032,China;2.DepartmentofScientificResearch,ChangchunNormalUniversity,Changchun130032,China)

      A class ofp-biharmonic equations with critical nonlinearity to obtain infinitely many solutions by means of a version of the symmetric mountain pass theorem.Finally,we showed that this sequence of solutions converge to zero.

      p-biharmonic equation;symmetric mountain pass theorem;infinitely many solutions

      10.13413/j.cnki.jdxblxb.2015.03.04

      2014-08-04.

      苗鳳華(1968—),女,漢族,碩士,副教授,從事微分方程的研究,E-mail:mathfhmiao@163.com.通信作者:宋玥薔(1980—),女,漢族,碩士,從事微分方程的研究,E-mail:songyueqiang@sohu.com.

      國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):11301038)、吉林省科技廳青年基金(批準(zhǔn)號(hào):20130522100JH)、吉林省教育廳“十二五”科學(xué)技術(shù)研究項(xiàng)目(批準(zhǔn)號(hào):吉教科合字[2013]第252號(hào))和吉林大學(xué)符號(hào)計(jì)算與知識(shí)工程教育部重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題基金(批準(zhǔn)號(hào):93K172013K03).

      O175.2

      :A

      :1671-5489(2015)03-0367-05

      猜你喜歡
      山路師范大學(xué)長(zhǎng)春
      危險(xiǎn)的山路
      山路彎彎
      初夏
      山路彎彎
      Study on the harmony between human and nature in Walden
      印語(yǔ)長(zhǎng)春
      Balance of Trade Between China and India
      商情(2017年9期)2017-04-29 02:12:31
      Courses on National Pakistan culture in Honder College
      Film Music and its Effects in Film Appreciation
      山路乾坤
      讀者(2015年18期)2015-05-14 11:41:08
      太康县| 斗六市| 独山县| 泰州市| 甘肃省| 孝昌县| 呼玛县| 油尖旺区| 寿光市| 和政县| 大方县| 桦南县| 临潭县| 镇康县| 台安县| 黎川县| 都安| 北安市| 丹凤县| 邹城市| 喀什市| 丰县| 西平县| 珠海市| 西充县| 湟源县| 平泉县| 盖州市| 农安县| 肥城市| 临颍县| 赤壁市| 凤凰县| 遂川县| 横峰县| 海盐县| 辉县市| 苍南县| 崇文区| 甘德县| 禄丰县|